Polarimetric Radar Quantitative Precipitation Estimation
Abstract
:1. Introduction
2. Rainfall Estimation
2.1. Polarimetric Rainfall Relations
2.2. Attenuation-Based Rainfall Retrievals
2.3. Further Optimization of the R(A) and R(KDP) Relations
2.4. Polarimetric VPR
3. Polarimetric Measurements of Snow
3.1. Historical Overview
3.2. Radar Polarimetric Relations for Snow Estimation
3.3. Results of Observations
3.4. Discussion
4. Operational Implementation—MRMS QPE
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ryzhkov, A.; Zrnic, D. Comparison of dual-polarization radar estimators of rain. J. Atmos. Ocean. Technol. 1995, 12, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Ryzhkov, A.; Zrnic, D. Assessment of rainfall measurement that uses specific differential phase. J. Appl. Meteorol. 1996, 35, 2080–2090. [Google Scholar] [CrossRef]
- May, P.; Keenan, T.; Zrnic, D.; Carey, L.; Rutledge, S. Polarimetric radar measurements of tropical rain at 5-cm wavelength. J. Appl. Meteorol. 1999, 38, 750–765. [Google Scholar] [CrossRef]
- Testud, J.; Le Bouar, E.; Obligis, E.; Ali-Mehenni, M. The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Ocean. Technol. 2000, 17, 332–356. [Google Scholar] [CrossRef]
- Brandes, E.; Zhang, G.; Vivekanandan, J. Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteorol. 2002, 41, 674–685. [Google Scholar] [CrossRef] [Green Version]
- Ryzhkov, A.; Giangrande, S.; Schuur, T. Rainfall estimation with a polarimetric prototype of the WSR-88D radar. J. Appl. Meteorol. 2005, 44, 502–515. [Google Scholar] [CrossRef] [Green Version]
- Matrosov, S.; Kingsmill, D.; Ralph, F. The utility of X-band polarimetric radar for quantitative estimates of rainfall parameters. J. Hydrometeorol. 2005, 6, 248–262. [Google Scholar] [CrossRef] [Green Version]
- Ryzhkov, A.; Schuur, T.; Burgess, D.; Giangrande, S.; Zrnic, D. The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Am. Meteorol. Soc. 2005, 86, 809–824. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J. and Coauthors. Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Am. Meteorol. Soc. 2016, 97, 621–638. [Google Scholar] [CrossRef]
- Ryzhkov, A.; Zrnic, D. Radar Polarimetry for Weather Observations; Springer Atmospheric Sciences: Cham, Switzerland, 2019; p. 486. [Google Scholar]
- Seliga, T.; Bringi, V.; Al-Khatib, H. A preliminary study of comparative measurement of rainfall rate using the differential reflectivity radar technique and a raingauge network. J. Appl. Meteorol. 1981, 20, 1362–1368. [Google Scholar] [CrossRef] [Green Version]
- Schuur, T.; Ryzhkov, A.; Clabo, D. Climatological analysis of DSDs in Oklahoma as revealed by 2D-video disdrometer and polarimetric WSR-88D. In Proceedings of the 32nd Conference Radar Meteorology, Albuquerque, NM, USA, 24–29 October 2005; American Meteorology Society: Boston, MA, USA, 2005; Volume 15. [Google Scholar]
- Giangrande, S.; Ryzhkov, A. Estimation of rainfall based on the results of polarimetric echo classification. J. Appl. Meteorol. 2008, 47, 2445–2462. [Google Scholar] [CrossRef]
- Cifelli, R.; Chandrasekar, V.; Lim, S.; Kennedy, P.; Wang, Y.; Rutledge, S. A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. J. Atmos. Ocean. Technol. 2011, 28, 352–364. [Google Scholar] [CrossRef] [Green Version]
- Pepler, A.; May, P.; Thurai, M. A robust error-based rain estimation method for polarimetric radar. Part I: Development of a method. J. Appl. Meteorol. Clim. 2011, 50, 2092–2103. [Google Scholar] [CrossRef]
