Dual-Polarization Radar Fingerprints of Precipitation Physics: A Review
Abstract
:1. Introduction
2. Qualitative Microphysical Fingerprints
2.1. Rain Microphysical Processes
2.2. Snow and Ice Microphysical Processes
2.3. Melting of Snow and Ice
3. Emerging Research with Microphysical Fingerprints
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Doviak, R.J.; Zrnić, D.S. Doppler Radar and Weather Observations, 2nd ed.; Academic Press: Cambridge, MA, USA, 1993; 562p. [Google Scholar]
- Bringi, V.N.; Chandrasekar, V. Polarimetric Doppler Weather Radar: Principles and Applications; Cambridge University Press: Cambridge, UK, 2001; 636p. [Google Scholar]
- Kumjian, M.R. Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor. 2013, 1, 226–242. [Google Scholar] [CrossRef]
- Kumjian, M.R. Principles and applications of dual-polarization weather radar. Part II: Warm-and cold-season applications. J. Oper. Meteor. 2013, 1, 243–264. [Google Scholar] [CrossRef]
- Kumjian, M.R. Principles and applications of dual-polarization weather radar. Part III: Artifacts. J. Oper. Meteor. 2013, 1, 265–274. [Google Scholar] [CrossRef]
- Kumjian, M.R. Weather radars. In Remote Sensing of Clouds and Precipitation, 1st ed.; Andronache, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 15–63. [Google Scholar]
- Ryzhkov, A.V.; Zrnić, D.S. Radar Polarimetry for Weather Observations, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2019; 486p. [Google Scholar]
- Straka, J.M.; Zrnić, D.S. An algorithm to deduce hydrometeor types and contents from multiparameter radar data. In Proceedings of the 26th International Conference on Radar Meteorology, Norman, OK, USA, 24–28 May 1993; American Meteorolpgical Society: Boston, MA, USA; pp. 513–516. [Google Scholar]
- Höller, H.; Hagen, M.; Meischner, P.F.; Bringi, V.N.; Hubbert, J. Life cycle and precipitation formation in a hybrid-type hailstorm revealed by polarimetric and Doppler radar measurements. J. Atmos. Sci. 1994, 51, 2500–2522. [Google Scholar] [CrossRef]
- Lopez, R.E.; Aubagnac, J.P. The lightning activity of a hailstorm as a function of changes in its microphysical characteristics inferred from polarimetric radar observations. J. Geophys. Res. 1997, 102, 16799–16813. [Google Scholar] [CrossRef] [Green Version]
- Vivekanandan, J.; Zrnić, D.S.; Ellis, S.M.; Oye, R.; Ryzhkov, A.V.; Straka, J. Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Am. Meteor. Soc. 1999, 80, 381–388. [Google Scholar] [CrossRef]
- Zrnić, D.S.; Ryzhkov, A.V. Polarimetry for weather surveillance radars. Bull. Am. Meteor. Soc. 1999, 80, 389–406. [Google Scholar] [CrossRef]
- Liu, H.; Chandrasekar, V. Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol. 2000, 17, 140–164. [Google Scholar] [CrossRef]
- Zrnić, D.S.; Ryzhkov, A.; Straka, J.; Liu, Y.; Vivekanandan, J. Testing a procedure for automatic classification of hydrometeor types. J. Atmos. Oceanic Technol. 2001, 18, 892–913. [Google Scholar] [CrossRef]
- Lim, S.; Chandrasekar, V.; Bringi, V.N. Hydrometeor classification system using dual-polarization radar measurements: Model improvements and in situ verification. IEEE Trans. Geosci. Remote Sens. 2005, 43, 792–801. [Google Scholar] [CrossRef]
- Marzano, F.S.; Scaranari, D.; Vulpiani, G. Supervised fuzzy-logic classification of hydrometeors using C-band weather radars. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3784–3799. [Google Scholar] [CrossRef]
- Park, H.S.; Ryzhkov, A.V.; Zrnić, D.S.; Kim, K.E. The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecast. 2009, 24, 730–748. [Google Scholar] [CrossRef]
- Dolan, B.; Rutledge, S.A. A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol. 2009, 26, 2071–2088. [Google Scholar] [CrossRef] [Green Version]
- Dolan, B.; Rutledge, S.A.; Lim, S.; Chandrasekar, V.; Thurai, M. A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset. J. Appl. Meteor. Climatol. 2013, 52, 2162–2186. [Google Scholar] [CrossRef]
- Al-Sakka, H.; Boumahmoud, A.A.; Fradon, B.; Frasier, S.J.; Tabary, P. A new fuzzy logic hydrometeor classification scheme applied to the French X-, C-, and S-band polarimetric radars. J. Appl. Meteor. Climatol. 2013, 52, 2328–2344. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.E.; Bi, K.; Zhao, D. Hydrometeor Classification of Winter Precipitation in Northern China Based on Multi-Platform Radar Observation System. Remote Sens. 2021, 13, 5070. [Google Scholar] [CrossRef]
- Grazioli, J.; Tuia, D.; Berne, A. Hydrometeor classification from polarimetric radar measurements: A clustering approach. Atmos. Meas. Tech. 2015, 8, 149–170. [Google Scholar] [CrossRef] [Green Version]
