An Improved Method for Rainfall Forecast Based on GNSS-PWV
Abstract
:1. Introduction
2. Data and Methodologies
2.1. Data
2.1.1. ISD
2.1.2. GNSS
2.1.3. Radiosonde
2.1.4. ERA5
- (1)
- (2)
- The above geoid height was converted to geodetic height using the official earth gravitational model 2008 (EGM 2008) [53].
2.2. Methodology
2.2.1. Selection of Co-Located Stations and Pre-Processing
2.2.2. Obtaining of GNSS-PWV
- (1)
- (2)
- Calculate the ZWD by subtracting the ZHD from ZTD.
- (3)
- Calculate the conversion factor using the following formula [10]:
- (4)
- Calculate GNSS-PWV by multiplying the ZWD with K.
2.2.3. Evaluation of GNSS-PWV
2.2.4. Criteria for Evaluation of Forecasting Results
3. Construction of New Model
3.1. Determination of Thresholds
- (1)
- For the prediction factor, 12 values for a 12 h period before the onset of a rainfall were calculated according to their definition in Table 4; e.g., in Figure 5, a rainfall event occurred at 17:00, and the 12 values for the prediction factor in each hour in Period-1 were calculated for determining the prediction value of the rainfall event. Among the 12 values, the maximum was selected as the prediction factor value of the rainfall event. By repeating this step, the values of all rainfall events in the month were obtained for the prediction factor, and all these values were sorted from the minimum value to the maximum value.
- (2)
- The minimum value for the prediction factor was regarded as the minimum candidate threshold, and the value that was at the position of 80% of the sorted data series obtained from step (1) was adopted as the maximum candidate threshold. The candidate thresholds can be determined by taking one threshold at a fixed interval from the minimum one to the maximum one (the fixed intervals were 1 mm, 0.2 mm, and 0.1 mm/h for PWV value, PWV increase, and maximum hourly PWV increase, respectively).
- (3)
- For each of the above candidate thresholds, TP, FP, FN, and TN in Table 2 were counted in the month at the co-located station, and the TSS was calculated by Formula (12). Among all the candidate thresholds, the threshold that resulted in the largest TSS was determined as the optimal threshold and was used in the rainfall forecast.
3.2. Using All Prediction Factors Together
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allan, R.P. The role of water vapour in earth’s energy flows. Surv. Geophys. 2012, 33, 557–564. [Google Scholar] [CrossRef]
- Singh, R.P.; Dey, S.; Sahoo, A.K.; Kafatos, M. Retrieval of water vapor using SSM/I and its relation with the onset of monsoon. Ann. Geophys. 2004, 22, 3079–3083. [Google Scholar] [CrossRef]
- Zhang, K.; Manning, T.; Wu, S.; Rohm, W.; Silcock, D.; Choy, S. Capturing the signature of severe weather events in Australia using GPS measurements. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 2015, 8, 1839–1847. [Google Scholar] [CrossRef]
- Chung, E.; Soden, B.; Sohn, B.J.; Shi, L. Upper-tropospheric moistening in response to anthropogenic warming. Proc. Natl. Acad. Sci. USA 2014, 111, 11636–11641. [Google Scholar] [CrossRef]
- Bock, O.; Parracho, A. Consistency and representativeness of integrated water vapour from ground-based GPS observations and ERA-Interim reanalysis. Atmos. Chem. Phys. 2019, 19, 9453–9468. [Google Scholar] [CrossRef]
