Assessment of Urban Subsidence in the Lisbon Metropolitan Area (Central-West of Portugal) Applying Sentinel-1 SAR Dataset and Active Deformation Areas Procedure
Abstract
:1. Introduction
1.1. Settings of Study Area
1.2. Objetives
2. Materials and Methods
2.1. A-DInSAR Processing
2.2. Active Deformation Areas (ADA) Processing
2.3. Decomposition of Vertical and Horizontal Deformation
2.4. Data Collection, Review and Field Campaigns
2.5. GIS Integration and Interpretation of Dataset
3. Results
3.1. A-DInSAR Results
3.2. ADA at Regional Scale
3.3. Urban Subsidence Analysis at Local Scale
3.3.1. Settings and Geology of Area
3.3.2. A-DInSAR Results and ADAs
3.3.3. A-DInSAR Dataset vs. Hydrological Data
3.3.4. Vertical Velocity
4. Discussion
5. Conclusions
- Detect and assess, from a quantitative point of view, the subsidence phenomena. In particular, four ascending and three descending ADAs have been related to urban and industrial subsidence. In these ADAs, the maximum VLOS have been −25.5 and −25.2 mm year−1, while the maximum vertical velocity has been −32.4 mm year−1. The comparison of VLOS, ADAs, and vertical velocity has helped to correctly interpret the results and properly zone the subsidence sectors.
- The origin of the detected urban/industrial subsidence has been related, according to geological and hydrological data, to a continuous compaction of alluvial deposits and anthropic materials. However, the fact that the subsidence may also be due to groundwater overexploitation should not be disregarded.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hooper, A.; Zebker, H.A.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, L23611. [Google Scholar] [CrossRef]
- De Novellis, V.; Carlino, S.; Castaldo, R.; Tramelli, A.; De Luca, C.; Pino, N.A.; Pepe, S.; Convertito, V.; Zinno, I.; De Martino, P.; et al. The 21 August 2017. Ischia (Italy) Earthquake Source Model Inferred From Seismological, GPS, and DInSAR Measurements. Geophys. Res. Lett. 2017, 45, 2193–2202. [Google Scholar] [CrossRef]
- Raucoules, D.; Colesanti, C.; Carnec, C. Use of SAR interferometry for detecting and assessing ground subsidence. C. R. Geosci. 2007, 339, 289–302. [Google Scholar] [CrossRef]
- Solari, L.; Ciampalini, A.; Raspini, F.; Bianchini, S.; Moretti, S. PSInSAR Analysis in the Pisa Urban Area (Italy): A Case Study of Subsidence Related to Stratigraphical Factors and Urbanization. Remote Sens. 2016, 8, 120. [Google Scholar] [CrossRef] [Green Version]
- Barboux, C.; Delaloye, R.; Lambiel, C. Inventorying slope movements in an Alpine environment using DInSAR. Earth Surf. Process. Landf. 2014, 39, 2087–2099. [Google Scholar] [CrossRef] [Green Version]
- Barra, A.; Monserrat, O.; Mazzanti, P.; Esposito, C.; Crosetto, M.; Scarascia Mugnozza, G. First insights on the potential of Sentinel-1 for landslides detection. Geomat. Nat. Hazards Risk. 2016, 7, 1874–1883. [Google Scholar] [CrossRef] [Green Version]
- Dini, B.; Daout, S.; Manconi, A.; Loew, S. Classification of slope processes based on multitemporal DInSAR analyses in the Himalaya of NW Bhutan. Remote Sens. Environ. 2019, 233, 111408. [Google Scholar] [CrossRef]
- Haghighi, M.H.; Motagh, M. Ground surface response to continuous compaction of aquifer system in Tehran, Iran: Results from a long-term multi-sensor InSAR analysis. Remote Sens. Environ. 2019, 221, 534–550. [Google Scholar] [CrossRef]
- Perissin, D.; Wang, Z.; Lin, H. Shangai subway tunnels and highways monitoring through Cosmo-SkyMed Persistent Scatterers. ISPRS J. Photogramm. Remote Sens. 2012, 73, 58–67. [Google Scholar] [CrossRef]
- Galve, J.P.; Pérez-Peña, J.V.; Azañón, J.M.; Closson, D.; Caló, F.; Reyes-Carmona, C.; Jabaloy, A.; Ruano, P.; Mateos, R.M.; Notti, D.; et al. Evaluation of the SBAS InSAR Service of the European Space Agency´s Geohazard Exploitation Platform (GEP). Remote Sens. 2017, 9, 1291. [Google Scholar] [CrossRef] [Green Version]
- Crosetto, M.; Solari, L.; Mróz, M.; Balasis-Levinsen, J.; Casagli, N.; Frei, M.; Oyen, A.; Moldestad, D.A.; Bateson, L.; Guerrieri, L.; et al. The Evolution of Wide-Area DInSAR: From Regional and National Services to the European Ground Motion Service. Remote Sens. 2020, 12, 2043. [Google Scholar] [CrossRef]
- Geohazards-TEP. Geohazard Exploitation Platform. Available online: https://geohazards-tep.eu/#! (accessed on 21 September 2021).