- Besic, N.; Figueras i Ventura, J.; Grazioli, J.; Gabella, M.; Germann, U.; Berne, A. Hydrometeor classification through statistical clustering of polarimetric radar measurements: A semisupervised approach. Atmos. Meas. Tech. 2016, 9, 4425–4445. [Google Scholar] [CrossRef] [Green Version]
- Besic, N.; Gehring, J.; Praz, C.; Figueras i Ventura, J.; Grazioli, J.; Gabella, M.; Germann, U.; Berne, A. Unraveling hydrometeor mixtures in polarimetric radar measurements. Atmos. Meas. Tech. 2018, 11, 4847–4866. [Google Scholar] [CrossRef] [Green Version]
- Roberto, N.; Baldini, L.; Adirosi, E.; Facheris, L.; Cuccoli, F.; Lupidi, A.; Garzelli, A. A Support Vector Machine Hydrometeor Classification Algorithm for Dual-Polarization Radar. Atmosphere 2017, 8, 134. [Google Scholar] [CrossRef] [Green Version]
- Ribaud, J.F.; Machado, L.A.T.; Biscaro, T. X-band dual-polarization radar-based hydrometeor classification for Brazilian tropical precipitation systems. Atmos. Meas. Tech. 2019, 12, 811–837. [Google Scholar] [CrossRef] [Green Version]
- Lukach, M.; Dufton, D.; Crosier, J.; Hampton, J.M.; Bennett, L.; Neely, R.R. Hydrometeor classification of quasi-vertical profiles of polarimetric radar measurements using a top-down iterative hierarchical clustering method. Atmos. Meas. Tech. 2021, 14, 1075–1098. [Google Scholar] [CrossRef]
- Matsui, T.; Dolan, B.; Rutledge, S.A.; Tao, W.K.; Iguchi, T.; Barnum, J.; Lang, S.E. POLARRIS: A POLArimetric Radar Retrieval and Instrument Simulator. J. Geophys. Res. Atmos. 2019, 124, 4634–4657. [Google Scholar] [CrossRef] [Green Version]
- Giangrande, S.E.; Ryzhkov, A.V. Estimation of rainfall based on the results of polarimetric echo classification. J. Appl. Meteor. Climatol. 2008, 47, 2445–2462. [Google Scholar] [CrossRef]
- Ryzhkov, A.; Zhang, P.; Bukovčić, P.; Zhang, J.; Cocks, S. Polarimetric radar quantitative precipitation estimation. Remote Sens. 2022, 14, 1695. [Google Scholar] [CrossRef]
- Zhang, G.; Vivekanandan, J.; Brandes, E. A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens. 2001, 39, 830–841. [Google Scholar] [CrossRef] [Green Version]
- Bringi, V.N.; Huang, G.J.; Chandrasekar, V.; Gorgucci, E. A Methodology for Estimating the Parameters of a Gamma Raindrop Size Distribution Model from Polarimetric Radar Data: Application to a Squall-Line Event from the TRMM/Brazil Campaign. J. Atmos. Oceanic Technol. 2002, 19, 633–645. [Google Scholar] [CrossRef] [Green Version]
- Gatidis, C.; Schleiss, M.; Unal, C. Sensitivity analysis of DSD retrievals from polarimetric radar in stratiform rain based on mu-lambda relationship. Atmos. Meas. Tech. 2022. in review. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Zrnić, D.S.; Gordon, B.A. Polarimetric method for ice water content determination. J. Appl. Meteorol. 1998, 37, 125–134. [Google Scholar] [CrossRef]
- Lu, Y.; Aydin, K.; Cothiaux, E.E.; Verlinde, J. Retrieving cloud ice water content using millimeter- and centimeter wavelength radar polarimetric observables. J. Appl. Meteorol. Climatol. 2015, 54, 596–604. [Google Scholar] [CrossRef]
- Nguyen, C.M.; Wolde, M.; Korolev, A. Determination of ice water content (IWC) in tropical convective clouds from X-band dual-polarization airborne radar. Atmos. Meas. Tech. 2019, 12, 5897–5911. [Google Scholar] [CrossRef] [Green Version]
- Bukovčić, P.; Ryzhkov, A.; Zrnić, D.; Zhang, G. Polarimetric radar relations for quantification of snow based on disdrometer data. J. Appl. Meteor. Climatol. 2018, 57, 103–120. [Google Scholar] [CrossRef]
- Bukovčić, P.; Ryzhkov, A.; Zrnić, D. Polarimetric relations for snow estimation—Radar verification. J. Appl. Meteorol. Climatol. 2020, 59, 991–1009. [Google Scholar] [CrossRef] [Green Version]
- Bukovčić, P.; Ryzhkov, A.V.; Carlin, J.T. Polarimetric Radar Relations for Estimation of Visibility in Aggregated Snow. J. Atmos. Ocean. Technol. 2021, 38, 805–822. [Google Scholar] [CrossRef]
- Morrison, H.; van Lier-Walqui, M.; Fridlind, A.M.; Grabowski, W.W.; Harrington, J.Y.; Hoose, C.; Korolev, A.; Kumjian, M.R.; Milbrandt, J.A.; Pawlowska, H.; et al. Confronting the challenge of modeling cloud and precipitation microphysics. J. Adv. Model. Earth Syst. 2020, 12, e2019MS001689. [Google Scholar] [CrossRef]
- Kumjian, M.R. The Impact of Precipitation Physical Processes on the Polarimetric Radar Variables. Ph.D. Dissertation, The University of Oklahoma, Norman, OK, USA, 2012; 327p. Available online: https://hdl.handle.net/11244/319188 (accessed on 1 June 2022).