- Bringi, V.; Rico-Ramirez, M.; Thurai, M. Rainfall estimation with an operational polarimetric C-band radar in the United Kingdom: Comparison with a gage network and error analysis. J. Hydrometeorol. 2011, 12, 935–954. [Google Scholar] [CrossRef]
- Chen, H.; Chandrasekar, V.; Bechini, R. An improved dual-polarization radar rainfall algorithm (DROPS2.0): Application in NASA IFloodS field campaign. J. Hydrometeorol. 2017, 18, 917–937. [Google Scholar] [CrossRef]
- Chen, G.; Kun, Z.; Zhang, G.; Hao, H.; Liu, S.; Wen, L.; Yang, Z.; Yang, Z.; Xu, L.; Zhu, W. Improving Polarimetric C-Band Radar Rainfall Estimation with Two-Dimensional Video Disdrometer Observations in Eastern China. J. Hydrometeorol. 2017, 18, 1375–1391. [Google Scholar] [CrossRef]
- Thompson, E.; Rutledge, S.; Dolan, B.; Thurai, M.; Chandrasekar, V. Dual-polarization radar rainfall estimation over tropical oceans. J. Appl. Meteorol. Climatol. 2018, 57, 755–775. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Troemel, S.; Ryzhkov, A.; Simmer, C. Assessing the benefits of specific attenuation for quantitative precipitation estimation with a C-band radar network. J. Hydrometeorol. 2021, 22, 2617–2631. [Google Scholar] [CrossRef]
- Matrosov, S.; Cifelli, R.; Kennedy, P.; Nesbitt, S.; Rutledge, S.; Bringi, V.; Martner, B. A comparative study of rainfall retrievals based on specific differential phase shifts at X- and S-band frequencies. J. Atmos. Ocean. Technol. 2006, 23, 952–963. [Google Scholar] [CrossRef]
- Ryzhkov, A.; Zrnic, D.; Fulton, R. Areal Rainfall Estimates Using Differential Phase. J. Appl. Meteorol. 2000, 39, 263–268. [Google Scholar] [CrossRef]
- Borowska, L.; Zrnic, D.; Ryzhkov, A.; Zhang, P.; Simmer, C. Polarimetric estimates of a 1-month accumulation of light rain with a 3-cm wavelength radar. J. Hydrometeorol. 2011, 12, 1024–1039. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Zrnic, D. Estimation of rain and hail rates in mixed-phase precipitation. J. Atmos. Sci. 1990, 47, 565–583. [Google Scholar] [CrossRef]
- Kumjian, M.; Lebo, Z.; Ward, A. Storms producing large accumulations of small hail. J. Appl. Meteorol. Climatol. 2019, 58, 341–364. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, L.; Cocks, S.; Zhang, P.; Ryzhkov, A.; Howard, K.; Langston, C.; Kaney, B. A dual-polarization radar synthetic QPE for operations. J. Hydrometeorol. 2020, 21, 2507–2521. [Google Scholar] [CrossRef] [Green Version]
- Sachidananda, M.; Zrnic, D. Rain rate estimates from differential polarization measurements. J. Atmos. Ocean. Technol. 1987, 4, 588–598. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-G.; Maki, M.; Iwanami, K.; Bringi, V.; Chandrasekar, V. Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part II: Evaluation and application. J. Atmos. Ocean. Technol. 2005, 22, 1633–1655. [Google Scholar]
- Bringi, V.; Thurai, M.; Nakagawa, K.; Huang, G.; Kobayashi, T.; Adachi, A.; Hanado, H.; Sekizawa, S. Rainfall estimation from C-band polarimetric radar in Okinawa, Japan: Comparisons with 2D-video disdrometer and 400 MHz wind profiler. J. Meteorol. Soc. Jpn. 2006, 84, 705–724. [Google Scholar] [CrossRef] [Green Version]
- Matrosov, S. Evaluating polarimetric X-band radar rainfall estimators during HMT. J. Atmos. Ocean. Technol. 2010, 27, 122–134. [Google Scholar] [CrossRef]
- Wang, Y.; Chandrasekar, V. Quantitative precipitation estimation in the CASA X-band dual-polarization radar network. J. Atmos. Ocean. Technol. 2010, 27, 1665–1676. [Google Scholar] [CrossRef]
- Anagnostou, M.; Kalogiros, J.; Anagnostou, E.; Tarolli, M.; Papadopoulos, A.; Borga, M. Performance evaluation of high-resolution estimation from X-band dual-polarization radar for flash flood applications in mountainous basins. J. Hydrol. 2010, 394, 4–16. [Google Scholar] [CrossRef]
