Snow Cover Phenology Change and Response to Climate in China during 2000–2020
Abstract
:1. Introduction
2. Data
2.1. Improved MODIS CGF Snow Cover Products
2.1.1. The NIEER CGF MODIS SCE Product
2.1.2. The NIEER MODIS SCP Product
2.2. Reanalysis Temperature and Precipitation Dataset
2.3. DEM Dataset
3. Method
3.1. Definition of Snow Cover Phenological Parameters
3.2. Analytical Method
3.2.1. Statistical Analyses
3.2.2. Snow-Covered Area Classification
3.2.3. Correlation between SCP and Climatic Factors
4. Results
4.1. Spatiotemporal Distribution and Variation Characteristics of SCP in China
4.1.1. Temporal Variation Characteristics of SCP
4.1.2. Spatial Variation Characteristics of SCP
4.2. Temporal and Spatial Distribution and Variation Characteristics of Different Snow-Covered Types’ SCP in China
4.2.1. Snow-Covered Area Classification in China
4.2.2. SCP in Different Snow-Covered Area Types
4.3. Response of SCP to Meteorological Factors
4.3.1. Response of SCP to Meteorological Factors in China
- Response of SCD to meteorological factors in China
- 2.
- Response of SCS and SCM to meteorological factors in China
4.3.2. Response of SCP to Meteorological Factors in Different Snow-Covered Area Alassification
4.3.3. Response of SCP to Meteorological Factors with the Elevation Variations
5. Discussion
5.1. Comparison with Previous Studies and Explanation of Phenomena
5.2. Uncertainty Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, X.; Naegeli, K.; Premier, V.; Marin, C.; Ma, D.; Wang, J.; Wunderle, S. Evaluation of snow extent time series derived from Advanced Very High Resolution Radiometer global area coverage data (1982–2018) in the Hindu Kush Himalayas. Cryosphere 2021, 15, 4261–4279. [Google Scholar] [CrossRef]
- Armstrong, R.L.; Brodzik, M.J. Recent northern hemisphere snow extent: A comparison of data derived from visible and microwave satellite sensors. Geophys. Res. Lett. 2001, 28, 3673–3676. [Google Scholar] [CrossRef]
- Hori, M.; Sugiura, K.; Kobayashi, K.; Aoki, T.; Tanikawa, T.; Kuchiki, K.; Niwano, M.; Enomoto, H. A 38-year (1978–2015) Northern Hemisphere daily snow cover extent product derived using consistent objective criteria from satellite-borne optical sensors. Remote Sens. Environ. 2017, 191, 402–418. [Google Scholar] [CrossRef]
- McGowan, H.; Callow, J.N.; Soderholm, J.; McGrath, G.; Campbell, M.; Zhao, J.X. Global warming in the context of 2000 years of Australian alpine temperature and snow cover. Sci. Rep. 2018, 8, 4394. [Google Scholar] [CrossRef] [PubMed]
- Batrak, Y.; Muller, M. On the warm bias in atmospheric reanalyses induced by the missing snow over Arctic sea-ice. Nat. Commun. 2019, 10, 4170. [Google Scholar] [CrossRef] [PubMed]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.; et al. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In IPCC, 2021: Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Fu, Q.; Hou, R.; Li, T.; Jiang, R.; Yan, P.; Ma, Z.; Zhou, Z. Effects of soil water and heat relationship under various snow cover during freezing-thawing periods in Songnen Plain, China. Sci. Rep. 2018, 8, 1325. [Google Scholar] [CrossRef]