- Reimel, K.J. Leveraging Polarimetric Radar Observations to Learn about Rain Microphysics: An Exploration of Parameter Estimation, Uncertainty Quantification, and Observational Information Content with BOSS. Ph.D. Dissertation, The Pennsylvania State University, State College, PA, USA, 2021; 107p. Available online: https://etda.libraries.psu.edu/catalog/21872kjr50 (accessed on 1 June 2022).
- Lamb, D.; Verlinde, J. Physics and Chemistry of Clouds, 1st ed.; Cambridge University Press: Cambridge, UK, 2011; 584p. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Prat, O.P. The impact of raindrop collisional processes on the polarimetric radar variables. J. Atmos. Sci. 2014, 71, 3052–3067. [Google Scholar] [CrossRef]
- Xie, X.; Evaristo, R.; Troemel, S.; Saavedra, P.; Simmer, C.; Ryzhkov, A. Radar observation of evaporation and implications for quantitative precipitation and cooling rate estimation. J. Atmos. Oceanic Technol. 2016, 33, 1779–1792. [Google Scholar] [CrossRef]
- Low, T.B.; List, R. Collision, coalescence, and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup. J. Atmos. Sci. 1982, 39, 1591–1606. [Google Scholar] [CrossRef] [Green Version]
- Low, T.B.; List, R. Collision, coalescence, and breakup of raindrops. Part II: Parameterization of fragment size distributions. J. Atmos. Sci. 1982, 39, 1607–1619. [Google Scholar] [CrossRef]
- Barros, A.P.; Prat, O.P.; Shrestha, P.; Testik, F.Y.; Bliven, L.F. Revisiting Low and List (1982): Evaluation of raindrop collision parameterizations using laboratory observations and modeling. J. Atmos. Sci. 2008, 65, 2983–2993. [Google Scholar] [CrossRef]
- Schlottke, J.; Straub, W.; Beheng, K.D.; Gomaa, H.; Weigand, B. Numerical investigation of collision induced breakup of raindrops. Part I: Methodology and dependencies on collision and eccentricity. J. Atmos. Sci. 2010, 67, 557–575. [Google Scholar] [CrossRef]
- Straub, W.; Beheng, K.D.; Seifert, A.; Schlottke, J.; Weigand, B. Numerical investigation of collision-induced breakup of raindrops. Part II: Parameterizations of coalescence efficiencies and fragment size distributions. J. Atmos. Sci. 2010, 67, 576–588. [Google Scholar] [CrossRef] [Green Version]
- Testik, F.Y.; Barros, A.P.; Bliven, L.F. Toward a physical characterization of raindrop collision outcomes. J. Atmos. Sci. 2011, 68, 1097–1113. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Srivastava, R.C. An analytical solution for raindrop evaporation and its application to radar rainfall measurements. J. Appl. Meteor. Climatol. 2001, 40, 1607–1616. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Ryzhkov, A.V. The impact of evaporation on polarimetric characteristics of rain: Theoretical model and practical implications. J. Appl. Meteor. Climatol. 2010, 49, 1247–1267. [Google Scholar] [CrossRef] [Green Version]
- Ryzhkov, A.V.; Schuur, T.J.; Burgess, D.W.; Heinselman, P.L.; Giangrande, S.E.; Zrnić, D.S. The Joint Polarization Experiment: Polarimetric Rainfall measurements and hydrometeor classification. Bull. Am. Meteor. Soc. 2005, 86, 809–824. [Google Scholar] [CrossRef] [Green Version]
- Ryzhkov, A.V.; Zhang, P.; Reeves, H.; Kumjian, M.; Tschallener, T.; Trömel, S.; Simmer, C. Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Oceanic Technol. 2016, 33, 551–562. [Google Scholar] [CrossRef]
- Willis, P.T. Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci. 1984, 41, 1648–1661. [Google Scholar] [CrossRef] [Green Version]
- Testud, J.; Oury, S.; Black, R.A.; Amayenc, P.; Dou, X. The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor. 2001, 40, 1118–1140. [Google Scholar] [CrossRef]
- Carlin, J.T.; Gao, J.; Snyder, J.C.; Ryzhkov, A.V. Assimilation of ZDR columns for improving the spinup and forecast of convective storms in storm-sclae models: Proof-of-concept experiments. Mon. Wea. Rev. 2017, 145, 5033–5057. [Google Scholar] [CrossRef]