- Tabary, P.; Boumahmoud, A.; Andrieu, H.; Thompson, R.; Illingworth, A.; LeBouar, E.; Testud, J. Evaluation of two “integrated” polarimetric quantitative precipitation estimation (QPE) algorithms at C band. J. Hydrol. 2011, 405, 248–260. [Google Scholar] [CrossRef]
- Vulpiani, G.; Montopoli, M.; Passeri, L.; Giola, A.; Giordano, P.; Marzano, F. On the use of dual-polarized C-band radar for operational rainfall retrieval in mountaneous areas. J. Appl. Meteorol. Clim. 2012, 51, 405–425. [Google Scholar] [CrossRef]
- Matrosov, S.; Cifelli, R.; Gochis, D. Measurements of heavy convective rainfall in presence of hail in flood-prone areas using an X-band polarimetric radar. J. Appl. Meteorol. Clim. 2013, 52, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Figueras, I.; Ventura, J.; Tabary, P. The new French operational polarimetric radar rainfall rate product. J. Appl. Meteorol. Clim. 2013, 52, 1817–1835. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Ryzhkov, A.; Tang, L. C-band polarimetric radar QPE based on specific differential propagation phase for extreme typhoon rainfall. J. Atmos. Ocean. Technol. 2013, 30, 1354–1370. [Google Scholar] [CrossRef]
- Chen, H.; Chandrasekar, V. The quantitative precipitation estimation system for Dallas—Fort Worth (DFW) urban remote sensing network. J. Hydrol. 2015, 531, 259–271. [Google Scholar] [CrossRef] [Green Version]
- Diederich, M.; Troemel, S.; Ryzhkov, A.; Zhang, P.; Simmer, C. Use of specific attenuation for rainfall measurements at X-band radar wavelengths. Part II: Rainfall estimates and comparison with rain gauges. J. Hydrometeorol. 2015, 16, 503–516. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, K.; Zhang, G.; Lin, Q.; Wen, L.; Chen, G.; Yang, Z.; Wang, M.; Hu, D. Quantitative precipitation estimation with operational polarimetric radar measurements in southern China: A differential phase–based variational approach. J. Atmos. Ocean. Technol. 2018, 35, 1253–1271. [Google Scholar] [CrossRef]
- Chen, J.; Chang, W.-Y.; Chang, P.-L. A synthetic quantitative precipitation estimation by integrating S- and C-band dual-polarization radars over Northern Taiwan. Remote Sens. 2021, 13, 154. [Google Scholar] [CrossRef]
- Ryzhkov, A.; Diederich, M.; Zhang, P.; Simmer, C. Utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking. J. Atmos. Ocean. Technol. 2014, 31, 599–619. [Google Scholar] [CrossRef]
- Giangrande, S.; Collis, S.; Theisen, A.; Tokay, A. Precipitation estimation from the ARM distributed radar network during the MC3E campaign. J. Appl. Meteorol. Climatol. 2014, 53, 2130–2147. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, P.; Ryzhkov, A.; Zhang, J.; Chang, P.-L. Utilization of specific attenuation for tropical rainfall estimation in complex terrain. J. Hydrometeorol. 2014, 15, 2250–2266. [Google Scholar] [CrossRef]
- Boodoo, S.; Hudak, D.; Ryzhkov, A.; Zhang, P.; Donaldson, N.; Sills, D.; Reid, J. Quantitative precipitation estimation from a C-Band Dual-polarized radar for the 8 July 2013 flood in Toronto, Canada. J. Hydrometeorol. 2015, 16, 2027–2044. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Cocks, S.; Tang, L.; Ryzhkov, A.; Zhang, P.; Zhang, J.; Howard, K. A prototype quantitative precipitation estimation algorithm for operational S-band polarimetric radar utilizing specific attenuation and specific differential phase: Part I–Algorithm description and initial results. J. Hydrometeorol. 2019, 20, 985–997. [Google Scholar] [CrossRef]
