Evaluation of CYGNSS Observations for Snow Properties, a Case Study in Tibetan Plateau, China
Abstract
:1. Introduction
2. Method
2.1. Data Description
2.1.1. CYGNSS Data
- : The transmitted power of GNSS satellite;
- : The GNSS satellite antenna gain at specular point direction;
- : The receiver antenna gain;
- : The GNSS equivalent isotopically radiated power (EIRP);
- : The wavelength;
- and : The distance between the receiver and the specular point and the distance between the transmitter and the specular point, respectively.
2.1.2. IGBP Land Cover Classification
2.1.3. Long Time Series Dataset of Snow Depth in China
2.1.4. SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, Version 7
2.1.5. ERA5 Soil Temperature Data
2.2. Calculation of the Surface Reflectivity
3. Results and Analysis
3.1. Comparison of Surface Reflectivity and Parameters on the Tibetan Plateau
3.2. Surface Reflectivity Difference Ration Factor
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. LES and Snow Properties
Appendix A.2. SNR with the Snow Properties
References
- Brown, R.D. Northern Hemisphere Snow Cover Variability and Change, 1915–1997. J. Clim. 2000, 13, 2339–2355. [Google Scholar] [CrossRef]
- Qiu, J. China: The third pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.D.; Wu, T.H. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J. Geophys. Res. Atmos. 2007, 112, F02S03. [Google Scholar] [CrossRef] [Green Version]
- Senan, R.; Orsolini, Y.J.; Weisheimer, A. Impact of springtime Himalayan–Tibetan Plateau snowpack on the onset of the Indian summer monsoon in coupled seasonal forecasts. Clim. Dyn. 2016, 47, 2709–2725. [Google Scholar] [CrossRef] [Green Version]
- Bormann, K.J.; Brown, R.D.; Derksen, C. Estimating snow-cover trends from space. Nat. Clim. Change 2018, 8, 924–928. [Google Scholar] [CrossRef]
- Cui, Y.; Chuan, X.; Lemmetyinen, J.; Shi, J.; Jiang, L.; Peng, B. Estimating snow water equivalent with backscattering at X and Ku band based on absorption loss. Remote Sens. 2016, 6, 505. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Kinzelbach, W.; Cheng, G. Monitoring and modeling the influence of snow pack and organic soil on a permafrost active layer, Qinghai–Tibetan Plateau of China. Cold Reg. Sci. Technol. 2013, 90, 38–52. [Google Scholar] [CrossRef]
- Struzik, P. Japan Aerospace Exploration Agency GCOM-W1 satellite snow depth product: Outcome of the first winter. J. Appl. Remote Sens. 2014, 8, 4480–4494. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. MODIS snow cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Gafurov, A.; Bárdossy, A. Cloud removal methodology from MODIS snow cover product. Hydrol. Earth Syst. Sci. 2009, 13, 1361–1373. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; Nelson, T.A.; Derksen, C. Snow cover variability across central Canada (1978–2002) derived from satellite passive microwave data. Clim. Change 2007, 82, 113–130. [Google Scholar] [CrossRef]
- Kim, S.; van Zyl, J.; McDonald, K.; Njoku, E. Monitoring surface soil moisture and freeze-thaw state with the high-resolution radar of the Soil Moisture Active/Passive (SMAP) mission. In Proceedings of the IEEE Radar Conference, Washington, DC, USA, 10–14 May 2010; pp. 735–739. [Google Scholar]
- Derksen, C.; Xu, X.; Dunbar, R.S.; Colliander, A.; Kim, Y.; Kimball, J.S.; Black, T.A.; Euskirchen, E.; Langlois, A.; Loranty, M.M. Retrieving landscape freeze/thaw state from Soil Moisture Active Passive (SMAP) radar and radiometer measurements. Remote Sens. Environ. 2017, 194, 48–62. [Google Scholar] [CrossRef]