- Wang, E.; Fu, X.; Han, H. Analysis of Thermal Conductivity and Temperature Variation Characteristics of Seasonal Snow in Norteast China. Trans. Chin. Soc. Agric. Mach. 2021, 52, 275–285. [Google Scholar]
- Qiao, D.; Wang, N. Relationship between Winter Snow Cover Dynamics, Climate and Spring Grassland Vegetation Phenology in Inner Mongolia, China. ISPRS Int. J. Geo-Inf. 2019, 8, 42. [Google Scholar] [CrossRef]
- Fyfe, J.C.; Derksen, C.; Mudryk, L.; Flato, G.M.; Santer, B.D.; Swart, N.C.; Molotch, N.P.; Zhang, X.; Wan, H.; Arora, V.K. Large near-term projected snowpack loss over the western United States. Nat. Commun. 2017, 8, 14996. [Google Scholar] [CrossRef]
- Lin, Y.; Jiang, M. Maximum temperature drove snow cover expansion from the Arctic, 2000–2008. Sci. Rep. 2017, 7, 15090. [Google Scholar] [CrossRef]
- Li, W.; Guo, W.; Qiu, B.; Xue, Y.; Hsu, P.C.; Wei, J. Influence of Tibetan Plateau snow cover on East Asian atmospheric circulation at medium-range time scales. Nat. Commun. 2018, 9, 4243. [Google Scholar] [CrossRef] [PubMed]
- Qin, D.; Ding, Y. Research on Cryospheric Changes and Their Impacts: Current Status, Trends and Key Issues. Climate Change Research Progress; Nova Science Publishers: Hauppauge, NY, USA, 2009; pp. 187–195. [Google Scholar]
- Smith, T.; Bookhagen, B.; Rheinwalt, A. Spatiotemporal patterns of High Mountain Asia’s snowmelt season identified with an automated snowmelt detection algorithm, 1987–2016. Cryosphere 2017, 11, 2329–2343. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Droogers, P.; De Jong, S.M. Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ. 2009, 113, 40–49. [Google Scholar] [CrossRef]
- Yang, Q. Study on Spatio-Temporal Distribution of Snow Cover in Northeast China and Its Simulation on Snowmelt Runoff. Ph.D. Dissertation, Jilin University, Changchun, China, 2015. [Google Scholar]
- Ke, C.-Q.; Li, X.-C.; Xie, H.; Ma, D.-H.; Liu, X.; Kou, C. Variability in snow cover phenology in China from 1952 to 2010. Hydrol. Earth Syst. Sci. 2016, 20, 755–770. [Google Scholar] [CrossRef]
- Spandre, P.; Francois, H.; Verfaillie, D.; Lafaysse, M.; Deque, M.; Eckert, N.; George, E.; Morin, S. Climate controls on snow reliability in French Alps ski resorts. Sci. Rep. 2019, 9, 8043. [Google Scholar] [CrossRef]
- Zhao, Q.; Hao, X.; He, D. The Relationship between the Temporal and Spatial Changes of Snow Cover and Climate and Vegetation in Northern Xinjiang from 1980 to 2019. Remote Sens. Technol. Appl. 2021, 36, 1247–1258. [Google Scholar]
- Chen, X.; Yang, Y.; Ma, Y.; Li, H. Distribution and Attribution of Terrestrial Snow Cover Phenology Changes over the Northern Hemisphere during 2001–2020. Remote Sens. 2021, 13, 1843. [Google Scholar] [CrossRef]
- Peitzsch, E.H.; Pederson, G.T.; Birkeland, K.W.; Hendrikx, J.; Fagre, D.B. Climate drivers of large magnitude snow avalanche years in the U.S. northern Rocky Mountains. Sci. Rep. 2021, 11, 10032. [Google Scholar] [CrossRef]
- Beniston, M. Is snow in the Alps receding or disappearing? Wiley Interdiscip. Rev. Clim. Change 2012, 3, 349–358. [Google Scholar] [CrossRef]