- Li, X.; Dick, G.; Lu, C.; Ge, M.; Nilsson, T.; Ning, T.; Wickert, J.; Schuh, H. Multi-GNSS meteorology: Real-time retrieving of atmospheric water vapor from BeiDou, Galileo, GLONASS, and GPS observations. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6385–6393. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L. Climate applications of a global, 2-hourly atmospheric precipitable water dataset derived from IGS tropospheric products. J. Geod. 2009, 83, 209–217. [Google Scholar] [CrossRef]
- Baltink, H.K.; Marel, H.; Hoeven, A.G.A. Integrated atmospheric water vapor estimates from a regional GPS network. J. Geophys. Res. Atmos. 2002, 107, ACL-3. [Google Scholar] [CrossRef]
- Rocken, C.; Hove, T.V.; Johnson, J.; Solheim, F.; Ware, R.; Bevis, M.; Chiswell, S.; Businger, S. GPS/Storm—GPS sensing of atmospheric water vapor for meteorology. J. Atmos. Ocean. Technol. 1995, 12, 468–478. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, Y.; Ma, X.; Yao, W.; Yao, Y.; Li, X. An improved rainfall forecasting model based on GNSS observations. IEEE Trans. Geosc. Remote Sens. 2020, 58, 4891–4900. [Google Scholar] [CrossRef]
- Davis, J.L.; Herring, T.A.; Shapiro, I.I.; Rogers, A.; Elgered, G. Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci. 1985, 20, 1593–1607. [Google Scholar] [CrossRef]
- Bevis, M. GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteorol. 1994, 33, 379–386. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, H.; Liang, H.; Lou, Y.; Cai, Y.; Cao, Y.; Zhou, Y.; Liu, W. On the suitability of ERA5 in hourly GPS precipitable water vapor retrieval over China. J. Geod. 2019, 93, 1897–1909. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, K.; Wu, S.; He, C.; Cheng, Y.; Li, X. Determination of zenith hydrostatic delay and its impact on GNSS-derived integrated water vapor. Atmos. Meas. Tech. 2017, 10, 2807–2820. [Google Scholar] [CrossRef]
- Jiang, P.; Ye, S.; Chen, D.; Liu, Y.; Xia, P. Retrieving precipitable water vapor data using GPS zenith delays and global reanalysis data in China. Remote Sens. 2016, 8, 389. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, K.; Wu, S.; Fan, S.; Cheng, Y. Water vapor—Weighted mean temperature and its impact on the determination of precipitable water vapor and its linear trend. J. Geophys. Res. Atmos. 2016, 121, 833–852. [Google Scholar] [CrossRef]
- Sun, P.; Wu, S.; Zhang, K.; Wan, M.; Wang, R. A new global grid-based weighted mean temperature model considering vertical nonlinear variation. Atmos. Meas. Tech. 2021, 14, 2529–2542. [Google Scholar] [CrossRef]
- Ding, M. A second generation of the neural network model for predicting weighted mean temperature. GPS Solut. 2020, 24, 61. [Google Scholar] [CrossRef]
- Jade, S.; Shrungeshwara, T.S.; Anil, B. Water vapor study using MODIS and GPS data at 64 continuous GPS stations (2002—2017) in Indian subcontinent. J. Atmos. Sol.-Terr. Phys. 2019, 196, 105138. [Google Scholar] [CrossRef]
- Chen, B.; Dai, W.; Liu, Z.; Wu, L.; Xia, P. Assessments of GMI-derived precipitable water vapor products over the south and east China seas using radiosonde and GNSS. Adv. Meteorol. 2018, 2018, 7161328. [Google Scholar] [CrossRef]
- Gui, K.; Che, H.; Chen, Q.; Zeng, Z.; Liu, H.; Wang, Y.; Zheng, Y.; Sun, T.; Liao, T.; Wang, H.; et al. Evaluation of radiosonde, MODIS-NIR-Clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China. Atmos. Res. 2017, 197, 461–473. [Google Scholar] [CrossRef]
- Namaoui, H.; Kahlouche, S.; Belbachir, A.H.; Van Malderen, R.; Brenot, H.; Pottiaux, E. GPS water vapor and its comparison with radiosonde and ERA-Interim data in Algeria. Adv. Atmos. Sci. 2017, 34, 623–634. [Google Scholar] [CrossRef]
