Analysis of Optical Turbulence over the South China Sea Using Balloon-Borne Microthermal Data and ERA5 Data
Abstract
:1. Introduction
2. Experiment and Methodology
2.1. Experiment Detail
2.2. Principle of Measurement
2.3. ERA5 Data
3. Results and Discussion
3.1. Characteristics of and New Statistical Model
3.2. Evaluation of ERA5 Data over the SCS
3.3. Turbulence Parameters Distribution and Seasonal Behavior
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ata, Y.; Baykal, Y.; Gökçe, M.C. Average channel capacity in anisotropic atmospheric non-Kolmogorov turbulent medium. Opt. Commun. 2019, 451, 129–135. [Google Scholar] [CrossRef]
- Mahalov, A.; McDaniel, A. Long-range propagation through inhomogeneous turbulent atmosphere: Analysis beyond phase screens. Phys. Scr. 2019, 94, 034003. [Google Scholar] [CrossRef]
- Fried, D.L.; Mevers, G.E.; Keister, M.P. Measurements of Laser-Beam Scintillation in the Atmosphere. J. Opt. Soc. Am. 1967, 57, 787–797. [Google Scholar] [CrossRef]
- Tatarski, V.I.; Silverman, R.A.; Chako, N. Wave Propagation in a Turbulent Medium. Phys. Today 1961, 14, 46. [Google Scholar] [CrossRef]
- Hutt, D.L. Modeling and measurement of atmospheric optical turbulence over land. Opt. Eng. 1999, 38, 1288. [Google Scholar] [CrossRef]
- Bi, C.; Qing, C.; Wu, P.; Jin, X.; Liu, Q.; Qian, X.; Zhu, W.; Weng, N. Optical Turbulence Profile in Marine Environment with Artificial Neural Network Model. Remote Sens. 2022, 14, 2267. [Google Scholar] [CrossRef]
- Avila, R.; Vernin, J.; Masciadri, E. Whole atmospheric-turbulence profiling with generalized scidar. Appl. Opt. 1997, 36, 7898–7905. [Google Scholar] [CrossRef]
- Vernin, J.; Chadid, M.; Aristidi, E.; Agabi, A.; Trinquet, H.; Van der Swaelmen, M.J.A. First single star scidar measurements at Dome C, Antarctica. Astron. Astrophys. 2009, 500, 1271–1276. [Google Scholar] [CrossRef]
- Kornilov, V.; Tokovinin, A.; Shatsky, N.; Voziakova, O.; Potanin, S.; Safonov, B. Combined MASS-DIMM instrument for atmospheric turbulence studies. Mon. Not. R. Astron. Soc. 2007, 382, 1268–1278. [Google Scholar] [CrossRef]
- McHugh, J.; Jumper, G.; Chun, M. Balloon Thermosonde Measurements over Mauna Kea and Comparison with Seeing Measurements. Publ. Astron. Soc. Pac. 2008, 120, 1318–1324. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Kong, L.; Bao, H.; Guo, Y.; Rao, X.; Zhong, L.; Zhu, L.; Rao, C. A modified S-DIMM+: Applying additional height grids for characterizing daytime seeing profiles. Mon. Not. R. Astron. Soc. 2018, 478, 1459–1467. [Google Scholar] [CrossRef]
- Aristidi, E.; Agabi, A.; Vernin, J.; Azouit, M.; Martin, F.; Ziad, A.; Fossat, E. Antarctic site testing: First seeing monitoring at Dome C. Astron. Astrophys. 2003, 406, L19–L22. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Rao, C. Characterizing daytime wind profiles with the wide-field Shack–Hartmann wavefront sensor. Mon. Not. R. Astron. Soc. 2019, 483, 4910–4921. [Google Scholar] [CrossRef]
- Scharmer, G.; Werkhoven, T.I. S-DIMM+ height characterization of day-time seeing using solar granulation. Astron. Astrophys. 2010, 513, A25. [Google Scholar] [CrossRef]
- Xu, M.; Zhou, L.; Shao, S.; Weng, N.; Liu, Q. Analyzing the Effects of a Basin on Atmospheric Environment Relevant to Optical Turbulence. Photonics 2022, 9, 235. [Google Scholar] [CrossRef]