- Brandes, E.A.; Zhang, G.; Vivekanandan, J. Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor. 2002, 41, 674–685. [Google Scholar] [CrossRef] [Green Version]
- Thurai, M.; Huang, G.J.; Bringi, V.N.; Randeu, W.L.; Schönhuber, M. Drop shapes, model comparisons, and calculations of polarimetric radar parameters in rain. J. Atmos. Oceanic Technol. 2007, 24, 1019–1032. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Ryzhkov, A.V. The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci. 2012, 69, 2042–2060. [Google Scholar] [CrossRef]
- Dawson, D.T.; Mansell, E.R.; Kumjian, M.R. Does wind shear cause hydrometeor size sorting? J. Atmos. Sci. 2015, 72, 340–348. [Google Scholar] [CrossRef]
- Loeffler, S.D.; Kumjian, M.R. Idealized model simulations to determine impacts of storm-relative winds on differential reflectivity and specific differential phase fields. J. Geophys. Res. Atmos. 2020, 125, e2020JD033870. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Ryzhkov, A.V. Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol. 2008, 47, 1940–1961. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Ryzhkov, A.V. Storm-relative helicity revealed from polarimetric radar measurements. J. Atmos. Sci. 2009, 66, 667–685. [Google Scholar] [CrossRef] [Green Version]
- Loeffler, S.D.; Kumjian, M.R.; Jurewicz, M.; Frech, M.M. Differentiating between tornadic and nontornadic supercells using polarimetric radar signatures of hydrometeor size sorting. Geophys. Res. Lett. 2020, 47, e2020GL088242. [Google Scholar] [CrossRef]
- Wilson, M.B.; Van Den Broeke, M.S. An automated python algorithm to quantify ZDR arc and KDP-ZDR separation signatures in supercells. J. Atmos. Oceanic Technol. 2021, 38, 371–386. [Google Scholar] [CrossRef]
- Carr, N.; Kirstetter, P.E.; Gourley, J.J.; Hong, Y. Polarimetric Signatures of Midlatitude Warm-Rain Precipitation Events. J. Appl. Meteor. Climatol. 2017, 56, 697–711. [Google Scholar] [CrossRef]
- Porcacchia, L.; Kirstetter, P.E.; Gourley, J.J.; Maggioni, V.; Cheong, B.L.; Anagnostou, M.N. Toward a Polarimetric Radar Classification Scheme for Coalescence-Dominant Precipitation: Application to Complex Terrain. J. Hydrometeor. 2017, 18, 3199–3215. [Google Scholar] [CrossRef]
- Erlingis, J.M.; Gourley, J.J.; Kirstetter, P.E.; Anagnostou, E.N.; Kalogiros, J.; Anagnostou, M.N.; Petersen, W. Evaluation of Operational and Experimental Precipitation Algorithms and Microphysical Insights during IPHEx. J. Hydrometeor. 2018, 19, 113–125. [Google Scholar] [CrossRef]
- Porcacchia, L.; Kirstetter, P.E.; Maggioni, V.; Tanelli, S. Investigating the GPM Dual-frequency Precipitation Radar signatures of low-level precipitation enhancement. Quart. J. Roy. Meteor. Soc. 2019, 145, 3161–3174. [Google Scholar] [CrossRef]
- Libbrecht, K.G. The physics of snow crystals. Rep. Prog. Phys. 2005, 68, 855–895. [Google Scholar] [CrossRef] [Green Version]
- Harrington, J.Y.; Sulia, K.; Morrison, H. A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development. J. Atmos. Sci. 2013, 70, 349–364. [Google Scholar] [CrossRef]
- Nelson, J.; Knight, C. Snow crystal habit changes explained by layer nucleation. J. Atmos. Sci. 1998, 55, 1452–1465. [Google Scholar] [CrossRef] [Green Version]
- Schrom, R.S.; Kumjian, M.R. Bulk-density representations of branched planar ice crystals: Errors in the polarimetric radar variables. J. Appl. Meteor. Climatol. 2018, 57, 333–346. [Google Scholar] [CrossRef]
- Oue, M.; Galletti, M.; Verlinde, J.; Ryzhkov, A.; Lu, Y. Use of X-band differential reflectivity measurements to study shallow Arctic mixed-phase clouds. J. Appl. Meteor. Climatol. 2016, 55, 403–424. [Google Scholar] [CrossRef]