- Cocks, S.; Wang, Y.; Tang, L.; Ryzhkov, A.; Zhang, P.; Zhang, J.; Howard, K. A prototype quantitative precipitation estimation algorithm for operational S-band polarimetric radar utilizing specific attenuation and specific differential phase: Part II–Case study analysis and performance verification. J. Hydrometeorol. 2019, 20, 999–1014. [Google Scholar] [CrossRef]
- Seo, B.; Ryzhkov, A.; Krajewski, W. Evaluation of the specific attenuation method for radar-based quantitative precipitation estimation: Improvements and practical challenges. J. Hydrometeorol. 2020, 21, 1333–1347. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, K.; Chen, H.; Hu, D.; Fu, P.; Lin, Q.; Yang, Z. Improved attenuation-based radar precipitation estimation considering the azimuthal variabilities of microphysical properties. J. Hydrometeorol. 2020, 21, 1605–1620. [Google Scholar] [CrossRef]
- Zhang, P.; Zrnic, D.; Ryzhkov, A. Partial beam blockage correction using polarimetric radar measurements. J. Atmos. Ocean. Technol. 2013, 30, 861–872. [Google Scholar] [CrossRef]
- Kitchen, M.; Brown, R.; Davies, A. Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Q. J. R. Meteorol. Soc. 1994, 120, 1231–1254. [Google Scholar] [CrossRef]
- Seo, D.-J.; Breidenbach, J.; Fulton, R.; Miller, D.; O’Bannon, T. Real-time adjustment of range-dependent biases in WSR-88D rainfall estimates due to nonuniform vertical profile of reflectivity. J. Hydrometeorol. 2000, 1, 222–240. [Google Scholar] [CrossRef]
- Germann, U.; Joss, J. Mesobeta profiles to extrapolate radar precipitation measurements above the Alps to the ground level. J. Appl. Meteorol. 2002, 41, 542–557. [Google Scholar] [CrossRef]
- Matrosov, S.; Clark, K.; Kingsmill, D. A polarimetric radar approach to identify rain, melting-layer, and snow regions for applying corrections to vertical profiles of reflectivity. J. Appl. Meteorol. Climatol. 2007, 46, 154–166. [Google Scholar] [CrossRef]
- Koistinen, J. Operational correction of radar rainfall errors due to vertical reflectivity profile. In Proceedings of the 25th International Conference on Radar Meteorology, Paris, France, 24–28 June 1991; American Meteorology Society: Boston, MA, USA, 1991; Volume 91, p. 94. [Google Scholar]
- Andrieu, H.; Creutin, J. Identification of vertical profiles of radar reflectivity for hydrological applications using an inverse method. Part I: Formulation. J. Appl. Meteorol. Climatol. 1995, 34, 225–239. [Google Scholar] [CrossRef]
- Andrieu, H.; Delrieu, G.; Creutin, J. Identification of vertical profiles of radar reflectivity for hydrological applications using an inverse method. Part II: Sensitivity analysis and case study. J. Appl. Meteor. 1995, 34, 240–259. [Google Scholar] [CrossRef] [Green Version]
- Vignal, B.; Andrieu, H.; Creutin, J. Identification of vertical profiles of reflectivity from volume-scan radar data. J. Appl. Meteor. 1999, 38, 1214–1228. [Google Scholar] [CrossRef]
- Vignal, B.; Galli, G.; Joss, J.; Germann, U. Three methods to determine profiles of reflectivity from volumetric radar data to correct precipitation estimates. J. Appl. Meteor. 2000, 39, 1715–1726. [Google Scholar] [CrossRef]
- Vignal, B.; Krajewski, W. Large-sample evaluation of two methods to correct range-dependent error for WSR-88D rainfall estimates. J. Hydrometeorol. 2001, 2, 490–504. [Google Scholar] [CrossRef]
- Zhang, J.; Qi, Y. A Real-Time Algorithm for the Correction of Brightband Effects in Radar-Derived QPE. J. Hydrometeorol. 2010, 11, 1157–1171. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, J.; Zhang, P.; Cao, Q. VPR correction of bright band effects in radar QPEs using polarimetric radar observations. J. Geophys. Res. Atmos. 2013, 118, 3627–3633. [Google Scholar] [CrossRef]