- European Ground Motion Service. EGMS. Available online: https://land.copernicus.eu/pan-european/european-ground-motion-service (accessed on 2 August 2022).
- Cigna, F.; Tapete, D. Sentinel-1 Big Data Processing with P-SBAS InSAR in the Geohazards Exploitation Platform: An Experiment on Coastal Land Subsidence and Landslides in Italy. Remote Sens. 2021, 13, 885. [Google Scholar] [CrossRef]
- Crosetto, M.; Solari, L.; Balasis-Levinsen, J.; Bateson, L.; Casagli, N.; Frei, M.; Oyen, A.; Moldestad, D.A.; Mróz, M. Deformation Monitoring at European Scale: The Copernicus Ground Motion Service. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2021, XLIII-B3-2021, 141–146. [Google Scholar] [CrossRef]
- Cuervas-Mons, J.; Domínguez-Cuesta, M.J.; Mateos Redondo, F.; Barra, A.; Monserrat, O.; Valenzuela, P.; Jiménez-Sánchez, M. Sentinel-1 Data Processing for Detecting and Monitoring of Ground Instabilities in the Rocky Coast of Central Asturias (N Spain). Remote Sens. 2021, 13, 3076. [Google Scholar] [CrossRef]
- Barra, A.; Solari, L.; Béjar-Pizarro, M.; Monserrat, O.; Bianchini, S.; Herrera, G.; Crosetto, M.; Sarro, R.; González-Alonso, E.; Mateos, R.M.; et al. A Methodology to Detect and Update Active Deformation Areas Based on Sentinel-1 SAR Images. Remote Sens. 2017, 9, 1002. [Google Scholar] [CrossRef] [Green Version]
- Tomás, R.; Pagán, J.I.; Navarro, J.A.; Cano, M.; Pastor, J.L.; Riquelme, A.; Cuevas-González, M.; Crosetto, M.; Barra, A.; Monserrat, O.; et al. Semi-Automatic Identification and Pre-Screening of Geological-Geotechnical Deformational Processes Using Persistent Scatterer Interferometry Datasets. Remote Sens. 2019, 11, 1675. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.A.; Tomás, R.; Barra, A.; Pagán, J.I.; Reyes-Carmona, C.; Solari, L.; Vinielles, J.L.; Falco, S.; Crosetto, M. ADAtools: Automatic Detection and Classification of Active Deformation Areas from PSI Displacement Maps. ISPRS Int. J. Geo-Inf. 2020, 9, 584. [Google Scholar] [CrossRef]
- Solari, L.; Barra, A.; Herrera, G.; Bianchini, S.; Monserrat, O.; Béjar-Pizarro, M.; Crosetto, M.; Sarro, R.; Moretti, S. Fast detection of ground motions on vulnerable elements using Sentinel-1 InSAR data. Geomat. Nat. Hazards Risk. 2018, 9, 152–174. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Z.; Monserrat, O.; Crosetto, M.; Krishnakumar, V.; Zhou, L. An innovative extraction methodology of active deformation areas based on sentinel-1 SAR dataset: The catalonia case study. Int. J. Remote Sens. 2021, 42, 6228–6244. [Google Scholar] [CrossRef]
- Jackson, J.A. Glossary of Geology, 4th ed.; American Geological Institute: Alexandria, VA, USA, 1997. [Google Scholar]
- Prokopovich, N.P. Genetic classification on land subsidence. In Proceedings of the International Conference on Evaluation and Prediction of Subsidence (Engineering Foundation Conference), Pensacola Beach, FL, USA, December 1978. [Google Scholar]