- Schrom, R.S.; van Lier-Walqui, M.; Kumjian, M.R.; Harrington, J.Y.; Jensen, A.A.; Chen, Y.S. Radar-based Bayesian estimation of ice crystal growth parameters within a microphysical model. J. Atmos. Sci. 2021, 78, 549–569. [Google Scholar] [CrossRef]
- Kennedy, P.C.; Rutledge, S.A. S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol. 2011, 50, 844–858. [Google Scholar] [CrossRef]
- Andrić, J.; Kumjian, M.R.; Zrnić, D.S.; Straka, J.M.; Melnikov, V.M. Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol. 2013, 52, 682–700. [Google Scholar] [CrossRef]
- Bechini, R.; Baldini, L.; Chandrasekar, V. Polarimetric radar observations in the ice region of precipitation clouds at C-band and X-band radar frequencies. J. Appl. Meteor. Climatol. 2013, 52, 1147–1169. [Google Scholar] [CrossRef]
- Schrom, R.S.; Kumjian, M.R.; Lu, Y. Polarimetric radar signatures of dendritic growth zones within Colorado winter storms. J. Appl. Meteor. Climatol. 2015, 54, 2365–2388. [Google Scholar] [CrossRef]
- Schrom, R.S.; Kumjian, M.R. Connecting microphysical processes in Colorado winter storms with vertical profiles of radar observations. J. Appl. Meteor. Climatol. 2016, 55, 1771–1787. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Lombardo, K.A. Insights into the evolving microphysical and kinematic structure of northeastern U.S. winter storms from dual-polarization Doppler radar. Mon. Wea. Rev. 2017, 145, 1033–1061. [Google Scholar] [CrossRef] [Green Version]
- Griffin, E.M.; Schuur, T.J.; Ryzhkov, A.V. A polarimetric analysis of ice microphysical processes in snow using quasi-vertical profiles. J. Appl. Meteor. Climatol. 2018, 57, 31–50. [Google Scholar] [CrossRef]
- Moisseev, D.N.; Lautaportti, S.; Tyynela, J.; Lim, S. Dual-polarization radar signatures in snowstorms: Role of snowflake aggregation. J. Geophys. Res. Atmos. 2015, 120, 12644–12655. [Google Scholar] [CrossRef] [Green Version]
- Sulia, K.J.; Kumjian, M.R. Simulated polarimetric fields of ice vapor growth using the adaptive habit model. Part I: Large-eddy simulations. Mon. Wea. Rev. 2017, 145, 2281–2302. [Google Scholar] [CrossRef]
- Sulia, K.J.; Lebo, Z.J.; Przybylo, V.M.; Schmitt, C.G. A new method for ice-ice aggregation in the adaptive habit model. J. Atmos. Sci. 2021, 78, 133–154. [Google Scholar] [CrossRef]
- Carlin, J.; Reeves, H.D.; Ryzhkov, A.V. Polarimetric observations and simulations of sublimating snow: Implications for nowcasting. J. Appl. Meteor. Climatol. 2021, 60, 1035–1054. [Google Scholar] [CrossRef]
- Ryzhkov, A.; Pinsky, M.; Pokrovsky, A.; Khain, A. Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol. 2011, 50, 873–894. [Google Scholar] [CrossRef]
- Garrett, T.J.; Yuter, S.E.; Fallgatter, C.; Shkurko, K.; Rhodes, S.R.; Endries, J.L. Orientations and aspect ratios of falling snow. Geophys. Res. Lett. 2015, 42, 4617–4622. [Google Scholar] [CrossRef]
- Dunnavan, E.L.; Jiang, Z. A general method for estimating bulk 2D projections of ice particle shape: Theory and applications. J. Atmos. Sci. 2019, 76, 305–332. [Google Scholar] [CrossRef]
- Dunnavan, E.L.; Jiang, Z.; Harrington, J.Y.; Verlinde, J.; Fitch, K.; Garrett, T.J. The shape and density evolution of snow aggregates. J. Atmos. Sci. 2019, 76, 3919–3940. [Google Scholar] [CrossRef]
- Bailey, M.P.; Hallett, J. A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci. 2009, 66, 2888–2899. [Google Scholar] [CrossRef] [Green Version]
- Moisseev, D.; von Lerber, A.; Tiira, J. Quantifying the effect of riming on snowfall using ground-based observations. J. Geophys. Res. Atmos. 2018, 122, 4019–4037. [Google Scholar] [CrossRef] [Green Version]
- Hallett, J.; Mossop, S.C. Production of secondary ice particles during the riming process. Nature 1974, 249, 26–28. [Google Scholar] [CrossRef]