- Wang, Y.; Zuo, H.; Liu, B. ResearchProgressonTemporalandSpatialDistributionofSnowCoverinChina. J. Inn. Mong. For. Sci. Technol. 2017, 43, 47–51. [Google Scholar]
- Yan, X.; Zha, C. Spatial distributions and variations of the snow cover in the forests of Northeast China. J. Arid. Land REsources Environ. 2015, 29, 154–162. [Google Scholar] [CrossRef]
- Yang, T.; Li, Q.; Ahmad, S.; Zhou, H.; Li, L. Changes in Snow Phenology from 1979 to 2016 over the Tianshan Mountains, Central Asia. Remote Sens. 2019, 11, 499. [Google Scholar] [CrossRef]
- Wang, H.; Huang, C.; Hao, X. Analyses of the spatiotemporal variations of snow cover in North Xinjiang. J. Glaciol. Geocryol. 2014, 36, 508–516. [Google Scholar]
- Zhao, Q. Research on the Characteristics of the Temporal and Spatial Changes of Snow Phenology in China and Its Response to Vegetation Phenology. M.A. Thesis, Taiyuan University of Technology, Taiyuan, China, 2021. [Google Scholar]
- Wang, X.; Hao, X.; Wang, J. Accuracy Evaluation of Long Time Series AVHRR Snow Cover Area Products in China. Remote Sens. Technol. Appl. 2018, 33, 994–1003. [Google Scholar]
- Huang, X.; Deng, J.; Ma, X. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China. Cryosphere 2016, 10, 2453–2463. [Google Scholar] [CrossRef]
- Rees, W.G. Remote Sensing of Snow and Ice, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Jing, Y.; Li, X.; Shen, H. STAR NDSI collection: A cloud-free MODIS NDSI dataset (2001–2020) for China. Earth Syst. Sci. Data 2022, 14, 3137–3156. [Google Scholar] [CrossRef]
- Muhammad, S.; Thapa, A. Daily Terra—Aqua MODIS cloud-free snow and Randolph Glacier Inventory 6.0 combined product (M*D10A1GL06) for high-mountain Asia between 2002 and 2019. Earth Syst. Sci. Data 2021, 13, 767–776. [Google Scholar] [CrossRef]
- Thapa, A.; Muhammad, S. Contemporary snow changes in the karakoram region attributed to improved modis data between 2003 and 2018. Water 2020, 12, 2681. [Google Scholar] [CrossRef]
- Hao, X.; Huang, G.; Zheng, Z.; Sun, X.; Ji, W.; Zhao, H.; Wang, J.; Li, H.; Wang, X. Development and validation of a new MODIS snow-cover-extent product over China. Hydrol. Earth Syst. Sci. 2022, 26, 1937–1952. [Google Scholar] [CrossRef]
- Hao, X.; Sun, X.; Ji, W. MODIS-Based Daily Cloud-Free 500 m Snow Area Product Dataset in China. National Cryosphere Desert Data Center. 2020. Available online: www.ncdc.ac.cn (accessed on 26 November 2020). [CrossRef]
- Zhao, Q.; Hao, X.; Wang, J. A Dataset of Snow Phenology in China Based on MODIS from 2000 to 2019. National Cryosphere Desert Data Center. 2021. Available online: www.ncdc.ac.cn (accessed on 16 November 2020). [CrossRef]
- Zhao, Q.; Hao, X.; Wang, J. A dataset of snow phenology in China based on MODIS from 2000 to 2019. China Sci. Data 2022, 7. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J. ERA5-land monthly averaged data from 1981 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2019. Available online: https://doi.org/10.24381/cds.68d2bb30 (accessed on 12 July 2019).
- Jarvis, A.; Reuter, H.I.; Nelson, A. Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database. 2008. Available online: http://srtm.csi.cgiar.org/ (accessed on 1 September 2008).
