An Efficient MUSIC Algorithm Enhanced by Iteratively Estimating Signal Subspace and Its Applications in Spatial Colored Noise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Problem Formulation
2.2. Proposed Algorithm
2.2.1. Enhanced MUSIC Algorithm
Algorithm 1: Efficient MUSIC |
Input data: , ε, P; Output data: 1: , , initial n = 1 2: 3: , and arrange the diagonal elements of in descending order. 4: 5: If , end loop; else, jump to step 2. 6: , then the first few largest peaks of are particularly sharp, and is obtained. |
2.2.2. Computational Complexity
3. Results
3.1. Experiment 1: Subspace Accuracy
3.2. Experiment 2: The Number of Iterations of the Proposed Algorithm
3.3. Experiment 3: Root Mean Square Error
3.4. Experiment 4: Spatial Spectrum
3.5. Experiment 5: Probabilities of Successful Discrimination (PSD)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wen, F.; Wan, Q.; Fan, R.; Wei, H. Improved MUSIC Algorithm for Multiple Noncoherent Subarrays. IEEE Signal Process. Lett. 2014, 21, 527–530. [Google Scholar] [CrossRef]
- Rao, B.D.; Hari, K.V.S. Performance analysis of ESPRIT and TAM in determining the direction of arrival of plane waves in noise. IEEE Signal Proc. Lett. 1989, 40, 1990–1995. [Google Scholar] [CrossRef]
- Nie, W.-K.; Feng, D.-Z.; Xie, H. Improved MUSIC algorithm for high resolution angle estimation. Signal Process. 2016, 122, 87–92. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, Y.P.; Liu, J.J. Mixed-Order MUSIC Algorithm for Localizations in of Far-Field and Near-Field Sources. IEEE Signal Process. Lett. 2013, 20, 311–314. [Google Scholar] [CrossRef]
- Liu, Z.-M.; Zhang, C.; Yu, P.S. Direction-of-Arrival Estimation Based on Deep Neural Networks With Robustness to Array Imperfections. IEEE Trans. Antennas Propag. 2018, 66, 7315–7327. [Google Scholar] [CrossRef]
- Wu, L.-L.; Liu, Z.-M.; Huang, Z.-T. Deep Convolution Network for Direction of Arrival Estimation With Sparse Prior. IEEE Signal Process. Lett. 2019, 26, 1688–1692. [Google Scholar] [CrossRef]
- Huang, H.; Peng, Y.; Yang, J.; Xia, W.; Gui, G. Fast Beamforming Design via Deep Learning. IEEE Trans. Veh. Technol. 2020, 69, 1065–1069. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, M.; Yang, J. Data-Driven Deep Learning for Automatic Modulation Recognition in Cognitive Radios. IEEE Trans. Veh. Technol. 2019, 68, 4074–4077. [Google Scholar] [CrossRef]
- Elbir, M.; Mishra, K.V. Joint antenna selection and hybrid beamformer design using unquantized and quantized deep learning networks. IEEE Trans. Wirel Commun. 2020, 19, 1677–1688. [Google Scholar] [CrossRef]
- Yu, X.Y.; Guo, Y. Efficient 2D-DOA estimation algorithm for multi-FH signals. J. Syst. Eng. Electron. 2018, 465, 180–187. [Google Scholar]
- Luo, J.; Zhang, Y.; Yang, J.; Zhang, D. Online Sparse DOA Estimation Based on Sub–Aperture Recursive LASSO for TDM–MIMO Radar. Remote Sens. 2022, 14, 2133. [Google Scholar] [CrossRef]
- Hua, Y.; Sarkar, T.K.; Weiner, D.D. An L-shaped array for estimating 2-D directions of wave arrival. IEEE Trans. Antennas Propag. 1991, 39, 143–146. [Google Scholar] [CrossRef]
- Yang, B.; Huang, D.; Liu, S. 2D-DOA estimation for uniform rectangular array using non-circular HOSVD method. In Proceedings of the 2016 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE), GuiLin, China, 18–22 October 2016; pp. 617–620. [Google Scholar]
- Liu, L.; Rao, Z. An Adaptive Lp Norm Minimization Algorithm for Direction of Arrival Estimation. Remote Sens. 2022, 14, 766. [Google Scholar] [CrossRef]
- Lan, X.; Li, Y.; Wang, E. A RARE Algorithm for 2D DOA Estimation Based on Nested Array in Massive MIMO System. IEEE Access 2016, 4, 3806–3814. [Google Scholar] [CrossRef]
- Hua, Y. Estimating two-dimensional frequencies by matrix enhancement and matrix pencil. IEEE Trans. Signal Process. 1992, 40, 2267–2280. [Google Scholar] [CrossRef]
- Rouquette, S.; Najim, M. Estimation of frequencies and damping factors by two-dimensional ESPRIT type methods. IEEE Trans. Signal Process. 2000, 49, 237–245. [Google Scholar] [CrossRef]