- Hanft, W.; Zhang, J. Dual-pol VPR corrections for improved operational radar QPE in MRMS. J. Hydrometeorol. 2022, Submitted. [Google Scholar]
- Ryzhkov, A.; Krause, J. New polarimetric radar algorithm for melting layer detection and determination of its height. J. Atmos. Ocean. Technol. 2022, in press. [Google Scholar]
- Zhang, Y.; Bi, S.; Liu, L.; Chen, H.; Zhang, Y.; Shen, P.; Yang, F.; Wang, Y.; Zhang, Y.; Yao, S. Deep learning for polarimetric radar quantitative precipitation estimation during landfalling typhoons in South China. Remote Sens. 2021, 13, 3157. [Google Scholar] [CrossRef]
- Shin, K.; Song, J.; Bang, W.; Lee, G. Quantitative Precipitation Estimates using machine learning approaches with operational dual-polarization radar data. Remote Sens. 2021, 13, 694. [Google Scholar] [CrossRef]
- Wolfensberger, D.; Gabella, M.; Boscacci, M.; Germann, U.; Berne, A. RainForest: A random forest algorithm for quantitative precipitation estimation over Switzerland. Atmos. Meas. Tech. 2021, 14, 3169–3293. [Google Scholar] [CrossRef]
- Gunn, K.; Marshall, J. The distribution with size of aggregate snowflakes. J. Meteorol. 1958, 15, 452–461. [Google Scholar] [CrossRef] [Green Version]
- Sekhon, R.; Srivastava, R. Snow size spectra and radar reflectivity. J. Atmos. Sci. 1970, 27, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Fujiyoshi, Y.; Endoh, T.; Yamada, T.; Tsuboki, K.; Tachibana, Y.; Wakahama, G. Determination of a Z–R relationship for snowfall using a radar and sensitive snow gauges. J. Appl. Meteorol. Climatol. 1990, 29, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Matrosov, S. Modeling backscatter properties of snowfall at millimeter wavelengths. J. Atmos. Sci. 2007, 64, 1727–1736. [Google Scholar] [CrossRef]
- Matrosov, S.; Campbell, C.; Kingsmill, D.; Sukovich, E. Assessing snowfall rates from X-band radar reflectivity measurements. J. Atmos. Ocean. Technol. 2009, 26, 2324–2339. [Google Scholar] [CrossRef] [Green Version]
- Szyrmer, W.; Zawadzki, I. Snow studies. Part II: Average relationship between mass of snowflakes and their terminal fall velocity. J. Atmos. Sci. 2010, 67, 3319–3335. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Luchs, S.; Ryzhkov, A.; Xue, M.; Ryzhkova, L.; Cao, Q. Winter precipitation microphysics characterized by polarimetric radar and video disdrometer observations in central Oklahoma. J. Appl. Meteorol. Climatol. 2011, 50, 1558–1570. [Google Scholar] [CrossRef] [Green Version]
- Heymsfield, A.; Matrosov, S.; Wood, N. Toward improving ice water content and snow-rate retrievals from radars. Part I: X and W bands, emphasizing CloudSat. J. Appl. Meteorol. Climatol. 2016, 55, 2063–2090. [Google Scholar] [CrossRef]
- Huang, G.-J.; Bringi, V.; Cifelli, R.; Hudak, D.; Petersen, W. A methodology to derive radar reflectivity-liquid equivalent snow rate relations using C-band radar and a 2D video disdrometer. J. Atmos. Ocean. Technol. 2010, 27, 637–651. [Google Scholar] [CrossRef]
- Saltikoff, E.; Huuskonen, A.; Hohti, H.; Koistinen, J.; Jarvinen, H. Quality assurance in the FMI Doppler weather radar network. Boreal Environ. Res. 2010, 15, 579–594. [Google Scholar]
- Wolfe, J.; Snider, J. A relationship between reflectivity and snow rate for a high-altitude S-band radar. J. Appl. Meteorol. Climatol. 2012, 51, 1111–1128. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.-J.; Bringi, V.; Moisseev, D.; Petersen, W.; Bliven, L.; Hudak, D. Use of 2D-video disdrometer to derive mean density-size and Ze–SR relations: Four snow cases from the light precipitation validation environment. Atmos. Res. 2015, 153, 34–48. [Google Scholar] [CrossRef]