- Galloway, D.L.; Erkens, G.; Kuniansky, E.L.; Rowland, J.C. Preface: Land subsidence processes. Hydrogeol. J. 2016, 24, 547–550. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Blasco, J.M.; Foumelis, M.; Stewart, C.; Hooper, A. Measuring Urban Subsidence in the Rome Metropolitan Area (Italy) with Sentinel-1 SNAP-StaMPS Persistent Scatterer Interferometry. Remote Sens. 2019, 11, 129. [Google Scholar] [CrossRef] [Green Version]
- Sowter, A.; Che Amat, M.B.; Cigna, F.; Marsh, S.; Athab, A.; Alshammari, L. Mexico City land subsidence in 2014–2015 with Sentinel-1 IW TOPS: Results using Intermittent SBAS (ISBAS) technique. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 230–242. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR. Remote Sens. Environ. 2021, 253, 112161. [Google Scholar] [CrossRef]
- Tomás, R.; Romero, R.; Mulas, J.; Marturià, J.J.; Mallorquí, J.J.; López-Sánchez, J.M.; Herrera, G.; Gutiérrez, F.; González, P.J.; Fernández, J.; et al. Radar interferometry techniques for the study of ground subsidence phenomena: A review of practical issues through cases in Spain. Environ. Earth Sci. 2014, 71, 163–181. [Google Scholar] [CrossRef] [Green Version]
- Solari, L.; Del Soldato, M.; Bianchini, S.; Ciampalini, A.; Ezquerro, P.; Montalti, R.; Raspini, F.; Moretti, S. From ERS 1/2 to Sentinel-1: Subsidence Monitoring in Italy in the Last Two Decades. Front. Earth Sci. 2018, 6, 149. [Google Scholar] [CrossRef]
- Carvalho, J.; Dias, R.; Ghose, R.; Teves-Costa, P.; Borges, J.; Narciso, J.; Pinto, C.; Leote, J. Near-surface Characterization of the Lisbon and Lower Tagus Valley Area, Portugal, for Seismic Hazard Assessment: VS30 and Soil Classification Maps. Bull. Seismol. Soc. Am. 2018, 108, 2854–2876. [Google Scholar] [CrossRef]
- Oliveira, L.; Teves-Costa, P.; Pinto, C.; Carrilho Gomes, R.; Almeida, I.M.; Ferreira, C.; Pereira, T.; Sotto-Mayor, M. Seismic microzonation based on large geotechnical database: Application to Lisbon. Eng. Geol. 2020, 265, 105417. [Google Scholar] [CrossRef]
- Epifânio, B.; Zêzere, J.L.; Neves, M. Susceptibility assessment to different types of landslides in the coastal cliffs of Lourinhã (Central Portugal). J. Sea R. 2014, 93, 150–159. [Google Scholar] [CrossRef] [Green Version]
- García, R.A.C.; Oliveira, S.C.; Zêzere, J.L. Assessing population exposure for landslide risk analysis using dasymetric cartography. Nat. Hazards Earth Syst. Sci. 2016, 16, 2769–2782. [Google Scholar] [CrossRef] [Green Version]
- Leal, M.; Fragoso, M.; Lopes, S.; Reis, E. Material damage caused by high-magnitude rainfall based on insurance data: Comparing two flooding events in the Lisbon Metropolitan Area and Madeira Island, Portugal. Int. J. Disaster Risk Reduct. 2020, 51, 101806. [Google Scholar] [CrossRef]
- Catalão, J.; Nico, G.; Lollino, P.; Conde, V.; Lorusso, G. Integration of InSAR Analysis and Numerical Modeling for the Assessment of Ground Subsidence in the City of Lisbon, Portugal. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1663–1673. [Google Scholar] [CrossRef]
- Lobo Ferreira, J.P.; Oliveira, M.M. Groundwater vulnerability assessment in Portugal. Geofís. Int. 2004, 43, 541–550. [Google Scholar]
