Comprehensive Remote Sensing Technology for Monitoring Landslide Hazards and Disaster Chain in the Xishan Mining Area of Beijing
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Geological Background
2.2. Status of the Disaster
2.3. Data Sources
3. Research Methodology
3.1. Optical Remote Sensing Landslide Interpretation Approach
3.2. InSAR Time-Series Analysis
4. Results
4.1. Deformation Characteristics of the Landslides Extracted from the Remote Sensing Images
4.2. Remote Sensing Characteristics of Landslide Caused by High-Level Collapse
4.3. Evolution of the Landslides in the Goaf
4.4. The Disaster Chain of Goaf-Landslide-Debris Flow
4.4.1. Mode of the Disaster Chain
4.4.2. Terrain Condition
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shan, Q.; Hu, R.; Deng, Y.; Ji, Y. Study on the surface collapse disasters of Xishan region, Beijing. Geol. Inst. Beijing Manicipality 1994, 5, 124–129+165. [Google Scholar]
- Ji, Y. The hazard and Origin of the Well-bore type collapse in the coal mined-out area of Western Hills, Beijing. Beijing Geol. 2002, 14, 28–33. [Google Scholar]
- Ji, Y. Deformation and metamorphic characteristics of Carboniferous Permian coal bearing formation and related geological hazards in Xishan (Western Hills)Beijing. Beijing Geol. 2004, 16, 1–17. [Google Scholar]
- Li, J. Applications of Geophysical Techniques in Preventing Surface Collapse in the Western Hills of Beijing. Urban Geol. 2008, 3, 30–33. [Google Scholar]
- Li, X.; Qi, G.; Zhang, C. Hazard Prediction of Mining Subsidence. Jiangxi Coal Sci. Technol. 2016, 3, 57–59. [Google Scholar]
- Xu, Q.; Li, W.; Dong, X.; Xiao, X.; Fan, X.; Pei, X. The Xinmocun Landslide on June 24,2017 in Maoxian, Sichuan: Characteristics and Failure Mechanism. Chin. J. Rock Mech. Eng. 2017, 36, 2612–2628. [Google Scholar]
- Li, W.; Xu, Q.; Lu, H.; Dong, X.; Zhu, Y. Tracking the Deformation History of Large-Scale Rocky Landslide and Its Enlightenment. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 1043–1053. [Google Scholar]
- Conte, E.; Pugliese, L.; Troncone, A. Post-failure stage simulation of a landslide using the material point method. Eng. Geol. 2019, 253, 149–159. [Google Scholar] [CrossRef]
- Szafarczyk, A. Stages of Geological Documentation on the Example of Landslides Located on the Slopes of the Dam Reservoir “Swinna Poreba” (Poland). IOP Conf. Series Earth Environ. Sci. 2019, 221, 012037. [Google Scholar] [CrossRef]
- Szafarczyk, A. Kinematics of mass phenomena on the example of an active landslide monitored using gps and gbinsar technol. J. Appl. Eng. Sci. 2019, 17, 107–115. [Google Scholar] [CrossRef]
- Meng, X.; Guo, Z. Susceptibility assessment of the precursor stage of a landslide threatening Haivan Railway Station, Vietnam. Landslides 2018, 15, 309–325. [Google Scholar]
- Deng, L.; Yuan, H.; Chen, J.; Sun, Z.; Fu, M.; Wang, F.; Yan, S.; Li, K.; Yu, M.; Chen, T. Correlation between Acoustic Emission Behaviour and Dynamics Model during Three-Stage Deformation Process of Soil Landslide. Sensors 2021, 21, 2373. [Google Scholar] [CrossRef] [PubMed]