- Chen, X.; Liang, S.; Cao, Y.; He, T.; Wang, D. Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001–2014. Sci. Rep. 2015, 5, 16820. [Google Scholar] [CrossRef] [PubMed]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: Duxbury, MA, USA, 1948. [Google Scholar]
- He, L.; Li, D. On the classification of the snow cover in western China. Acta Meteorol. Sin. 2012, 70, 1292–1301. [Google Scholar]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient. In Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Li, P.; Mi, D. Distribution of snow cover in China. J. Glaciol. Geocryol. 1983, 5, 9–18. [Google Scholar]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Zhou, L.; Wang, T. Change in snow phenology and its potential feedback to temperature in the Northern Hemisphere over the last three decades. Environ. Res. Lett. 2013, 8, 014008. [Google Scholar] [CrossRef]
- Brown, R.D.; Robinson, D.A. Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere 2011, 5, 219–229. [Google Scholar] [CrossRef]
- Wang, A.; Xu, L.; Kong, X. Assessments of the Northern Hemisphere snow cover response to 1.5 and 2.0 °C warming. Earth Syst. Dyn. 2018, 9, 865–877. [Google Scholar] [CrossRef]
- Choi, G.; Robinson, D.A.; Kang, S. Changing Northern Hemisphere Snow Seasons. J. Clim. 2010, 23, 5305–5310. [Google Scholar] [CrossRef]
- Wang, X.; Wu, C.; Wang, H.; Gonsamo, A.; Liu, Z. No evidence of widespread decline of snow cover on the Tibetan Plateau over 2000–2015. Sci. Rep. 2017, 7, 14645. [Google Scholar] [CrossRef]
- Whetton, P.; Haylock, M.; Galloway, R. Climate change and snow-cover duration in the Australian Alps. Clim. Change 1996, 32, 447–479. [Google Scholar] [CrossRef]
- Morán-Tejeda, E.; López-Moreno, J.I.; Beniston, M. The changing roles of temperature and precipitation on snowpack variability in Switzerland as a function of altitude. Geophys. Res. Lett. 2013, 40, 2131–2136. [Google Scholar] [CrossRef]
- Bi, Y.; Xie, H.; Huang, C.; Ke, C. Snow Cover Variations and Controlling Factors at Upper Heihe River Basin, Northwestern China. Remote Sens. 2015, 7, 6741–6762. [Google Scholar] [CrossRef]
- Qin, S.; Xiao, P.; Zhang, X. How do snow cover fraction change and respond to climate in Altai Mountains of China? Int. J. Climatol. 2022. [Google Scholar] [CrossRef]
Data Categories | Value | Remark |
---|---|---|
Land | 0 | No snow pixels inland |
Snow | 1 | Snow identified by the snow identification algorithm |
2 | Snow identified by Hidden Markov spatiotemporal model interpolation | |
3 | Snow identified by microwave snow depth interpolation | |
Water | 4 | Water |
No data | 255 | No data |
SCP | Value Range | No Data | Water | Remark |
---|---|---|---|---|
SCD | 0–365/366 | −1 | −255 | The value represents the cumulative snow days per hydrological year. |
SCS | 0–365/366 | −1 | −255 | The value represents the n-th day from the 1st of September of each year, and the area with a value of 0 is not discussed. |
SCM | 0–365/366 | −1 | −255 |
Snow Types | Average | Slope (d/y) | ||||
---|---|---|---|---|---|---|
SCD (d) | SCS (DOY) | SCM (DOY) | SCD | SCS | SCM | |
SSA | 137.29 | 67.28 | 226.04 | −0.16 | −0.09 | −0.22 |
APA | 39.67 | 85.99 | 148.91 | −0.17 | −0.11 | −0.85 |