- Rodrigues, M.L.; Machado, C.R.; Freire, E. Geotourism Routes in Urban Areas: A Preliminary Approach to the Lisbon Geoheritage Survey. Geoj. Tour. Geosites. 2011, 8, 281–294. [Google Scholar]
- Vaz, T.; Zêzere, J.L.; Pereira, S.; Cruz Oliveira, S.; Garcia, R.A.C.; Quaresma, I. Regional rainfall thresholds for landslide occurrence using a centenary database. Nat. Hazards Earth Syst. Sci. 2018, 18, 1037–1054. [Google Scholar] [CrossRef] [Green Version]
- Campos Costa, A.; Sousa, M.L.; Carvalho, A.; Coelho, E. Evaluation of seismis risk and mitigation strategies for the existing building stock: Application of LNECloss to the metropolitan area of Lisbon. Bull. Earthq. Eng. 2010, 8, 119–134. [Google Scholar] [CrossRef]
- Leal, M.; Boavida-Portugal, I.; Fragoso, M.; Ramos, C. How much does an extreme rainfall event cost? Material damage and relationships between insurance, rainfall, land cover and urban flooding. Hydrol. Sci. J. 2019, 64, 673–689. [Google Scholar] [CrossRef]
- Pereira, S.; Santos, P.P.; Zêrere, J.L.; Tvares, A.O.; Garcia, R.A.C.; Oliveira, S.C. A Landslide risk index for municipal land use planning in Portugal. Sci. Total Environ. 2020, 735, 139463. [Google Scholar] [CrossRef]
- Medeiros, E.; Brandão, A.; Tormenta Pinto, P.; Silva Lopes, S. Urban Planning Policies to the Renewal of Riverfront Areas: The Lisbon Metropolis Case. Suistainability 2021, 13, 5665. [Google Scholar] [CrossRef]
- Vaz, N.; Mateus, M.; Pinto, L.; Neves, R.; Dias, J.M. The Tagus Estuary as a Numerical Modeling Test Bed: A review. Geosciences 2019, 10, 4. [Google Scholar] [CrossRef] [Green Version]
- Heleno, S.I.; Oliveira, L.G.; Henriques, M.J.; Falcão, A.P.; Lima, J.N.; Cooksle, G.; Ferreti, A.; Fonseca, A.M.; Lobo-Ferreira, J.; Fonseca, J. Persistent Scatterers Interferometry detects and measures ground subsidence in Lisbon. Remote Sens. Environ. 2011, 115, 2152–2167. [Google Scholar] [CrossRef] [Green Version]
- Cabral, J.; Moniz, C.; Ribeiro, P.; Terrinha, P.; Matias, L. Analysis of seismic reflection data as a tool for the seismotectonic assessment of a low activity intraplate basin—the Lower Tagus Valley (Portugal). J. Seismol. 2003, 7, 431–447. [Google Scholar] [CrossRef]
- Carvalho, J.; Matias, H.; Torres, L.; Manupella, G.; Pereira, R.; Mendes-Victor, L. The structural and sedimentary evolution of the Arruda and Lower Tagus sub-basin, Portugal. Mar. Pet. Geol. 2005, 22, 427–453. [Google Scholar] [CrossRef]
- Teixeira, P.; Almeida, L.; Brandão, J.; Costa, S.; Pereira, S.; Valério, E. Non-Potable use of Lisbon underground water: Microbiological and hydrochemical data from a 4-year case study. Environ. Monit. Assess. 2018, 190, 455. [Google Scholar] [CrossRef] [PubMed]
- Laboratório Nacional de Energia e Geologia (LNEG). Geological Map of Portugal (1992), Scale 1:1,000,000. Alfragide: Laboratório Nacional de Energia e Geologia. Available online: https://www.lneg.pt/en/product-category/cartography/ (accessed on 20 November 2021).