- Miao, F.; Wu, Y.; Trk, A.; Li, L.; Xue, Y. Centrifugal model test on a riverine landslide in the Three Gorges Reservoir induced by rainfall and water level fluctuation. Geosci. Front. 2022, 13, 14. [Google Scholar] [CrossRef]
- Miao, F.; Zhao, F.; Wu, Y.; Li, L.; Xue, Y.; Meng, J. A novel seepage device and ring-shear test on slip zone soils of landslide in the Three Gorges Reservoir area. Eng. Geol. 2022. [Google Scholar] [CrossRef]
- Miao, F.; Wu, Y.; Xie, Y.; Li, Y. Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model. Landslides 2018, 15, 475–488. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, X.; Li, W. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 957–966. [Google Scholar]
- Zhao, C.; Liu, X.; Zhang, Q.; Peng, J.; Xu, Q. Research on Loess Landslide Identification, Monitoring and Failure Mode with InSAR Technique in Heifangtai, Gansu. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 996–1007. [Google Scholar]
- Lu, H.; Li, W.; Xu, Q.; Dong, X.; Dai, C.; Wang, D. Early Detection of Landslides in the Upstream and Downstream Areas of the Baige Landslide, the Jinsha River Based on Optical Remote Sensing and InSAR Technologies. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 1342–1354. [Google Scholar]
- Zhang, M.; Jia, J.; Wang, Y.; Niu, Q.; Mao, Y.; Dong, Y. Construction of Geological Disaster Prevention and Control System Based on AI. Northwest. Geol. 2019, 52, 103–116. [Google Scholar]
- Li, M.; Zhang, L.; Shi, X.; Liao, M.; Yang, M. Monitoring active motion of the Guobu landslide near the Laxiwa Hydropower Station in China by time-series point-like targets offset tracking. Remote Sens. Environ. 2018, 221, 80–93. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, L.; Ma, G.; Jia, H.; Li, H.; Yin, H. Disaster Monitoring and Application Prospect Analysis of the Jinsha River Landslide Based on “Gaofen+”. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 1082–1092. [Google Scholar]
- Ge, D. Application of Remote Sensing in Early Recognition and Monitoring and Early Warning of Geological Hazards. City Disaster Reduction 2018, 6, 53–60. [Google Scholar]
- Lai, Z.; Chen, J.; Xiang., J.; Xu, B. Landslide extraction based on fractal theory and LiDAR data. Sci. Surv. Mapp. 2018, 43, 112–117. [Google Scholar]
- Ma, X.; Wu, Z.; Li, J. LiDAR Technology and Its Application and Prospect in Geological Environment. J. Geomech. 2016, 22, 93–103. [Google Scholar]
- Dai, K.; Li, Z.; Tomás, R.; Liu, G.; Yu, B.; Wang, X.; Cheng, H.; Chen, J.; Stockamp, J. Monitoring Activity at the Daguangbao Mega-Landslide(China) Using Sentinel-1 TOPS Time Series Interferometry. Remote Sens. Environ. 2016, 186, 501–513. [Google Scholar] [CrossRef]
- Liu, Z.; Song, Y.; Ye, R. An analysis of rainstorm-induced landslides in northeast Chongqing on August 31, 2014 based on interpretation of remote sensing images. Remote Sens. Nat. Resour. 2021, 33, 192–199. [Google Scholar]
- Ding, Y.; Zhang, Q.; Yang, C.; Wang, M.; Ding, H. Landslide identification in Jinsha River basin based on high-resolution remote sensing:taking Wangdalong village of Batang county as an example. Bull. Surv. Mapp. 2022, 25, 51–55. [Google Scholar]