- Grazioli, J.; Lloyd, G.; Panziera, L.; Hoyle, C.R.; Connolly, P.J.; Henneberger, J.; Berne, A. Polarimetric radar and in situ observations of riming and snowfall microphysics during CLACE 2014. Atmos. Chem. Phys. 2015, 15, 13787–13802. [Google Scholar] [CrossRef] [Green Version]
- Kumjian, M.R.; Mishra, S.; Giangrande, S.E.; Toto, T.; Ryzhkov, A.V.; Bansemer, A. Polarimetric radar and aircraft observations of saggy bright bands during MC3E. J. Geophys. Res. Atmos. 2016, 121, 3584–3607. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, V.A.; Moisseev, D.; von Lerber, A. How dual-polarization radar observations can be used to verify model representation of secondary ice. J. Geophys. Res. Atmos. 2016, 121, 10954–10970. [Google Scholar] [CrossRef] [Green Version]
- Carlin, J.T.; Ryzhkov, A.V. Estimation of melting-layer cooling rate from dual-polarization radar: Spectral bin model simulations. J. Appl. Meteor. Climatol. 2019, 58, 1485–1508. [Google Scholar] [CrossRef]
- Oraltay, R.G.; Hallett, J. Evaporation and melting of ice crystals: A laboratory study. Atmos. Res. 1989, 24, 169–189. [Google Scholar] [CrossRef]
- Korolev, A.; Heckman, I.; Wolde, M.; Ackerman, A.S.; Fridlind, A.M.; Ladino, L.A.; Lawson, R.P.; Milbrandt, J.; Williams, E. A new look at the environmental conditions favorable to secondary ice production. Atmos. Chem. Phys. 2020, 20, 1391–1429. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Ryzhkov, A.V.; Reeves, H.D.; Schuur, T.J. A dual-polarization radar signature of hydrometeor refreezing in winter storms. J. Appl. Meteor. Climatol. 2013, 52, 2549–2566. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Ganson, S.M.; Ryzhkov, A.V. Freezing of raindrops in deep convective updrafts: A microphysical and polarimetric model. J. Atmos. Sci. 2012, 69, 3471–3490. [Google Scholar] [CrossRef]
- Nagumo, N.; Adachi, A.; Yamauchi, H. Geometrical properties of hydrometeors during the refreezing process and their effects on dual-polarized radar signals. Mon. Wea. Rev. 2019, 147, 1753–1768. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Tobin, D.M.; Oue, M.; Kollias, P. Microphysical insights into ice pellet formation revealed by fully polarimetric Ka-band Doppler radar. J. Appl. Meteor. Climatol. 2020, 59, 1557–1580. [Google Scholar] [CrossRef]
- Tobin, D.M.; Kumjian, M.R. Microphysical and polarimetric radar modeling of hydrometeor refreezing. J. Atmos. Sci. 2021, 78, 1965–1981. [Google Scholar] [CrossRef]
- Murray, W.A.; List, R. Freezing of water drops. J. Glaciol. 1972, 11, 415–429. [Google Scholar] [CrossRef] [Green Version]
- Stewart, R.E.; Crawford, R.W. Some characteristics of the precipitation formed within winter storms over eastern Newfoundland. Atmos. Res. 1995, 36, 17–37. [Google Scholar] [CrossRef]
- Tobin, D.M.; Kumjian, M.R.; Oue, M.; Kollias, P. Refreezing of partialy melted hydrometeors: Polarimetric radar observations and microphysical model simulations. J. Atmos. Sci. 2022. in preparation. [Google Scholar]
- Zrnić, D.S.; Balakrishnan, N.; Ziegler, C.S.; Bringi, V.N.; Aydin, K.; Matejka, T. Polarimetric signatures in the stratiform region of a mesoscale convective system. J. Appl. Meteor. 1993, 32, 678–693. [Google Scholar] [CrossRef]
- Brandes, E.A.; Ikeda, K. Freezing-level estimation with polarimetric radar. J. Appl. Meteor. 2004, 43, 1541–1553. [Google Scholar] [CrossRef]
- Baldini, L.; Gorgucci, E. Identification of the melting layer through dual-polarization radar measurements at vertical incidence. J. Atmos. Oceanic Technol. 2006, 23, 829–839. [Google Scholar] [CrossRef]
- Matrosov, S.Y.; Clark, K.A.; Kingsmill, D.E. A polarimetric radar approach to identify rain, melting-layer, and snow regions for applying corrections to vertical profiles of reflectivity. J. Appl. Meteorol. Clim. 2007, 46, 154–166. [Google Scholar] [CrossRef]
- Giangrande, S.E.; Krause, J.M.; Ryzhkov, A.V. Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J. Appl. Meteorol. Clim. 2008, 47, 1354–1364. [Google Scholar] [CrossRef]