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
- Casu, F.; Elefante, S.; Imperatore, P.; Zinno, I.; Manunta, M.; De Luca, C.; Lanari, R. SBAS-DInSAR parallel processing for deformation time-series computation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3285–3296. [Google Scholar] [CrossRef]
- De Luca, C.; Cuccu, R.; Elefante, S.; Zinno, I.; Manunta, M.; Casola, V.; Rivolta, G.; Lanari, R.; Casu, F. An On-Demand Web Tool for the Unsupervised Retrieval of Earth’s Surface Deformation from SAR Data: The P-SBAS Service within the ESA G-POD Environment. Remote Sens. 2015, 7, 15630–15650. [Google Scholar] [CrossRef] [Green Version]
- Manunta, M.; De Luca, C.; Zinno, I.; Casu, F.; Manzo, M.; Bonano, M.; Fusco, A.; Pepe, A.; Onorato, G.; Berardino, P.; et al. The Parallel SBAS Approach for Sentinel-1 Interferometric Wide Swath Deformation Time-Series Generation: Algorithm Description and Products Quality Assessment. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6259–6281. [Google Scholar] [CrossRef]
- Reyes-Carmona, C.; Galve, J.P.; Moreno-Sánchez, M.; Riquelme, A.; Ruano, P.; Millares, A.; Teixidó, T.; Sarro, R.; Pérez-Peña, J.V.; Barra, A.; et al. Rapid characterisation of the extremely large landslide threatening the Rules Reservoir (Southern Spain). Landslides 2021, 18, 3781–3798. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Notti, D.; Herrera, G.; Bianchini, S.; Meisina, C.; García-Davalillo, J.C.; Zucca, F. A methodology for improving landslide PSI data analysis. Int. J. Remote Sens. 2014, 35, 2186–2214. [Google Scholar] [CrossRef]
- Béjar-Pizarro, M.; Notti, D.; Mateos, R.M.; Ezquerro, P.; Cetolanza, G.; Herrera, G.; Bru, G.; Sanabria, M.; Solari, L.; Duro, J.; et al. Mapping Vulnerable Urban Areas Affected by Slow-Moving Landslides Using Sentinel-1 InSAR Data. Remote Sens. 2017, 9, 876. [Google Scholar] [CrossRef] [Green Version]
- Direçao-Geral do Território (DGT). Cartografia Topográfica. Ortofotos Digitais. Available online: https://www.dgterritorio.gov.pt/cartografia/cartografia-topografica/ortofotos/ortofotos-digitais (accessed on 13 October 2021).
- Laboratório Nacional de Energia e Geologia (LNEG). Geological Map of Portugal (2010), Scale 1:500,000. Alfragide: Laboratório Nacional de Energia e Geologia. Available online: https://www.lneg.pt/en/product-category/cartography/ (accessed on 20 November 2021).
- Sistema Nacional de Informaçao de Recursos Hídricos (SNIRH). Águas Subterráneas. Pontos de Água Subterrânea. Available online: https://snirh.apambiente.pt (accessed on 13 December 2021).
- Galloway, D.; Jones, D.R.; Ingebritsen, S.E. Land Subsidence in the United States; US Geological Survey: Reston, VA, USA, 1999.