- Guo, Q.; Zhu, L.; Li, A.; Gu, L. Landslide Identification Method based on NDVI Change Detection. Remote Sens. Technol Appl. 2022, 27, 17–23. [Google Scholar]
- Hu, Z.; Xu, H.; Wang, C.; Zhou, Z.; Li, Z. A Landslides Detection Method Based on Time Series Remote Sensing Images. Spacecr. Recovery Remote Sens. 2018, 39, 104–114. [Google Scholar]
- Huang, J.; Li, X.; Chen, F.; Cui, R.; Li, H.; Du, B. A deep learning recognition model for landslide terrain based on multi-source data fusion. Chin. J. Geol. Hazard Control. 2022, 33, 33–41. [Google Scholar]
- Wang, Y.; Ju, N.; Zhao, J.; Xiang, X. Formation Mechanism of Landslide Above the Mined Out Area in Gently Inclined Coal Bens. J. Eng. Geol. 2013, 21, 61–68. [Google Scholar]
- Li, B.; Wang, G.; Feng, Z.; Wang, W. Failure Mechanism of Steeply Inclined Rock Slope Induced by Undergroound Mining. Chin. J. Rock Mech. Eng. 2015, 34, 1148–1161. [Google Scholar]
- Cristina, R.; Jorge, P.; Marcos, M.; Adrián, R.; Patricia, R.; Agustín, M.; Teresa, T.; Roberto, S.; José, V.; Anna, B.; et al. Rapid Characterisation of the Extremely Large Landslide Threatening the Rules Reservoir (Southern Spain). Landslides 2021, 18, 3781–3798. [Google Scholar]
- Paolo, M.; Paolo, C.; Alessandro, B.; Francesco, I.; Francesca, B. Short-term Geomorphological Evolution of the Poggio Baldi Landslide Upper Scarp Via 3D Change Detection. Landslides 2021, 18, 2367–2381. [Google Scholar]
- Deepak, R.; Janusz, V.; Matylda, T. Extended Residual-State Creep Test and Its Application for Landslide Stability Assessment. Materials 2021, 14, 1968. [Google Scholar]
- Ge, D.; Dai, K.; Guo, Z.; Li, Z. Early Identification of Serious Geological Hazards with Integrated Remote Sensing Technologies: Thoughts and Recommendations. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 949–956. [Google Scholar]
- Zhu, J.; Yang, Z.; Li, Z. Recent Progress in Retrieving and Predicting Mining-induced 3D Displacements Using InSAR. Acta Geod. Et Cartogr. Sinica. 2019, 48, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Yusuke, S.; Taro, U.; Ikushi, H.; Kazunari, T.; Yasumasa, F. Interrelated Impacts of Seismic Ground Motion and Topography on Coseismic Landslide Occurrence Using High-resolution Displacement SAR Data. Landslides 2022, 19, 2329–2345. [Google Scholar]
- Roy, P.; Martha, T.R.; Khanna, K.; Jain, N.; Kumar, K.V. Time and Path Prediction of Landslides Using InSAR and Flow Model. Remote Sens. Environ. 2022, 271, 112899. [Google Scholar]
- Lorenzo, S.; Matteo, D.; Federico, R.; Anna, B.; Silvia, B.; Pierluigi, C.; Nicola, C.; Michele, C. Review of Satellite Interferometry for Landslide Detection in Italy. Remote Sens. 2020, 12, 1351. [Google Scholar]
- Paolo, M.; Paolo, C.; Riccardo, M. Sliding Time Master Digital Image Correlation Analyses of CubeSat Images for landslide Monitoring: The Rattlesnake Hills Landslide (USA). Remote Sens. 2020, 12, 592. [Google Scholar]
- Varvara, T.; Athanassios, G.; Ioannis, K.; Eirini, E.; Ioannis, K.; Efthimios, S. Kinematics of Active Landslides in Achaia (Peloponnese, Greece) through InSAR Time Series Analysis and Relation to Rainfall Patterns. Remote Sens. 2022, 14, 844. [Google Scholar]