- Kuo, C.-L. Assessments of Ali, Dome A, and Summit Camp for mm-wave Observations Using MERRA-2 Reanalysis. Astrophys. J. 2017, 848, 64. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 Reanalysis: General Specifications and Basic Characteristics. Meteorol. Soc. Jpn. Ser. II 2015, 93, 5–48. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.-Y.; Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Wu, S.; Hu, X.; Han, Y.; Wu, X.; Su, C.; Luo, T.; Li, X. Measurement and analysis of atmospheric optical turbulence in Lhasa based on thermosonde. J. Atmos. Sol.-Terr. Phys. 2020, 201, 105241. [Google Scholar] [CrossRef]
- Han, Y.; Yang, Q.; Nana, L.; Zhang, K.; Qing, C.; Li, X.; Wu, X.; Luo, T. Analysis of wind-speed profiles and optical turbulence above Gaomeigu and the Tibetan Plateau using ERA5 data. Mon. Not. R. Astron. Soc. 2021, 501, 4692–4702. [Google Scholar] [CrossRef]
- Valley, G.C. Isoplanatic degradation of tilt correction and short-term imaging systems. Appl. Opt. 1980, 19, 574–577. [Google Scholar] [CrossRef]
- Warnock, J.M.; Vanzandt, T.E. A statistical model to estimate refractivity turbulence structure constant Cn2 in the free atmosphere. In Middle Atmosphere Program: Handbook for MAP; International Council of Scientific Unions: Boulder, CO, USA, 1986; p. 166. [Google Scholar]
- Dewan, E.; Good, R.; Beland, R.; Brown, J. A Model for Cn(2) (Optical Turbulence) Profiles Using Radiosonde Data; Phillips Laboratory, Directorate of Geophysics, Air Force Materiel Command, Hanscom AFB: Bedford, MA, USA, 1993; p. 50. [Google Scholar]
- Trinquet, H.; Vernin, J. A Model to Forecast Seeing and Estimate C2N Profiles from Meteorological Data. Publ. Astron. Soc. Pac. 2006, 118, 756–764. [Google Scholar] [CrossRef]
- Bi, C.; Qian, X.; Liu, Q.; Zhu, W.; Li, X.; Luo, T.; Wu, X.; Qing, C. Estimating and measurement of atmospheric optical turbulence accordingto balloon-borne radiosonde for three sites in China. J. Opt. Soc. Am. A 2020, 37, 1785–1794. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wu, X.; Su, C.; Yang, Q.; Xu, J.; Luo, T.; Huang, C.; Qing, C. Reliable model to estimate the profile of the refractive index structure parameter (Cn2) and integrated astroclimatic parameters in the atmosphere. Opt. Express 2021, 29, 12454–12470. [Google Scholar] [CrossRef] [PubMed]
- Parenti, R.R.; Sasiela, R.J. Laser-guide-star systems for astronomical applications. J. Opt. Soc. Am. A 1994, 11, 288–309. [Google Scholar] [CrossRef]
- Cai, J.; Li, X.B.; Zhan, G.W.; Wu, P.F.; Xu, C.Y.; Qing, C.; Wu, X.Q. A new model for the profiles of optical turbulence outer scale and Cn2 on the coast. Acta Phys. Sin. 2018, 67, 014206. [Google Scholar] [CrossRef]
- Beland, R.R. Propagation through atmospheric optical turbulence. In The Infrared and Electro-Optical Systems Handbook; Infrared Information Analysis Center: Ann Arbor, MI, USA, 1993; pp. 157–232. [Google Scholar]
- Bufton, J. Correlation of Microthermal Turbulence Data with Meteorological Soundings in the Troposphere. J. Atmos. Sci. 1973, 30, 83–87. [Google Scholar] [CrossRef]
- Shao, S.; Qin, F.; Liu, Q.; Xu, M.; Cheng, X. Turbulent Structure Function Analysis Using Wireless Micro-Thermometer. IEEE Access 2020, 8, 123929–123937. [Google Scholar] [CrossRef]
- Lawrence, R.S.; Ochs, G.R.; Clifford, S.F. Measurements of atmospheric turbulence relevant to optical propagation. J. Opt. Soc. Am. 1970, 60, 826–830. [Google Scholar] [CrossRef]
- Odintsov, S.L.; Gladkikh, V.A.; Kamardin, A.P.; Nevzorova, I.V. Determination of the Structural Characteristic of the Refractive Index of Optical Waves in the Atmospheric Boundary Layer with Remote Acoustic Sounding Facilities. Atmosphere 2019, 10, 711. [Google Scholar] [CrossRef]
- Banakh, V.; Smalikho, I. Lidar Studies of Wind Turbulence in the Stable Atmospheric Boundary Layer. Remote Sens. 2018, 10, 1219. [Google Scholar] [CrossRef]