- Fernández-Oliveras, M.P. Determinación de Movimientos Verticales del Terreno Mediante Técnicas de Interferometría Radar DInSAR. Ph.D. Thesis, E.T.S. de Caminos, Canales y Puertos, University of Granada, Granada, Spain, 2009. [Google Scholar]
- Shirzaei, M.; Freymueller, J.; Törnqvist, T.E.; Galloway, D.L.; Dura, T.; Minderhoud, P.S. Measuring, modelling and projecting coastal land subsidence. Nat. Rev. Earth Environ. 2021, 2, 40–58. [Google Scholar] [CrossRef]
- Meisina, C.; Zucca, F.; Notti, D.; Colombo, A.; Cucchi, A.; Savio, G.; Giannico, C.; Bianchi, M. Geological Interpretation of PSInSAR Data at Regional Scale. Sensors 2008, 8, 7469–7492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polcari, M.; Albano, M.; Saroli, M.; Tolomei, C.; Lancia, M.; Moro, M.; Stramondo, S. Subsidence Detected by Multi-Pass Differential SAR Interferometry in the Cassino Plain (Central Italy): Joint Effect of Geological and Anthropogenic Factors? Remote Sens. 2014, 6, 9676–9690. [Google Scholar] [CrossRef] [Green Version]
- Zêzere, J.L. Distribução e Ritmo dos Movimientos de Vertente na Região a Norte de Lisboa. Ph.D. Thesis, Universidade de Lisboa, Lisbon, Portugal, 2001. [Google Scholar]
- Oliveira, S.C.; Zêzere, J.L.; Catalão, J.; Nico, G. The contribution of PSInSAR interferometry to landslide hazard in weak rock-dominated areas. Landslides 2015, 12, 703–719. [Google Scholar] [CrossRef]
- Marques, F. Regional Scale Sea Cliff Hazard Assessment at Sintra and Cascais Counties, Western Coast of Portugal. Geosciences 2018, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Biescas, E.; Crosetto, M.; Agudo, M.; Monserrat, O.; Crippa, B. Two Radar Interferometric Approaches to Monitor Slow and Fast Land Deformation. J. Surv. Eng. 2007, 133, 66–71. [Google Scholar] [CrossRef]
- Devanthéry, N.; Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Crippa, B. An Approach to Persistent Scatterer Interferometry. Remote Sens. 2014, 6, 6662–6679. [Google Scholar] [CrossRef] [Green Version]
- Devanthéry, N.; Crosetto, M.; Monserrat, O.; Crippa, B.; Mróz, M. Data analysis tools for persistent scatterer interferometry based on Sentinel-1 data. Eur. J. Remote Sens. 2019, 52, 15–25. [Google Scholar] [CrossRef] [Green Version]
Satellite | Sentinel-1 |
---|---|
Sensor | A |
Band | C |
Wavelength | 5.55 cm |
Acquisition mode | Interferometric wide |
Polarization | VV |
SAR product | Single look complex |
Revisit period | 12 days |
Resolution | 14 × 4 m |
Mean incidence angle | 36° |
Processing Parameters | GEP service |
A-DInSAR technique | P-SBAS |
Pixel resolution | 90 × 90 m |
Used DEM | SRTM_1arcsec (30 m) |
Multilooking factor | 5 × 20 (azimuth × range) |
Goldstein filter | 0.5 |
Applied filter | APS |
Reference point in ascending | −9.1902863/38.706933 |
Reference point in descending | −9.7099499/38.771494 |
Parameter | Value |
---|---|
Isolation distance | 180.0 |