- Liu, Y.; Yang, H.; Wang, S.; Xu, L.; Peng, J. Monitoring and Stability Analysis of the Deformation in the Woda Landslide Area in Tibet, China by the DS-InSAR Method. Remote Sens. 2022, 14, 532. [Google Scholar] [CrossRef]
- Liu, L.; Wei, J.; Ye, C.; Zhang, C.; Zhao, Z.; Liu, Y.; Zhang, L.; Jia, S.; Wang, D.; Sun, X.; et al. Geological Hazards in Beijing; China Dadi Press: Beijing, China, 2008; pp. 22–27. [Google Scholar]
Data | Resolution/m | Years | Number |
---|---|---|---|
Quickbird | 0.61 | 2003 | 1 |
Quickbird | 0.61 | 2006 | 1 |
Aerial Photo | 0.5 | 2009 | 1 |
GeoEye-1 | 0.41 | 2011 | 1 |
GeoEye-1 | 0.41 | 2012 | 1 |
Aerial Photo | 0.5 | 2013 | 1 |
Worldview-2 | 0.5 | 2014 | 1 |
Worldview-2 | 0.5 | 2016 | 1 |
Pleiades | 0.5 | 2017 | 1 |
Pleiades | 0.5 | 2018 | 1 |
BJ-2 | 0.8 | 2019 | 1 |
BJ-2 | 0.8 | 2020 | 1 |
RadarSat-2 (descending) | 5.0 | 2016-2021 | 65 |
Disaster | Number of Small Size | Number of Medium Size | Subtotal |
---|---|---|---|
Collapse | 32 | 0 | 32 (11) |
Landslide | 3 | 16 | 19 (3) |
Total | 51 |
No. | Developmental Formation | Estimated Volume/10,000 m3 | Features |
---|---|---|---|
S01 | Jiulongshan Formation | 10.00 | Type A |
S02 | Jiulongshan Formation | 45.00 | Type B |
S03 | Jiulongshan Formation | 30.00 | Type B |
S04 | Jiulongshan Formation | 15.00 | Type B |
S05 | Jiulongshan Formation | 10.00 | Type B |
S06 | Yaopo Formation | 50.00 | Type C |
S07 | Yaopo Formation & Longmen Formation | 100.00 | Type C |
S08 | Yaopo Formation | 55.00 | Type C |
S09 | Jiulongshan Formation | 16.00 | Type C |
S10 | Longmen Formation | 34.00 | Type C |
S11 | Jiulongshan Formation | 30.00 | Type A |
S12 | Yaopo Formation | 50.00 | Type C |
S13 | Yaopo Formation | 26.00 | Type C |
S14 | Yaopo Formation | 15.00 | Type B |
S15 | Shanxi Formation | 25.00 | Type C |
S16 | Shanxi Formation | 33.00 | Type C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, R.; Wang, S.; Yang, H.; Guo, X.; Han, J.; Pei, X.; Yan, C. Comprehensive Remote Sensing Technology for Monitoring Landslide Hazards and Disaster Chain in the Xishan Mining Area of Beijing. Remote Sens. 2022, 14, 4695. https://doi.org/10.3390/rs14194695
Jiao R, Wang S, Yang H, Guo X, Han J, Pei X, Yan C. Comprehensive Remote Sensing Technology for Monitoring Landslide Hazards and Disaster Chain in the Xishan Mining Area of Beijing. Remote Sensing. 2022; 14(19):4695. https://doi.org/10.3390/rs14194695
Chicago/Turabian StyleJiao, Runcheng, Shengyu Wang, Honglei Yang, Xuefei Guo, Jianfeng Han, Xin Pei, and Chi Yan. 2022. "Comprehensive Remote Sensing Technology for Monitoring Landslide Hazards and Disaster Chain in the Xishan Mining Area of Beijing" Remote Sensing 14, no. 19: 4695. https://doi.org/10.3390/rs14194695
APA StyleJiao, R., Wang, S., Yang, H., Guo, X., Han, J., Pei, X., & Yan, C. (2022). Comprehensive Remote Sensing Technology for Monitoring Landslide Hazards and Disaster Chain in the Xishan Mining Area of Beijing. Remote Sensing, 14(19), 4695. https://doi.org/10.3390/rs14194695