- He, Q.; Zhang, K.; Wu, S.; Zhao, Q.; Wang, X.; Shen, Z.; Li, L.; Wan, M.; Liu, X. Real-time GNSS-derived PWV for typhoon characterizations: A case study for super typhoon Mangkhut in Hong Kong. Remote Sens. 2020, 12, 104. [Google Scholar] [CrossRef]
- He, Q.; Shen, Z.; Wan, M.; Li, L. Precipitable water vapor converted from GNSS-ZTD and ERA5 datasets for the monitoring of tropical cyclones. IEEE Access 2020, 8, 87275–87290. [Google Scholar] [CrossRef]
- Bonafoni, S.; Biondi, R.; Brenot, H.; Anthes, R. Radio occultation and ground-based GNSS products for observing, understanding and predicting extreme events: A review. Atmos. Res. 2019, 230, 104624. [Google Scholar] [CrossRef]
- Zhao, Q.; Ma, X.; Yao, W.; Yao, Y. A new typhoon-monitoring method using precipitation water vapor. Remote Sens. 2019, 11, 2845. [Google Scholar] [CrossRef]
- Vedel, H.; Huang, X.Y.; Haase, J.; Ge, M.; Calais, E. Impact of GPS zenith tropospheric delay data on precipitation forecasts in Mediterranean France and Spain. Geophys. Res. Lett. 2004, 31, L02102. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, K.; Wu, S.; Li, Z.; Cheng, Y.; Li, L.; Yuan, H. The correlation between GNSS-derived precipitable water vapor and sea surface temperature and its responses to El Niño—Southern Oscillation. Remote Sens. Environ. 2018, 216, 1–12. [Google Scholar] [CrossRef]
- Zhao, Q.; Yao, Y.; Yao, W.Q.; Li, Z. Near-global GPS-derived PWV and its analysis in the El Niño event of 2014–2016. J. Atmos. Sol.-Terr. Phys. 2018, 179, 69–80. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, K.; Yang, L.; Wu, S.; Li, L. Evaluation and calibration of MODIS near-infrared precipitable water vapor over China using GNSS observations and ERA-5 reanalysis dataset. Remote Sens. 2021, 13, 2761. [Google Scholar] [CrossRef]
- Cao, Y.; Fang, Z.; Li, C.; Wang, Y. Test on monitoring meso-and micro-scale precipitation in Beijing using GPS data and satellite image. Plateau Meteorol. 2005, 24, 91–96. [Google Scholar]
- Champollion, C.; Masson, F.; Van Baelen, J.; Walpersdorf, A.; Chéry, J.; Doerflinger, E. GPS monitoring of the tropospheric water vapor distribution and variation during the 9 September 2002 torrential precipitation episode in the Cévennes (southern France). J. Geophys. Res. Atmos. 2004, 109, D24102. [Google Scholar] [CrossRef]
- Muller, C.J.; Back, L.E.; O’Gorman, P.A.; Emanuel, K.A. A model for the relationship between tropical precipitation and column water vapor. Geophys. Res. Lett. 2009, 36, L16804. [Google Scholar] [CrossRef]
- Barindelli, S.; Realini, E.; Venuti, G.; Fermi, A.; Gatti, A. Detection of water vapor time variations associated with heavy rain in northern Italy by geodetic and low-cost GNSS receivers. Earth Planets Space 2018, 70, 28. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, J.; Wang, H.; Long, L.; Han, F. Indication of GPS precipitable water vapor for rainstorm forecast in Hubei. Meteorol. Sci. Technol. 2015, 43, 666–674. [Google Scholar]
- Shi, C.; Zhang, W.; Cao, Y.; Lou, Y.; Liang, H.; Fan, L.; Satirapod, C.; Trakolful, C. Atmospheric water vapor climatological characteristics over Indo-China region based on BeiDou/GNSS and relationships with precipitation. Acta Geod. Cartogr. Sinica 2020, 49, 1112. [Google Scholar]
- Sapucci, L.F.; Machado, L.A.T.; de Souza, E.M.; Campos, T.B. Global positioning system precipitable water vapour (GPS-PWV) jumps before intense rain events: A potential application to nowcasting. Meteorol. Appl. 2019, 26, 49–63. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Stevens, S.E.; Stevens, L.E.; Karl, T.R. Observed climatological relationships of extreme daily precipitation events with precipitable water and vertical velocity in the contiguous united states. Geophys. Res. Lett. 2020, 47, e2019GL086721. [Google Scholar] [CrossRef]