Factor for standard deviation | 2 |
Clustering radio (m) | 120.0 |
Minimum ADA size | 5 |
Parameters | Ascending | Descending |
---|---|---|
Area (km2) | 20,009 | 13,904 |
Number of points (PS) | 607,024 | 975,215 |
Density of points (PS km−2) | 30.3 | 70.1 |
LOS velocity (mm year−1) | ||
Mean | −2.0 | −1.0 |
Maximum | 26.3 | 23.0 |
Minimum | −38.0 | −35.4 |
Standard deviation | 2.9 | 3.6 |
Accumulated LOS displacement (mm) | ||
Mean | −4.0 | −0.6 |
Maximum | 53.2 | 46.1 |
Minimum | −74.7 | −74.0 |
Standard deviation | 6.5 | 8.2 |
Council | # Total ADA (QI = 1–4) | # ADA (QI = 1) | # PS of ADA | Max Velocity | Mean Velocity | Max Deformation | Mean Deformation |
---|---|---|---|---|---|---|---|
Alcohete | 11 | 8 | 5–54 | 13.2 | 3.8–8.3 | −28.2 | −5.9–−16.7 |
Alenquer | 67 | 63 | 5–795 | 25.5 | 3.2–13.7 | −43.7 | −5.0–−32.3 |
Almada | 6 | 3 | 5–8 | 14.4 | 3.6–9.0 | −32.3 | −4.7–−16.7 |
Amadora | 6 | 4 | 6–16 | 29.5 | 3.9–8.2 | −64.1 | −8.3–−17.3 |
Arruda Dos Vinhos | 7 | 5 | 5–6 | 12.3 | 4.0–7.6 | −45.9 | −6.2–−12.8 |
Barreiro | 10 | 4 | 6–18 | 15.8 | 3.8–5.7 | −24.2 | −6.9–−11.9 |
Benavente | 71 | 58 | 5–101 | 20.7 | 3.2–13.1 | −44.0 | −5.3–−26.3 |
Cascais | 40 | 35 | 5–480 | 18.0 | 3.5–7.4 | −38.0 | −4.2–−15.7 |
Lisbon | 3 | 1 | 5 | 9.1 | 3.6 | −46.3 | −6.8 |
Loures | 8 | 1 | 11 | 13.0 | 3.8 | −31.0 | −11.0 |
Mafra | 20 | 9 | 5–40 | 13.1 | 3.3–5.7 | −29.0 | −7.4–−12.3 |
Moita | 20 | 17 | 5–18 | 15.8 | 3.2–6.2 | −34.2 | −5.2–−13.3 |
Montijo | 35 | 19 | 5–54 | 16.4 | 3.1–8.8 | −35.2 | −5.2–−20.2 |
Odivelas | 3 | No data | No data | No data | No data | No data | No data |
Oeiras | 27 | 26 | 5–56 | 18.5 | 3.5–5.5 | −31.7 | −4.1–−12.6 |
Palmela | 82 | 48 | 5–68 | 16.8 | 3.6–11.8 | −71.0 | −5.2–−21.8 |
Seixal | 26 | 5 | 5–21 | 16.3 | 3.2–6.2 | −35.1 | −5.0–−12.0 |
Sesimbra | 28 | 10 | 5–120 | 15.6 | 4.0–9.9 | −33.0 | −8.6–−16.5 |
Setúbal | 30 | 17 | 5–53 | 14.9 | 3.1–7.1 | −33.8 | −11.6–−13.3 |
Sintra | 79 | 68 | 5–480 | 25.9 | 2.4–11.1 | −50.6 | −5.5–−21.3 |
Sobral de Monte Agraço | 3 | 3 | 5 | 10.9 | 3.5–4.6 | −20.9 | −8.9–−9.7 |
Torres Vedras | 43 | 22 | 5–28 | 17.3 | 3.8–13.6 | −36.0 | −6.0–−30.3 |
Vila Franca de Xira | 35 | 29 | 5–795 | 25.5 | 3.7–11.7 | −55.6 | −5.2–−29.1 |
Council | # Total ADA (QI = 1–4) | # ADA (QI = 1) | # PS of ADA | Max Velocity | Mean Velocity | Max Deformation | Mean Deformation |
---|---|---|---|---|---|---|---|
Alcohete | 12 | 3 | 6–18 | 12.2 | 4.0–6.5 | −38.5 | −4.9–−6.1 |
Alenquer | 44 | 12 | 5–165 | 25.2 | 4.7–9.7 | −43.5 | 17.8–−19.1 |
Almada | 4 | No data | No data | No data | No data | No data | No data |
Amadora | 2 | No data | No data | No data | No data | No data | No data |
Arruda Dos Vinhos | 8 | 3 | 5–6 | 13.2 | 4.0–6.2 | −26.0 | 8.8–−9.2 |
Barreiro | 3 | No data | No data | No data | No data | No data | No data |
Benavente | 101 | 19 | 5–519 | 24.1 | 4.6–13.0 | −43.3 | 15.5–−30.0 |