- Banakh, V.; Smalikho, I.N.; Falits, A.V. Remote Sensing of Stable Boundary Layer of Atmosphere. EPJ Web Conf. 2020, 237, 06015. [Google Scholar] [CrossRef]
- Venayagamoorthy, S.; Koseff, J. On the flux Richardson number in stably stratified turbulence. J. Fluid Mech. 2016, 798. [Google Scholar] [CrossRef]
- Hach, Y.; Jabiri, A.; Ziad, A.; Bounhir, A.; Sabil, M.; Abahamid, A.; Benkhaldoun, Z. Meteorological profiles and optical turbulence in the free atmosphere with NCEP/NCAR data at Oukaïmeden—I. Meteorological parameters analysis and tropospheric wind regimes. Mon. Not. R. Astron. Soc. 2012, 420, 637–650. [Google Scholar] [CrossRef]
- Shikhovtsev, A.Y.; Kovadlo, P.G.; Khaikin, V.B.; Nosov, V.V.; Lukin, V.P.; Nosov, E.V.; Torgaev, A.V.; Kiselev, A.V.; Shikhovtsev, M.Y. Atmospheric Conditions within Big Telescope Alt-Azimuthal Region and Possibilities of Astronomical Observations. Remote Sens. 2022, 14, 1833. [Google Scholar] [CrossRef]
Balloon Number | Longitude (°E) | Latitude (°N) | Launch Date | Launch Time | Termination Time | Termination Altitude (m) |
---|---|---|---|---|---|---|
1# | 112.95 | 9.54 | 2020.10.17 | 22:04 | 23:49 | 23,905 |
2# | 112.72 | 10.67 | 2020.10.18 | 10:21 | 11:53 | 31,530 |
3# | 112.77 | 10.44 | 2020.10.18 | 18:29 | 20:16 | 30,968 |
4# | 112.57 | 9.85 | 2020.10.19 | 08:59 | 10:51 | 30,469 |
5# | 112.71 | 8.31 | 2020.10.23 | 08:43 | 10:17 | 30,766 |
6# | 111.73 | 9.32 | 2020.10.25 | 08:52 | 10:32 | 31,702 |
7# | 111.73 | 9.32 | 2020.10.25 | 13:29 | 15:23 | 31,348 |
8# | 111.88 | 10.04 | 2020.10.26 | 08:40 | 10:27 | 31,290 |
9# | 115.62 | 9.91 | 2020.11.01 | 12:19 | 14:07 | 30,120 |
10# | 115.45 | 9.90 | 2020.11.02 | 12:29 | 14:07 | 29,903 |
11# | 115.45 | 9.90 | 2020.11.02 | 16:09 | 17:56 | 31,273 |
12# | 115.45 | 9.90 | 2020.11.02 | 19:23 | 21:33 | 30,031 |
13# | 114.78 | 9.77 | 2020.11.03 | 09:05 | 10:33 | 30,423 |
14# | 114.78 | 9.77 | 2020.11.03 | 12:18 | 14:08 | 30,468 |
15# | 114.78 | 9.77 | 2020.11.03 | 16:29 | 18:00 | 29,878 |
16# | 115.32 | 10.03 | 2020.11.04 | 09:07 | 10:57 | 30,712 |
17# | 115.65 | 9.86 | 2020.11.04 | 16:53 | 18:34 | 28,797 |
18# | 113.95 | 10.35 | 2020.11.07 | 17:52 | 19:31 | 26,340 |
19# | 115.48 | 9.82 | 2020.11.12 | 10:09 | 11:49 | 31,126 |
20# | 115.48 | 9.82 | 2020.11.12 | 12:41 | 14:07 | 30,668 |
21# | 115.48 | 9.82 | 2020.11.12 | 16:27 | 17:59 | 30,030 |
22# | 115.48 | 9.82 | 2020.11.12 | 19:20 | 20:49 | 28,992 |
23# | 115.48 | 9.82 | 2020.11.13 | 08:19 | 10:03 | 33,727 |
Data Type | Horizontal Coverage | Horizontal Resolution | Vertical Coverage | Vertical Resolution | Temporal Coverage | Temporal Resolution |
---|---|---|---|---|---|---|
Gridded | Global | 0.25° × 0.25° | 1000 to 1 hPa | 37 levels | 1959 to present | Hourly |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Shao, S.; Weng, N.; Liu, Q. Analysis of Optical Turbulence over the South China Sea Using Balloon-Borne Microthermal Data and ERA5 Data. Remote Sens. 2022, 14, 4398. https://doi.org/10.3390/rs14174398
Xu M, Shao S, Weng N, Liu Q. Analysis of Optical Turbulence over the South China Sea Using Balloon-Borne Microthermal Data and ERA5 Data. Remote Sensing. 2022; 14(17):4398. https://doi.org/10.3390/rs14174398
Chicago/Turabian StyleXu, Manman, Shiyong Shao, Ningquan Weng, and Qing Liu. 2022. "Analysis of Optical Turbulence over the South China Sea Using Balloon-Borne Microthermal Data and ERA5 Data" Remote Sensing 14, no. 17: 4398. https://doi.org/10.3390/rs14174398
APA StyleXu, M., Shao, S., Weng, N., & Liu, Q. (2022). Analysis of Optical Turbulence over the South China Sea Using Balloon-Borne Microthermal Data and ERA5 Data. Remote Sensing, 14(17), 4398. https://doi.org/10.3390/rs14174398