- Martin-Neira, M. A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry. ESA J. 1993, 17, 331–355. [Google Scholar]
- Small, E.E.; Larson, K.M.; Braun, J.J. Sensing vegetation growth with reflected GPS signals. Geophys. Res. Lett. 2010, 37, L12401. [Google Scholar] [CrossRef]
- Boyd, D. Inversion Study of Simulated and Physical Soil Moisture Profiles using Multifrequency Soop-Sources. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 5259–5262. [Google Scholar]
- Masters, D.; Axelrad, P.; Katzberg, S. Initial results of land-reflected GPS bistatic radar measurements in SMEX02. Remote Sens. Environ. 2004, 92, 507–520. [Google Scholar] [CrossRef]
- Comite, D.; Cenci, L.; Colliander, A.; Pierdicca, N. Monitoring Freeze-Thaw State by Means of GNSS Reflectometry: An Analysis of TechDemoSat-1 Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2996–3005. [Google Scholar] [CrossRef]
- Steve, P. NASA Intensifies Hurricane Studies with CYGNSS. Earth Obs. 2013, 25, 13–21. [Google Scholar]
- Ruf, C.S.; Chew, C.; Lang, T.; Morris, M.G.; Nave, K.; Ridley, A.; Balasubramaniam, R. A New Paradigm in Earth Environmental Monitoring with the CYGNSS Small Satellite Constellation. Sci. Rep. 2018, 8, 8782. [Google Scholar] [CrossRef] [Green Version]
- Chew, C.; Reager, J.T.; Small, E. CYGNSS data map flood inundation during the 2017 Atlantic hurricane season. Sci. Rep. 2018, 8, 9336. [Google Scholar] [CrossRef]
- Kim, H.; Lakshmi, V. Use of Cyclone Global Navigation Satellite System (CyGNSS) Observations for Estimation of Soil Moisture. Geophys. Res. Lett. 2018, 45, 8272–8282. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.R.; Dong, Z.D.; Jin, S.G. First Measurement of Soil Freeze/Thaw Cycles in the Tibetan Plateau Using CYGNSS GNSS-R Data. Remote Sens. 2020, 12, 2361. [Google Scholar] [CrossRef]
- CYGNSS. CYGNSS Level 1 Climate Data Record Version 1.0. Ver. 1.0. PO. DAAC, CA, USA; 2020. Available online: https://podaac.jpl.nasa.gov/dataset/CYGNSS_L1_CDR_V1.0 (accessed on 12 March 2021). [CrossRef]
- Friedl, M.; Sulla-Menashe, D. MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V006. 2015, Distributed by NASA EOSDIS Land Processes DAAC. Available online: https://lpdaac.usgs.gov/products/mcd12c1v006/ (accessed on 13 January 2022). [CrossRef]
- Che, T. Long-Term Series of Daily Snow Depth Dataset in China (1979–2020). National Tibetan Plateau Data Center, 2015. Available online: https://data.tpdc.ac.cn/en/data/df40346a-0202-4ed2-bb07-b65dfcda9368/ (accessed on 10 August 2020). [CrossRef]
- O’Neill, E.P.; Chan, S.; Njoku, E.G.; Jackson, T.; Bindlish, R.; Chaubell, J. SMAP L3 Ra-Diometer Global Daily 36 km EASE-Grid Soil Moisture, Version 7. [Soil Moisture]. NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2020. Available online: https://nsidc.org/data/spl3smp/versions/7 (accessed on 22 December 2021). [CrossRef]
- Muñoz Sabater, J.; ERA5-Land Hourly Data from 1981 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac (accessed on 6 January 2021). [CrossRef]
- Ruf, C.; Chang, P.S.; Clarizia, M.P.; Gleason, S.; Jelenak, Z. CYGNSS Handbook; Michigan Pub: Ann Arbor, MI, USA, 2016; p. 154. [Google Scholar]
- Al-Khaldi, M.M. Time-Series Retrieval of Soil Moisture Using CYGNSS. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4322–4331. [Google Scholar] [CrossRef]
- Munoz-Martin, J.F.; Onrubia, R.; Pascual, D.; Park, H.; Camps, A.; Rüdiger, C.; Walker, J.; Monerris, A. Untangling the Incoherent and Coherent Scattering Components in GNSS-R and Novel Applications. Remote Sens. 2020, 12, 1208. [Google Scholar] [CrossRef] [Green Version]