- Chen, F.-J.; Fung, C.C.; Kok, C. Estimation of Two-Dimensional Frequencies Using Modified Matrix Pencil Method. IEEE Trans. Signal Process. 2007, 55, 718–724. [Google Scholar] [CrossRef]
- Dong, Y.-Y. 2-D DOA Estimation for L-Shaped Array With Array Aperture and Snapshots Extension Techniques. IEEE Signal Process. Lett. 2017, 24, 495–499. [Google Scholar] [CrossRef]
- Tayem, N.; Majeed, K.; Hussain, A.A. Two-Dimensional DOA Estimation Using Cross-Correlation Matrix With L-Shaped Array. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1077–1080. [Google Scholar] [CrossRef]
- Xu, L.; Wu, R.H.; Zhang, X.F. Joint Two-Dimensional DOA and Frequency Estimation for L-Shaped Array via Compressed Sensing PARAFAC Method. IEEE Access 2018, 6, 37204–37213. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, J.; Zhang, H.; Li, Z.; Qi, C. Dynamic Antenna Selection for Collocated MIMO Radar. Remote Sens. 2022, 14, 2912. [Google Scholar] [CrossRef]
- Hu, W. DOA Estimation for UCA in the Presence of Gain-Phase Errors. IEEE Wirel. Commun. Lett. 2019, 23, 446–449. [Google Scholar] [CrossRef]
- Ahmed, T.; Zhang, X.; Hassan, W.U. A Higher-Order Propagator Method for 2D-DOA Estimation in Massive MIMO Systems. IEEE Commun. Lett. 2020, 24, 543–547. [Google Scholar] [CrossRef]
- Xia, T.-Q. Joint diagonalization based 2D-DOD and 2D-DOA estimation for bistatic MIMO radar. Signal Process. 2015, 116, 7–12. [Google Scholar] [CrossRef]
- Chintagunta, S.; Ponnusamy, P. 2D-DOD and 2D-DOA estimation using the electromagnetic vector sensors. Signal Process. 2018, 147, 163–172. [Google Scholar] [CrossRef]
- Xu, K.-J.; Nie, W.-K.; Feng, D. A multi-direction virtual array transformation algorithm for 2D DOA estimation. Signal Process. 2016, 125, 122–133. [Google Scholar] [CrossRef]
- Xu, S.Z.; Kooij, B.J.; Yarovoy, A. Joint Doppler and DOA estimation using (Ultra-)Wideband FMCW signals. Signal Process. 2020, 168, 107259. [Google Scholar] [CrossRef]
- Qiang, X.W.; Liu, Y.; Feng, Q.X. Adaptive DOA estimation with low complexity for wideband signals of massive MIMO systems. Signal Process. 2020, 176, 107702. [Google Scholar] [CrossRef]
- Dai, X.; Zhang, X.; Wang, Y. Extended DOA-Matrix Method for DOA Estimation via Two Parallel Linear Arrays. IEEE Commun. Lett. 2019, 23, 1981–1984. [Google Scholar] [CrossRef]
- Zheng, Z.; Mu, S. Two-Dimensional DOA Estimation Using Two Parallel Nested Arrays. IEEE Commun. Lett. 2020, 24, 568–571. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Y.; Wang, Q. Two-Dimensional Angular Parameter Estimation for Noncircular Incoherently Distributed Sources Based on an L-Shaped Array. IEEE Sens. J. 2020, 20, 13704–13715. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Shen, J. 2D-DOA Estimation of Strictly Non-circular Sources Utilizing Connection-Matrix for L-Shaped Array. IEEE Wirel. Commun. Lett. 2021, 10, 296–300. [Google Scholar] [CrossRef]
- Chen, P.; Cao, Z.X.; Chen, Z.M. Sparse off-grid DOA estimation method with unknown mutual coupling effect. Digit. Signal Process. 2019, 90, 1–9. [Google Scholar] [CrossRef]
- Guldogan, M.B.; Arikan, O. Cross-ambiguity function domain multipath channel parameter estimation. Digit. Signal Process. 2012, 22, 275–287. [Google Scholar] [CrossRef]
- Liang, J.L.; Liu, D. Joint estimation of source number and DOA using simulated annealing algorithm. Digit. Signal Process. 2010, 20, 887–899. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, G.; Liu, W.; Wang, X. Off-grid sparse DOA estimation based iterative reweighted linear interpolation in spatial coloured noise. Electron. Lett. 2020, 56, 573–575. [Google Scholar] [CrossRef]
- Jin, M.; Liao, G.S.; Li, J. Joint DOD and DOA estimation for bistatic MIMO radar. Signal Process. 2009, 89, 244–251. [Google Scholar] [CrossRef]