- Wolfensberger, D.; Scipion, D.; Berne, A. Detection and characterization of the melting layer based on polarimetric radar scans. Quart. J. Roy. Meteor. Soc. 2016, 142, 108–124. [Google Scholar] [CrossRef]
- Troemel, S.R.; Ryzhkov, A.V.; Hickman, B.; Mühlbauer, K.; Simmer, C. Polarimetric radar variables in the layers of melting and dendritic growth at X ban—implications for a nowcasting strategy in stratiform rain. J. Appl. Meteor. Climatol. 2019, 58, 2497–2522. [Google Scholar] [CrossRef]
- Rasmussen, R.M.; Heymsfield, A.J. Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci. 1987, 44, 2754–2763. [Google Scholar] [CrossRef] [Green Version]
- Vivekanandan, J.; Bringi, V.N.; Raghavan, R. Multiparameter radar modeling and observation of melting ice. J. Atmos. Sci. 1990, 47, 549–564. [Google Scholar] [CrossRef] [Green Version]
- Meischner, P.F.; Bringi, V.N.; Heimann, D.; Höller, H. A squall line in southern Germany: Kinematics and precipitation formation as deduced by advanced polarimetric and Doppler radar measurements. Mon. Wea. Rev. 1991, 119, 678–701. [Google Scholar] [CrossRef] [Green Version]
- Ryzhkov, A.V.; Kumjian, M.R.; Ganson, S.M.; Khain, A.P. Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol. 2013, 52, 2849–2870. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Kumjian, M.R.; Ganson, S.M.; Zhang, P. Polarimetric radar characteristics of melting hail. Part II: Practical Implications. J. Appl. Meteor. Climatol. 2013, 52, 2871–2886. [Google Scholar] [CrossRef]
- Shedd, L.C.; Kumjian, M.R.; Giammanco, I.; Brown-Giammanco, T.; Maiden, B.R. Hailstone shapes. J. Atmos. Sci. 2021, 78, 639–652. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Gutierrez, R.; Soderholm, J.S.; Nesbitt, S.W.; Maldonado, P.; Luna, L.M.; Marquis, J.; Bowley, K.A.; Imaz, M.A.; Salio, P. Gargantuan hail in Argentina. Bull. Am. Meteor. Soc. 2020, 101, E1241–E1258. [Google Scholar] [CrossRef] [Green Version]
- Heymsfield, A.; Szakáll, M.; Jost, A.; Giammanco, I.; Wright, R. A comprehensive observational study of graupel and hail terminal velocity, mass flux, and kinetic energy. J. Atmos. Sci. 2018, 75, 3861–3885. [Google Scholar] [CrossRef]
- Morrison, H.; van Lier-Walqui, M.; Kumjian, M.R.; Prat, O.P. A Bayesian approach for statistical-physical bulk parameterization of rain microphysics. Part I: Scheme description. J. Atmos. Sci. 2020, 77, 1019–1041. [Google Scholar] [CrossRef]
- van Lier-Walqui, M.; Morrison, H.; Kumjian, M.R.; Reimel, K.J.; Prat, O.P.; Lunderman, S.; Morzfeld, M. A Bayesian approach for statistical-physical bulk parameterization of rain microphysics. Part II: Idealized Markov Chain Monte Carlo experiments. J. Atmos. Sci. 2020, 77, 1043–1064. [Google Scholar] [CrossRef]
- Tiira, J.; Moisseev, D. Unsupervised classification of vertical profiles of dual-polarization radar variables. Atmos. Meas. Tech. 2020, 13, 1227–1241. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.P.; Lamb, D. The theoretical basis for the parameterization of ice crystal habits: Growth by vapor deposition. J. Atmos. Sci. 1994, 51, 1206–1222. [Google Scholar] [CrossRef]
- Harrington, J.Y.; Moyle, A.; Hanson, L.E.; Morrison, H. On calculating deposition coefficients and aspect-ratio evolution in approximate models of ice crystal vapor growth. J. Atmos. Sci. 2019, 76, 1609–1625. [Google Scholar] [CrossRef]
- Schrom, R.S.; Kumjian, M.R. A probabilistic radar forward model for branched planar ice crystals. J. Appl. Meteor. Climatol. 2019, 58, 1245–1265. [Google Scholar] [CrossRef]
- Morrison, H.; Kumjian, M.R.; Martinkus, C.; Prat, O.P.; van Lier-Walqui, M. A general N-moment normalization method for deriving raindrop size distribution scaling relationships. J. Appl. Meteor. Climatol. 2019, 58, 247–267. [Google Scholar] [CrossRef]