- Von Lerber, A.; Moisseev, D.; Bliven, L.; Petersen, W.; Harri, A.; Chandrasekar, V. Microphysical properties of snow and their link to Ze–S relations during BAECC 2014. J. Appl. Meteorol. Clim. 2017, 56, 1561–1582. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Hudak, D.; Petersen, W.; Nesbitt, S.W.; Chandrasekar, V.; Durden, S.; Gleicher, K.J.; Huang, G.-J.; Joe, P.; Kollias, P.; et al. Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEX). Bull. Am. Meteorol. Soc. 2015, 96, 1719–1741. [Google Scholar] [CrossRef]
- Huang, G.-J.; Bringi, V.; Newman, A.; Lee, G.; Moisseev, D.; Notaroš, B. Dual-wavelength radar technique development for snow rate estimation: A case study from GCPEx. Atmos. Meas. Tech. 2019, 12, 1409–1427. [Google Scholar] [CrossRef] [Green Version]
- Tiira, J.; Moisseev, D. Unsupervised classification of vertical profiles of dual polarization radar variables. Atmos. Meas. Tech. 2020, 13, 1227–1241. [Google Scholar] [CrossRef] [Green Version]
- Vivekanandan, J.; Bringi, V.; Hagen, M.; Meischner, P. Polarimetric radar studies of atmospheric ice particles. IEEE Trans. Geosci. Remote Sens. 1994, 32, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Aydin, K.; Cothiaux, E.; Verlinde, J. Retrieving cloud ice water content using millimeter- and centimeter wavelength radar polarimetric observables. J. Appl. Meteorol. Climatol. 2015, 54, 596–604. [Google Scholar] [CrossRef]
- Aydin, K.; Tang, C. Estimation of ice water content with 94-GHz millimeter wave radar observables. In Proceedings of the 1995 27th Conference on Radar Meteorology, Vail, CO, USA, 9–13 October 1995; American Meteorological Soc.: Boston, MA, USA, 1995; pp. 550–552. [Google Scholar]
- Ryzhkov, A.; Zrnic, D.; Gordon, B. Polarimetric method for ice water content determination. J. Appl. Meteorol. 1998, 37, 125–134. [Google Scholar] [CrossRef]
- Ryzhkov, A.; Bukovcic, P.; Murphy, A.; Zhang, P.; McFarquhar, G. Ice microphysical retrievals using polarimetric radar data. In Proceedings of the 10th European Conference on Radar in Meteorology and Hydrology, Wageningen, The Netherlands, 1–6 July 2018. [Google Scholar]
- Nguyen, C.; Wolde, M.; Korolev, A. Determination of ice water content (IWC) in tropical convective clouds from X-band dual-polarization airborne radar. Atmos. Meas. Tech. 2019, 12, 5897–5911. [Google Scholar] [CrossRef] [Green Version]
- Bukovčić, P.; Ryzhkov, A.; Carlin, J. Polarimetric Radar Relations for Estimation of Visibility in Aggregated Snow. J. Atmos. Ocean. Technol. 2021, 38, 805–822. [Google Scholar] [CrossRef]
- Poljakova, E.; Tretjakov, V. Visibility in falling snow. Trudy Gl. Geofiz. Obs. 1960, 100, 53–57. [Google Scholar]
- Warner, C.; Gunn, K. Measurement of snowfall by optical attenuation. J. Appl. Meteorol. Climatol. 1969, 8, 110–121. [Google Scholar] [CrossRef] [Green Version]
- Muench, H.; Brown, H. Measurements of Visibility and Radar Reflectivity during Snowstorms in the AFGL Mesonet; NASA STI/Recon Tech. Rep.; NASA: Washington, DC, USA, 1977; Volume 78, 34p. [Google Scholar]
- Fujiyoshi, Y.; Wakahamam, G.; Endoh, T.; Irikawa, S.; Konishi, H.; Takeuchi, M. Simultaneous observation of snowfall intensity and visibility in winter at Sapporo. Low Temp. Sci. 1983, 42A, 147–156. [Google Scholar]
- Rasmussen, R.; Vivekanandan, J.; Cole, J.; Myers, B.; Masters, C. The estimation of snowfall rate using visibility. J. Appl. Meteor. 1999, 38, 1542–1563. [Google Scholar] [CrossRef]