- Zhao, Q.; Ma, X.; Yao, Y. Preliminary result of capturing the signature of heavy rainfall events using the 2-d-/4-d water vapour information derived from GNSS measurement in Hong Kong. Adv. Space Res. 2020, 66, 1537–1550. [Google Scholar] [CrossRef]
- Benevides, P.; Catalao, J.; Miranda, P.M.A. On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall. Nat. Hazards Earth Syst. Sci. 2015, 15, 2605–2616. [Google Scholar] [CrossRef]
- Yao, Y.; Shan, L.; Zhao, Q. Establishing a method of short-term rainfall forecasting based on GNSS-derived PWV and its application. Sci. Rep. 2017, 7, 12465. [Google Scholar] [CrossRef] [PubMed]
- Manandhar, S.; Lee, Y.H.; Meng, Y.S. GPS-PWV based improved long-term rainfall prediction algorithm for tropical regions. Remote Sens. 2019, 11, 2643. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, X.; Wu, S.; Zhang, K.; Chen, X.; Qiu, C.; Zhang, S.; Zhang, J.; Xie, M.; Li, L. Development of an improved model for prediction of short-term heavy precipitation based on GNSS-derived PWV. Remote Sens. 2020, 12, 4101. [Google Scholar] [CrossRef]
- Manandhar, S.; Lee, Y.H.; Meng, Y.S.; Yuan, F.; Ong, J.T. GPS-derived PWV for rainfall nowcasting in tropical region. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4835–4844. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Wu, S.; Zhang, K.; Chen, X.; Zhang, J.; Qiu, C.; Zhang, S.; Li, L. An improved model for detecting heavy precipitation using GNSS-derived zenith total delay measurements. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 2021, 14, 5392–5405. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Wu, S.; Zhang, K.; Fu, E.; Xu, Y.; Qiu, C.; Zhang, J.; Li, L. A new method for determining an optimal diurnal threshold of GNSS precipitable water vapor for precipitation forecasting. Remote Sens. 2021, 13, 1390. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, Y.; Yao, W.; Yao, Y. Hourly rainfall forecast model using supervised learning algorithm. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4100509. [Google Scholar] [CrossRef]
- Smith, A.; Lott, N.; Vose, R. The integrated surface database: Recent developments and partnerships. Bull. Am. Meteorol. Soc. 2011, 92, 704–708. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, J.; Zhang, S.; Han, F. Precipitable water vapor retrieval and analysis by multiple data sources: Ground-based GNSS, radio occultation, radiosonde, microwave satellite, and NWP reanalysis data. J. Sens. 2018, 2018, 3428303. [Google Scholar] [CrossRef]
- Li, L.; Wu, S.; Zhang, K.; Wang, X.; Li, W.; Shen, Z.; Zhu, D.; He, Q.; Wan, M. A new zenith hydrostatic delay model for real-time retrievals of GNSS-PWV. Atmos. Meas. Tech. 2021, 14, 6379–6394. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 hourly data on pressure levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2018. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.bd0915c6?tab=overview (accessed on 5 July 2022).
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The development and evaluation of the earth gravitational model 2008 (EGM2008). J. Geophys. Res. Solid Earth 2012, 117, B04406. [Google Scholar] [CrossRef]
- Offiler, D.; Jones, J.; Bennit, G.; Vedel, H. EIG EUMETNET GNSS Water Vapour Programme (E-GVAP-II); Product Requirements Document; MetOffice: Brussel, Belgium, 2010.