- Chen, J.; Gu, H.; Su, W.M. A new method for joint DOD and DOA estimation in bistatic MIMO radar. Signal Process. 2010, 90, 714–718. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, J.-K.; Wong, K.M. Joint DOD and DOA Estimation for Bistatic MIMO Radar in Unknown Correlated Noise. IEEE Trans. Veh. Technol. 2015, 64, 5113–5125. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Li, X. A Tensor-Based Subspace Approach for Bistatic MIMO Radar in Spatial Colored Noise. Sensors 2014, 14, 3897–3907. [Google Scholar] [CrossRef]
- Ma, T.; Du, J.; Shao, H. A Nyström-Based Low-Complexity Algorithm with Improved Effective Array Aperture for Coherent DOA Estimation in Monostatic MIMO Radar. Remote Sens. 2022, 14, 2646. [Google Scholar] [CrossRef]
- Wen, F.Q.; Xiong, X.D.; Su, J. Angle estimation for bistatic MIMO radar in the presence of spatial colored noise. Signal Process. 2017, 134, 261–267. [Google Scholar] [CrossRef]
- Liao, K.; Yu, Z.; Xie, N.; Jiang, J. Joint Estimation of Azimuth and Distance for Far-Field Multi Targets Based on Graph Signal Processing. Remote Sens. 2022, 14, 1110. [Google Scholar] [CrossRef]
- Tang, B.; Tang, J.; Zhang, Y. Maximum likelihood estimation of DOD and DOA for bistatic MIMO radar. Signal Process. 2012, 93, 1349–1357. [Google Scholar] [CrossRef]
- Wen, F.; Zhang, Z.; Zhang, G. A Tensor-Based Covariance Differencing Method for Direction Estimation in Bistatic MIMO Radar with Unknown Spatial Colored Noise. IEEE Access 2017, 5, 18451–18458. [Google Scholar] [CrossRef]
- Feng, D. A bi-iteration instrumental variable noise-subspace tracking algorithm. Signal Process. 2001, 81, 2215–2221. [Google Scholar] [CrossRef]
- Zeng, W.; So, H.C.; Huang, L. lp-MUSIC: Robust Direction-of-Arrival Estimator for Impulsive Noise Environments. IEEE Trans. Signal Process 2013, 61, 4296–4308. [Google Scholar] [CrossRef]
- Dai, J.; So, H.C. Sparse Bayesian Learning Approach for Outlier-Resistant Direction-of-Arrival Estimation. IEEE Trans. Signal Process 2018, 66, 744–756. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, X.; Feng, W.; Gong, J. Low-Complexity 2D DOA Estimation and Self-Calibration for Uniform Rectangle Array with Gain-Phase Error. Remote Sens. 2022, 14, 3064. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, L.; Zhang, C. Off-Grid Direction of Arrival Estimation Using Sparse Bayesian Inference. IEEE Trans. Signal Process. 2013, 61, 38–43. [Google Scholar] [CrossRef]
- Mahot, M.; Pascal, F.; Forster, P.; Ovarlez, J. Asymptotic Properties of Robust Complex Covariance Matrix Estimates. IEEE Trans. Signal Process. 2013, 61, 3348–3356. [Google Scholar] [CrossRef] [Green Version]
- Stoica, P.; Babu, P.; Li, J. SPICE: A Sparse Covariance-Based Estimation Method for Array Processing. IEEE Trans. Signal Process. 2011, 59, 629–638. [Google Scholar] [CrossRef]
- Xue, J.; Zhao, Y.; Liao, W. Nonlocal Low-Rank Regularized Tensor Decomposition for Hyperspectral Image Denoising. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5174–5189. [Google Scholar] [CrossRef]
- Zeng, H.; Xie, X.; Cui, H. Hyperspectral Image Restoration via Global L Spatial-Spectral Total Variation Regularized Local Low-Rank Tensor Recovery. IEEE Trans. Geosci. Remote. Sens. 2020, 99, 1–17. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Feng, D. An Efficient MUSIC Algorithm Enhanced by Iteratively Estimating Signal Subspace and Its Applications in Spatial Colored Noise. Remote Sens. 2022, 14, 4260. https://doi.org/10.3390/rs14174260
Zhang X, Feng D. An Efficient MUSIC Algorithm Enhanced by Iteratively Estimating Signal Subspace and Its Applications in Spatial Colored Noise. Remote Sensing. 2022; 14(17):4260. https://doi.org/10.3390/rs14174260
Chicago/Turabian StyleZhang, Xuejun, and Dazheng Feng. 2022. "An Efficient MUSIC Algorithm Enhanced by Iteratively Estimating Signal Subspace and Its Applications in Spatial Colored Noise" Remote Sensing 14, no. 17: 4260. https://doi.org/10.3390/rs14174260
APA StyleZhang, X., & Feng, D. (2022). An Efficient MUSIC Algorithm Enhanced by Iteratively Estimating Signal Subspace and Its Applications in Spatial Colored Noise. Remote Sensing, 14(17), 4260. https://doi.org/10.3390/rs14174260