- Boudala, F.; Isaac, G. Parameterization of visibility in snow: Application in numerical weather prediction models. J. Geophys. Res. 2009, 114, D19202. [Google Scholar] [CrossRef] [Green Version]
- Gultepe, I.; Milbrandt, J.; Zhou, B.-B. Visibility parameterization for forecasting model applications. In Proceedings of the 5th International Conference on Fog, Fog Collection and Dew, Münster, Germany, 25–30 July 2010; pp. 227–230. [Google Scholar]
- Hassan, D.; Taylor, P.; Isaac, G. Snowfall rate estimation using C-band polarimetric radars. Meteor. Appl. 2017, 24, 142–156. [Google Scholar] [CrossRef] [Green Version]
- Bukovčić, P.; Ryzhkov, A.; Zrnić, D. Polarimetric relations for snow estimation—Radar verification. J. Appl. Meteorol. Climatol. 2020, 59, 991–1009. [Google Scholar] [CrossRef] [Green Version]
- Brandes, E.; Ikeda, K.; Zhang, G.; Schoenhuber, M.; Rasmussen, R. A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video-disdrometer. J. Appl. Meteorol. Climatol. 2007, 46, 634–650. [Google Scholar] [CrossRef]
- Bukovčić, P.; Ryzhkov, A.; Zrnić, D.; Zhang, G. Polarimetric radar relations for quantification of snow based on disdrometer data. J. Appl. Meteorol. Climatol. 2018, 57, 103–120. [Google Scholar] [CrossRef]
- Capozzi, V.; Montopoli, M.; Bracci, A.; Adirosi, E.; Baldini, L.; Vulpiani, G.; Budillon, G. Retrieval of snow precipitation rate from polarimetric X-band radar measurements in southern Italy Apennine mountains. Atmos. Res. 2020, 236, 104796. [Google Scholar] [CrossRef]
- Ryzhkov, A.; Zhang, P.; Reeves, H.; Kumjian, M.; Tschallener, T.; Troemel, S.; Simmer, C. Quasi-vertical profiles–a new way to look at polarimetric radar data. J. Atmos. Ocean. Technol. 2016, 33, 551–562. [Google Scholar] [CrossRef]
- Tobin, D.; Kumjian, M. Polarimetric radar and surface-based precipitation-type observations of ice pellet to freezing rain transitions. Weather Forecast. 2017, 32, 2065–2082. [Google Scholar] [CrossRef]
- Bukovčić, P. Polarimetric Measurements of Ice Pellets and Aggregated Snow. Ph.D. Thesis, University of Oklahoma, Norman, OK, USA, 2017; 120p. [Google Scholar]
- Murphy, A.; Ryzhkov, A.; Zhang, P. Columnar vertical profile (CVP) methodology for validating polarimetric radar retrievals in ice using in situ aircraft measurements. J. Atmos. Ocean. Technol. 2020, 37, 1623–1642. [Google Scholar] [CrossRef]
- Squires, M.; Lawrimore, J.; Heim Jr., R.; Robinson, D.; Gerbush, M.; Estilow, T. The regional snowfall index. Bull. Am. Meteorol. Soc. 2014, 95, 1835–1848. [Google Scholar] [CrossRef]
- Kocin, P.; Uccellini, L. A snowfall impact scale derived from Northeast storm snowfall distributions. Bull. Am. Meteorol. Soc. 2004, 85, 177–194. [Google Scholar] [CrossRef]
- Williams, E.R.; Smalley, D.J.; Donovan, M.F.; Hallowell, R.G.; Hood, K.T.; Bennett, B.J.; Evaristo, R.; Stepanek, A.; Bals-Elsholz, T.; Cobb, J.; et al. Measurements of differential reflectivity in snowstorms and warm season stratiform systems. J. Appl. Meteorol. Climatol. 2015, 54, 573–595. [Google Scholar] [CrossRef]
- Griffin, E.; Schuur, T.; Ryzhkov, A. A polarimetric analysis of ice microphysical processes in snow, using quasi-vertical profiles. J. Appl. Meteorol. Climatol. 2018, 57, 31–50. [Google Scholar] [CrossRef]
- Korolev, A.; Isaac, G.; Hallett, J. Ice particle habits in stratiform clouds. Q. J. R. Meteorol. Soc. 2000, 126, 2873–2902. [Google Scholar] [CrossRef]
- Carlin, J.; Reeves, H.; Ryzhkov, A. Polarimetric observations and simulations of sublimating snow: Implications for nowcasting. J. Appl. Meteorol. Climatol. 2021, 60, 1035–1054. [Google Scholar] [CrossRef]