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- Bantis, L.E.; Nakas, C.T.; Reiser, B. Construction of confidence regions in the ROC space after the estimation of the optimal Youden index-based cut-off point. Biometrics 2014, 70, 212–223. [Google Scholar] [CrossRef]
- Schisterman, E.F.; Faraggi, D.; Reiser, B.; Hu, J. Youden index and the optimal threshold for markers with mass at zero. Stat. Med. 2008, 27, 297–315. [Google Scholar] [CrossRef]
- Berrar, D. Performance measures for binary classification. Encycl. Bioinf. Comput. Biol. 2019, 1, 546–560. [Google Scholar]
- Ruopp, M.D.; Perkins, N.J.; Whitcomb, B.W.; Schisterman, E.F. Youden index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom. J. J. Math. Methods Biosci. 2008, 50, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Schmid, F.; Wang, Y.; Harou, A. Guidelines for Nowcasting Techniques. World Meteorological Organization. 2017. Available online: https://library.wmo.int/doc_num.php?explnum_id=3795 (accessed on 1 August 2022).
Parameter Name | Selection |
---|---|
Satellite | GPS |
Processing method | PPP |
Orbit and clock | IGS final products |
A priori ZTD model | GPT + Saastamoinen model |
Mapping function | Global mapping function (GMF) |
Elevation cutoff | 3° |
Ionospheric delay | Ionosphere-free combination |
Ocean tidal loading | FES2004 |
Elevation-dependent weight | cos(z) |
Correction of antenna phase center variations | I14 |
Temporal resolution of ZTD | 1 h |
GNSS Sta. | Lat (°) | Lon (°) | Ele (m) | Co-Located Radiosonde Sta. | Lat (°) | Lon (°) | Ele (m) | Dis (km) | Bias (mm) | STD (mm) | RMS (mm) |
---|---|---|---|---|---|---|---|---|---|---|---|
AC24 | 58.68 | −156.65 | 36.4 | USM00070326 | 58.68 | −156.67 | 8.4 | 0.9 | 0.0 | 1.3 | 1.3 |
AC58 | 57.16 | −170.22 | 19.4 | USM00070308 | 57.15 | −170.22 | 10.0 | 0.7 | −0.1 | 1.3 | 1.3 |
AL35 | 33.17 | −86.76 | 146.4 | USM00072230 | 33.18 | −86.78 | 174.0 | 2.8 | 0.0 | 2.3 | 2.3 |
ANC2 | 61.18 | −149.98 | 57.9 | USM00070273 | 61.16 | −149.99 | 52.1 | 2.1 | −0.4 | 1.2 | 1.2 |
BET1 | 60.79 | −161.84 | 51.8 | USM00070219 | 60.79 | −161.84 | 33.0 | 0.3 | −0.4 | 1.2 | 1.3 |
BRW1 | 71.28 | −156.79 | 15.1 | USM00070026 | 71.29 | −156.78 | 11.9 | 0.7 | −0.6 | 1.0 | 1.2 |
MIGD | 45.03 | −84.64 | 368.0 | USM00072634 | 44.91 | −84.72 | 447.7 | 14.5 | −0.2 | 1.5 | 1.5 |
NCBE | 34.72 | −76.67 | −29.3 | USM00072305 | 34.78 | −76.88 | 11.0 | 19.8 | −0.7 | 2.2 | 2.3 |
P401 | 47.94 | −124.56 | 36.2 | USM00072797 | 47.93 | −124.56 | 56.8 | 0.4 | −0.4 | 1.5 | 1.5 |
ZMA1 | 25.82 | −80.32 | −8.0 | USM00072202 | 25.75 | −80.38 | 4.3 | 10.1 | −1.7 | 2.5 | 3.0 |
Truth | Forecast | Total | ||
---|---|---|---|---|
Yes | No | |||
Observed | Yes | TP | FN | TP + FN |