Cascais | 15 | No data | No data | No data | No data | No data | No data |
Lisbon | 7 | 2 | 5–10 | 13.6 | 6.7–7.7 | −36.2 | −14.5–−14.6 |
Loures | 23 | 2 | 5–6 | 11.8 | 6.6–7.7 | −18.6 | −13.7–−14.5 |
Mafra | 40 | 2 | 9–22 | 17.4 | 10.6–17.4 | −37.1 | 9.1–−18.8 |
Moita | 4 | No data | No data | No data | No data | No data | No data |
Montijo | 87 | 18 | 6–63 | 18.7 | 3.4–9.1 | −40.6 | 15.9–−13.2 |
Odivelas | 1 | No data | No data | No data | No data | No data | No data |
Oeiras | 2 | No data | No data | No data | No data | No data | No data |
Palmela | 70 | 8 | 5–100 | 18.6 | 4.9–13.4 | −48.3 | −4.0–−33.3 |
Seixal | 8 | No data | No data | No data | No data | No data | No data |
Sesimbra | 48 | 1 | 11 | 9.5 | 5.7 | −17.7 | −3.1 |
Setúbal | 25 | 8 | 5–87 | 18.4 | 4.4–8.7 | −37.3 | −2.9–−16.3 |
Sintra | 38 | 3 | 5–13 | 14.6 | 6.0–10.8 | −35.8 | −7.3–−20.7 |
Sobral de Monte Agraço | No data | No data | No data | No data | No data | No data | No data |
Torres Vedras | 50 | 12 | 5–15 | 21.3 | 4.4–11.5 | −49.7 | 10.2–−27.1 |
Vila Franca de Xira | 15 | 5 | 7–165 | 28.6 | 6.4–11.4 | −53.1 | 9.1–−22.4 |
Sector | Ascending | Descending | Vertical Deformation | |||
---|---|---|---|---|---|---|
Max. VLOS | Area of ADA | Max. VLOS | Area of ADA | Max. Velocity | Area | |
1 | −25.5 | 12,406,800 | −25.2 | 2,216,415 | −32.4 | 2,601,950 |
2 | −18.5 | 251,940 | −20.8 | 233,685 | −19.0 | 222,846 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuervas-Mons, J.; Zêzere, J.L.; Domínguez-Cuesta, M.J.; Barra, A.; Reyes-Carmona, C.; Monserrat, O.; Oliveira, S.C.; Melo, R. Assessment of Urban Subsidence in the Lisbon Metropolitan Area (Central-West of Portugal) Applying Sentinel-1 SAR Dataset and Active Deformation Areas Procedure. Remote Sens. 2022, 14, 4084. https://doi.org/10.3390/rs14164084
Cuervas-Mons J, Zêzere JL, Domínguez-Cuesta MJ, Barra A, Reyes-Carmona C, Monserrat O, Oliveira SC, Melo R. Assessment of Urban Subsidence in the Lisbon Metropolitan Area (Central-West of Portugal) Applying Sentinel-1 SAR Dataset and Active Deformation Areas Procedure. Remote Sensing. 2022; 14(16):4084. https://doi.org/10.3390/rs14164084
Chicago/Turabian StyleCuervas-Mons, José, José Luis Zêzere, María José Domínguez-Cuesta, Anna Barra, Cristina Reyes-Carmona, Oriol Monserrat, Sergio Cruz Oliveira, and Raquel Melo. 2022. "Assessment of Urban Subsidence in the Lisbon Metropolitan Area (Central-West of Portugal) Applying Sentinel-1 SAR Dataset and Active Deformation Areas Procedure" Remote Sensing 14, no. 16: 4084. https://doi.org/10.3390/rs14164084
APA StyleCuervas-Mons, J., Zêzere, J. L., Domínguez-Cuesta, M. J., Barra, A., Reyes-Carmona, C., Monserrat, O., Oliveira, S. C., & Melo, R. (2022). Assessment of Urban Subsidence in the Lisbon Metropolitan Area (Central-West of Portugal) Applying Sentinel-1 SAR Dataset and Active Deformation Areas Procedure. Remote Sensing, 14(16), 4084. https://doi.org/10.3390/rs14164084