- Park, H.; Ryzhkov, A.; Zrnic, D.; Kim, K.-E. The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Weather Forecast. 2009, 24, 730–748. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, J.; Langston, C.; Krause, J.; Howard, K.; Lakshmanan, V. A physically based precipitation-nonprecipitation radar echo classifier using polarimetric radar and environmental data in a real-time system. Weather Forecast. 2014, 29, 1106–1119. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, J.; Simpson, M.; Arthur, A.; Grams, H.; Wang, Y.; Langston, C. Updates on the radar data quality control in the MRMS quantitative precipitation estimation system. J. Ocean. Atmos. Tech. 2020, 37, 1521–1537. [Google Scholar] [CrossRef]
- Giangrande, S.; Krause, J.; Ryzhkov, A. Automatic Designation of the Melting Layer with a Polarimetric Prototype of the WSR-88D Radar. J. Appl. Meteorol. Climatol. 2008, 47, 1354–1364. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, J. A Physically Based Two-Dimensional Seamless Reflectivity Mosaic for Radar QPE in the MRMS System. J. Hydrometeorol. 2017, 18, 1327–1340. [Google Scholar] [CrossRef]
- Cocks, S.; Zhang, J.; Martinaitis, S.; Qi, Y.; Kaney, B.; Howard, K. MRMS QPE performance east of the Rockies during the 2014 warm season. J. Hydrometeorol. 2017, 18, 761–775. [Google Scholar] [CrossRef]
- Martinaitis, S.; Grams, H.; Langston, C.; Zhang, J.; Howard, K. A real-time evaporation correction scheme for radar-derived mosaicked precipitation estimations. J. Hydrometeorol. 2018, 19, 87–111. [Google Scholar] [CrossRef]
Source | Z(S) Relation for Dry Snow |
---|---|
Gunn and Marshall [68] | Z = 448 S2 |
Sekhon and Srivastava [69] | Z = 399 S2.21 |
Matrosov et al. [72] | Z = (100–130) S(1.3–1.55) |
Huang et al. [76] | Z = (106–305) S(1.11–1.92) |
Saltikoff et al. [77] | Z = 100 S2 |
Szyrmer and Zawadzki [73] | Z = 494 S1.44 |
Wolfe and Snider [78] | Z = 110 S2 |
Huang et al. [79] | Z = (130–209) S(1.44–1.81) |
Von Lerber et al. [80] | Z = (53–782) S(1.19–1.61) |
WSR-88D, Northeast | Z = 120 S2 |
WSR-88D, Great Lakes | Z = 180 S2 |
WSR-88D, North Plains/Upper Midwest | Z = 180 S2 |
WSR-88D, High Plains | Z = 130 S2 |
WSR-88D, Inter-mountain West | Z = 40 S2 |
WSR-88D, Sierra Nevada | Z = 222 S2 |
Category | VL | L | M | H | VH | |
---|---|---|---|---|---|---|
QPE-G pairs | 53,478 | 13,796 | 9834 | 3404 | 710 | |
G-mean (in) | 0.17 | 0.71 | 1.37 | 2.66 | 5.45 | |
Q3RAD | MBR | 1.19 | 0.91 | 0.82 | 0.80 | 0.81 |
CC | 0.69 | 0.39 | 0.43 | 0.52 | 0.57 | |
MAE (in) | 0.09 | 0.21 | 0.38 | 0.78 | 1.73 | |
fMAE (%) | 52.94 | 29.58 | 27.74 | 29.32 | 31.74 | |
Q3DP | MBR | 1.04 | 0.91 | 0.88 | 0.92 | 0.95 |
CC | 0.68 | 0.39 | 0.49 | 0.59 | 0.71 | |
MAE (in) | 0.08 | 0.22 | 0.36 | 0.59 | 1.14 | |
fMAE (%) | 47.06 | 30.99 | 26.28 | 22.18 | 20.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryzhkov, A.; Zhang, P.; Bukovčić, P.; Zhang, J.; Cocks, S. Polarimetric Radar Quantitative Precipitation Estimation. Remote Sens. 2022, 14, 1695. https://doi.org/10.3390/rs14071695
Ryzhkov A, Zhang P, Bukovčić P, Zhang J, Cocks S. Polarimetric Radar Quantitative Precipitation Estimation. Remote Sensing. 2022; 14(7):1695. https://doi.org/10.3390/rs14071695
Chicago/Turabian StyleRyzhkov, Alexander, Pengfei Zhang, Petar Bukovčić, Jian Zhang, and Stephen Cocks. 2022. "Polarimetric Radar Quantitative Precipitation Estimation" Remote Sensing 14, no. 7: 1695. https://doi.org/10.3390/rs14071695
APA StyleRyzhkov, A., Zhang, P., Bukovčić, P., Zhang, J., & Cocks, S. (2022). Polarimetric Radar Quantitative Precipitation Estimation. Remote Sensing, 14(7), 1695. https://doi.org/10.3390/rs14071695