- Garrison, J.L.; Katzberg, S.J.; Howell, C.T. Detection of ocean reflected GPS signals: Theory and experiment. In Proceedings of the IEEE SOUTHEASTCON’97.’Engineering the New Century’, Blacksburg, VA, USA, 12–14 April 1997. [Google Scholar]
- Che, T.; Li, X.; Jin, R.; Armstrong, R.; Zhang, T.J. Snow depth derived from passive microwave remote-sensing data in China. Ann. Glaciol. 2008, 49, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.Y.; Che, T.; Ding, Y.J. Inter-calibrating SMMR, SSM/I and SSMI/S data to improve the consistency of snow-depth products in China. Remote Sens. 2015, 7, 7212–7230. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.Y.; Che, T.; Ding, Y.J.; Hao, X.H. Evaluation of snow cover and snow depth on the Qinghai–Tibetan Plateau derived from passive microwave remote sensing. Cryosphere 2017, 11, 1933–1948. [Google Scholar] [CrossRef] [Green Version]
- Carreno-Luengo, H.; Ruf, C.S. Retrieving Freeze/Thaw Surface State From CYGNSS Measurements. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
Name | Comment |
---|---|
ddm_timestamp_utc | DDM sample time |
sp_lat | Specular point latitude, in degrees north |
sp_lon | Specular point longitude, in degrees east |
sp_inc_angle | The specular point incidence angle, in degrees |
sp_rx_gain | The receive antenna gain in the direction of the specular point, in dBi |
gps_eirp | The effective isotropic radiated power (EIRP) of the L1 C/A code signal within ± 1 MHz of the L1 carrier radiated by space vehicle, sv_num, in the direction of the specular point, in Watts |
rx_to_sp_range | The distance between the CYGNSS spacecraft and the specular point, in meters |
tx_to_sp_range | The distance between the GPS spacecraft and the specular point, in meters |
power_analog | 17 × 11 array of DDM bin analog power, Watts |
Time | Snow Depth (cm) | Surface Reflectivity (dB) | Soil Temperature (°C) |
---|---|---|---|
(a) Mixed–Forest | |||
2018.11 | 0.30817 | –27.36039 | –0.43541 |
2018.12 | 0.75975 | –26.51822 | –0.72392 |
2019.01 | 1.15806 | –25.96435 | –1.34392 |
2019.02 | 0.99447 | –27.32706 | –0.82510 |
(b) Open–Shrubland (Desert) | |||
2018.11 | 1.98258 | –35.25758 | –3.73655 |
2018.12 | 3.66645 | –33.51377 | –7.68061 |
2019.01 | 4.54840 | –32.83397 | –9.16413 |
2019.02 | 4.04246 | –34.33123 | –7.49004 |
(c) Grassland | |||
2018.11 | 3.38779 | –34.03826 | –2.11510 |
2018.12 | 6.08088 | –33.24549 | –4.36104 |
2019.01 | 6.35053 | –33.78475 | –5.42212 |
2019.02 | 5.02427 | –34.37498 | –4.49595 |
(d) Barren/Desert | |||
2018.11 | 1.86681 | –31.47885 | –1.29014 |
2018.12 | 2.97565 | –30.19818 | –7.56332 |
2019.01 | 3.60599 | –31.14914 | –8.23865 |
2019.02 | 3.38220 | –30.62580 | –4.55624 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.; Huang, L.; Wu, X.; Jin, S.; Bai, W.; Li, X. Evaluation of CYGNSS Observations for Snow Properties, a Case Study in Tibetan Plateau, China. Remote Sens. 2022, 14, 3772. https://doi.org/10.3390/rs14153772
Ma W, Huang L, Wu X, Jin S, Bai W, Li X. Evaluation of CYGNSS Observations for Snow Properties, a Case Study in Tibetan Plateau, China. Remote Sensing. 2022; 14(15):3772. https://doi.org/10.3390/rs14153772
Chicago/Turabian StyleMa, Wenxiao, Lingyong Huang, Xuerui Wu, Shuanggen Jin, Weihua Bai, and Xuanran Li. 2022. "Evaluation of CYGNSS Observations for Snow Properties, a Case Study in Tibetan Plateau, China" Remote Sensing 14, no. 15: 3772. https://doi.org/10.3390/rs14153772
APA StyleMa, W., Huang, L., Wu, X., Jin, S., Bai, W., & Li, X. (2022). Evaluation of CYGNSS Observations for Snow Properties, a Case Study in Tibetan Plateau, China. Remote Sensing, 14(15), 3772. https://doi.org/10.3390/rs14153772