No | FP | TN | FP + TN | |
Total | TP + FP | FN + TN | TP + FP + FN + TN |
Prediction Factor | Definition | Remark |
---|---|---|
PWV value | Hourly GNSS-PWV value | Proposed by Yao et al. [42] |
PWV increase | Maximum PWV before rainfall— Minimum PWV before the adjacent maximum PWV | |
Maximum hourly PWV increase | Maximum hourly PWV increase between maximum and minimum PWVs before rainfall | Proposed in this study |
Candidate Thresholds (mm) | TP | FP | FN | TN | TSS (%) | FAR (%) | POD (%) | CSI (%) |
---|---|---|---|---|---|---|---|---|
4.9 | 66 | 481 | 0 | 460 | 48.9 | 87.9 | 100.00 | 12.1 |
5.9 | 62 | 361 | 4 | 580 | 55.6 | 85.3 | 93.9 | 14.5 |
6.9 | 61 | 265 | 5 | 676 | 64.3 | 81.3 | 92.4 | 18.4 |
7.9 | 53 | 152 | 13 | 789 | 64.2 | 74.2 | 80.3 | 24.3 |
8.9 | 46 | 94 | 20 | 847 | 59.7 | 67.1 | 69.7 | 28.8 |
9.9 | 44 | 69 | 22 | 872 | 59.3 | 61.1 | 66.7 | 32.6 |
10.9 | 37 | 53 | 29 | 888 | 50.4 | 58.9 | 56.1 | 31.1 |
11.9 | 33 | 40 | 33 | 901 | 45.8 | 54.8 | 50.0 | 31.1 |
12.9 | 30 | 31 | 36 | 910 | 42.2 | 50.8 | 45.5 | 30.9 |
13.9 | 29 | 23 | 37 | 918 | 41.5 | 44.2 | 43.9 | 32.6 |
14.9 | 28 | 15 | 38 | 926 | 40.8 | 34.9 | 42.4 | 34.6 |
15.9 | 22 | 14 | 44 | 927 | 31.9 | 38.9 | 33.3 | 27.5 |
16.9 | 18 | 14 | 48 | 927 | 25.8 | 43.8 | 27.3 | 22.5 |
Strategy | Condition |
---|---|
S1 | PWV > TH1 or Inc > TH2 or Inr > TH3 |
S2 | (PWV > TH1 and Inc > TH2) or (PWV > TH1 and Inr > TH3) or (Inc > TH2 and Inr > TH3) |
S3 | PWV > TH1 and Inc > TH2 and Inr > TH3 |
S4 | PWV > TH1 or (Inc > TH2 and Inr > TH3) |
S5 | Inc > TH2 or (PWV > TH1 and Inr > TH3) |
S6 | Inr > TH3 or (PWV > TH1 and Inc > TH2) |
Longitude | Number of Stations | Mean POD | Mean FAR |
---|---|---|---|
180~100°W | 21 | 83% | 57% |
100~90°W | 16 | 90% | 60% |
90~60°W | 30 | 89% | 47% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zhang, K.; Wu, S.; Li, H.; Wang, X.; Hu, A.; Li, W.; Fu, E.; Zhang, M.; Shen, Z. An Improved Method for Rainfall Forecast Based on GNSS-PWV. Remote Sens. 2022, 14, 4280. https://doi.org/10.3390/rs14174280
Li L, Zhang K, Wu S, Li H, Wang X, Hu A, Li W, Fu E, Zhang M, Shen Z. An Improved Method for Rainfall Forecast Based on GNSS-PWV. Remote Sensing. 2022; 14(17):4280. https://doi.org/10.3390/rs14174280
Chicago/Turabian StyleLi, Longjiang, Kefei Zhang, Suqin Wu, Haobo Li, Xiaoming Wang, Andong Hu, Wang Li, Erjiang Fu, Minghao Zhang, and Zhen Shen. 2022. "An Improved Method for Rainfall Forecast Based on GNSS-PWV" Remote Sensing 14, no. 17: 4280. https://doi.org/10.3390/rs14174280
APA StyleLi, L., Zhang, K., Wu, S., Li, H., Wang, X., Hu, A., Li, W., Fu, E., Zhang, M., & Shen, Z. (2022). An Improved Method for Rainfall Forecast Based on GNSS-PWV. Remote Sensing, 14(17), 4280. https://doi.org/10.3390/rs14174280