NPA | 6.75 | 35.70 | 42.33 | −0.14 | −0.44 | −0.59 |
SFA | 0.10 | 0.32 | 0.37 | 0.00 | 0.00 | 0.00 |
SCP | Meteorological Factors | Negative Correlation | Significant Negative Correlation | No Significant Negative Correlation | Positive Correlation | Significant Positive Correlation | No Significant Positive Correlation |
---|---|---|---|---|---|---|---|
SCD | Autumn_T | 78.66 | 18.26 | 60.40 | 14.56 | 0.21 | 14.35 |
Winter_T | 89.07 | 51.22 | 37.85 | 4.15 | 0.05 | 4.10 | |
Spring_T | 71.01 | 22.29 | 48.73 | 22.21 | 0.31 | 21.90 | |
Autumn_P | 28.56 | 0.29 | 28.27 | 64.66 | 8.48 | 56.18 | |
Winter_P | 57.52 | 3.00 | 54.51 | 35.71 | 1.07 | 34.64 | |
Spring_P | 49.05 | 3.93 | 45.13 | 44.17 | 2.47 | 41.70 | |
SCS | Autumn_T | 31.65 | 1.27 | 30.39 | 54.38 | 13.09 | 41.28 |
Autumn_P | 55.82 | 7.11 | 48.71 | 30.21 | 1.25 | 28.96 | |
SCM | Spring_T | 65.00 | 19.63 | 45.37 | 21.06 | 0.40 | 20.66 |
Spring_P | 40.06 | 2.05 | 38.01 | 46.00 | 2.90 | 43.10 |
SCP | Snow Types | Autumn_T | Autumn_P | Winter_T | Winter_P | Spring_T | Spring_P |
---|---|---|---|---|---|---|---|
SCD | CHN | −0.30 | −0.11 | −0.38 | −0.50 | −0.48 | −0.03 |
SSA | −0.37 | 0.30 | −0.42 | −0.07 | −0.66 | −0.01 | |
APA | −0.23 | −0.13 | −0.48 | −0.38 | −0.22 | −0.02 | |
NPA | −0.34 | −0.21 | −0.55 | −0.37 | −0.21 | 0.06 | |
SCS | CHN | 0.27 | −0.42 | — | — | — | — |
SSA | 0.69 | −0.52 | — | — | — | — | |
APA | 0.51 | 0.08 | — | — | — | — | |
NPA | −0.07 | −0.38 | — | — | — | — | |
SCM | CHN | — | — | — | — | −0.33 | −0.08 |
SSA | — | — | — | — | −0.75 | 0.09 | |
APA | — | — | — | — | −0.35 | −0.18 | |
NPA | — | — | — | — | −0.14 | −0.03 |
Elevation (m) | CHN | SSA | Elevation (m) |
---|---|---|---|
Percentage (%) 1 | Percentage (%) 2 | Percentage (%) 3 | |
<0 | 0.40 | 0.01 | 0.00 |
0–500 | 27.35 | 27.37 | 6.19 |
500–1000 | 16.49 | 25.30 | 5.72 |
1000–1500 | 18.29 | 8.36 | 1.89 |
1500–2000 | 6.63 | 3.14 | 0.71 |
2000–2500 | 3.03 | 1.77 | 0.40 |
2500–3000 | 2.97 | 1.65 | 0.37 |
3000–3500 | 2.75 | 1.95 | 0.44 |
3500–4000 | 3.07 | 3.23 | 0.73 |
4000–4500 | 4.51 | 5.32 | 1.20 |
4500–5000 | 8.23 | 9.28 | 2.10 |
5000–5500 | 5.22 | 9.12 | 2.06 |
5500–6000 | 0.95 | 3.05 | 0.69 |
>6000 | 0.11 | 0.47 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Hao, X.; Wang, J.; Luo, S.; Shao, D.; Li, H.; Feng, T.; Zhao, H. Snow Cover Phenology Change and Response to Climate in China during 2000–2020. Remote Sens. 2022, 14, 3936. https://doi.org/10.3390/rs14163936
Zhao Q, Hao X, Wang J, Luo S, Shao D, Li H, Feng T, Zhao H. Snow Cover Phenology Change and Response to Climate in China during 2000–2020. Remote Sensing. 2022; 14(16):3936. https://doi.org/10.3390/rs14163936
Chicago/Turabian StyleZhao, Qin, Xiaohua Hao, Jian Wang, Siqiong Luo, Donghang Shao, Hongyi Li, Tianwen Feng, and Hongyu Zhao. 2022. "Snow Cover Phenology Change and Response to Climate in China during 2000–2020" Remote Sensing 14, no. 16: 3936. https://doi.org/10.3390/rs14163936
APA StyleZhao, Q., Hao, X., Wang, J., Luo, S., Shao, D., Li, H., Feng, T., & Zhao, H. (2022). Snow Cover Phenology Change and Response to Climate in China during 2000–2020. Remote Sensing, 14(16), 3936. https://doi.org/10.3390/rs14163936