- Prat, O.P.; Barros, A.P. A robust numerical solution of the stochastic collection-breakup equation for warm rain. J. Appl. Meteor. Climatol. 2007, 46, 1480–1497. [Google Scholar] [CrossRef] [Green Version]
- Prat, O.P.; Barros, A.P.; Testik, F.Y. On the influence of raindrop collision outcomes on equilibrium drop size distributions. J. Atmos. Sci. 2012, 69, 1534–1546. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Martinkus, C.P.; Prat, O.P.; Collis, S.; van Lier-Walqui, M.; Morrison, H.C. A moment-based polarimetric radar forward operator for rain microphysics. J. Appl. Meteor. Climatol. 2019, 58, 113–130. [Google Scholar] [CrossRef]
- Keat, W.J.; Westbrook, C.D.; Illingworth, A.J. High-precision measurements of the copolar correlation coefficient: Non-Gaussian errors and retrieval of the dispersion parameter μ in rainfall. J. Appl. Meteor. Climatol. 2016, 55, 1615–1632. [Google Scholar] [CrossRef]
- Lu, Y.; Jiang, Z.; Aydin, K.; Verlinde, J.; Clothiaux, E.E.; Botta, G. A polarimetric scattering database for non-spherical ice particles at microwave wavelengths. Atmos. Meas. Tech. 2016, 9, 5110–5134. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.; Xue, M.; Zhang, G.; Straka, J.M. Assimilation of simulated polarimetric radar data for a convective storm using the Ensemble Kalman filter. Part II: Impact of polarimetric data on storm analysis. Mon. Wea. Rev. 2008, 136, 2246–2260. [Google Scholar] [CrossRef]
- Posselt, D.J.; Li, X.; Tushaus, S.A.; Mecikalski, J.R. Assimilation of dual-polarization radar observations in mixed- and ice-phase regions of convective storms: Information content and forward model errors. Mon. Wea. Rev. 2015, 143, 2611–2636. [Google Scholar] [CrossRef] [Green Version]
- Yokota, S.; Seko, H.; Kunii, M.; Yamauchi, H.; Niino, H. The tornadic supercell on the Kanto Plain on 6 May 2012: Polarimetric radar and surface data assimilation with EnKF and ensemble-based sensitivity analysis. Mon. Wea. Rev. 2016, 144, 3133–3157. [Google Scholar] [CrossRef]
- Putnam, B.; Xue, M.; Jung, Y.; Snook, N.; Zhang, G. Ensemble Kalman filter assimilation of polarimetric radar observations for the 20 May 2013 Oklahoma tornadic supercell case. Mon. Wea. Rev. 2019, 147, 2511–2533. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Lebo, Z.J.; Morrison, H.C. On the mechanisms of rain formation in an idealized supercell storm. Mon. Wea. Rev. 2015, 143, 2754–2773. [Google Scholar] [CrossRef] [Green Version]
Microphysical Processes | |||
---|---|---|---|
Collision-Coalescence | + | + | + |
Breakup | |||
Evaporation | − | ||
Size Sorting | + | ||
Vapor Deposition | + | + | + |
Aggregation | + | ||
Riming | + | ||
Riming with ice splintering | + | + | |
Sublimation | |||
Sublimation with fragmentation | + | ||
Refreezing | |||
Melting * | + | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumjian, M.R.; Prat, O.P.; Reimel, K.J.; van Lier-Walqui, M.; Morrison, H.C. Dual-Polarization Radar Fingerprints of Precipitation Physics: A Review. Remote Sens. 2022, 14, 3706. https://doi.org/10.3390/rs14153706
Kumjian MR, Prat OP, Reimel KJ, van Lier-Walqui M, Morrison HC. Dual-Polarization Radar Fingerprints of Precipitation Physics: A Review. Remote Sensing. 2022; 14(15):3706. https://doi.org/10.3390/rs14153706
Chicago/Turabian StyleKumjian, Matthew R., Olivier P. Prat, Karly J. Reimel, Marcus van Lier-Walqui, and Hughbert C. Morrison. 2022. "Dual-Polarization Radar Fingerprints of Precipitation Physics: A Review" Remote Sensing 14, no. 15: 3706. https://doi.org/10.3390/rs14153706
APA StyleKumjian, M. R., Prat, O. P., Reimel, K. J., van Lier-Walqui, M., & Morrison, H. C. (2022). Dual-Polarization Radar Fingerprints of Precipitation Physics: A Review. Remote Sensing, 14(15), 3706. https://doi.org/10.3390/rs14153706