Coastal Upwelling in the Western Bay of Bengal: Role of Local and Remote Windstress
Abstract
:Highlights
- High AWS and coincident strong negative UISST (indicative of coastal upwelling) were observed along the western Bay of Bengal. The northern part of the coast illustrated UISST leading ET compared to the south where both prevailed simultaneously.
- The equatorial windstress-forced first upwelling Kelvin wave triggered coastal upwelling along the northern part of the east coast of India in April, while the first downwelling Kelvin wave suppressed it in June.
- Coastal upwelling and hence, the seasonal variability of primary productivity in the region is not locally driven but influenced by remote equatorial windstress generated coastally trapped Kelvin waves.
Abstract
1. Introduction
2. Data
3. Methodology
3.1. Estimation of Coastal Angles
3.2. Estimation of Upwelling Indices
3.3. CEOF Analysis
4. Results
4.1. Spatiotemporal Variability of Coastal Upwelling System in the Western Bay of Bengal
4.2. Coastally Trapped Kelvin Wave Activity
4.3. CEOF Analysis of SSHA
5. Discussions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakun, A.; Black, B.A.; Bograd, S.J.; García-Reyes, M.; Miller, A.J.; Rykaczewski, R.R.; Sydeman, W.J. Anticipated Effects of Climate Change on Coastal Upwelling Ecosystems. Curr. Clim. Chang. Rep. 2015, 1, 85–93. [Google Scholar] [CrossRef]
- Kämpf, J.; Chapman, P. Upwelling Systems of the World; Springer: Cham, Switzerland, 2016; ISBN 3-319-42522-6. [Google Scholar]
- Botsford, L.W.; Lawrence, C.A.; Dever, E.P.; Hastings, A.; Largier, J. Effects of Variable Winds on Biological Productivity on Continental Shelves in Coastal Upwelling Systems. Deep. Sea Res. Part II 2006, 53, 3116–3140. [Google Scholar] [CrossRef]
- Hu, J.; Wang, X.H. Progress on Upwelling Studies in the China Seas. Rev. Geophys. 2016, 54, 653–673. [Google Scholar] [CrossRef]
- Mandal, S.; Behera, N.; Gangopadhyay, A.; Susanto, R.D.; Pandey, P.C. Evidence of a Chlorophyll “Tongue” in the Malacca Strait from Satellite Observations. J. Mar. Sys. 2021, 223, 103610. [Google Scholar] [CrossRef]
- Mandal, S.; Susanto, R.D.; Ramakrishnan, B. On Investigating the Dynamical Factors Modulating Surface Chlorophyll-a Variability along the South Java Coast. Remote Sens. 2022, 14, 1745. [Google Scholar] [CrossRef]
- Shetye, S.R.; Shenoi, S.S.C.; Gouveia, A.D.; Michael, G.S.; Sundar, D.; Nampoothiri, G. Wind-Driven Coastal Upwelling along the Western Boundary of the Bay of Bengal during the Southwest Monsoon. Cont. Shelf Res. 1991, 11, 1397–1408. [Google Scholar] [CrossRef]
- Sarma, Y.V.B.; Rao, E.R.; Saji, P.K.; Sarma, V. Hydrography and Circulation of the Bay of Bengal during Withdrawal Phase of the Southwest Monsoon. Oceanol. Acta 1999, 22, 453–471. [Google Scholar] [CrossRef]
- Santosh, K.M.; Reddy, H.R.V.; Padiyar, A. Hydrography of the Bay of Bengal during South West Monsoon and Its Significance on Oil Sardine Fishery. J. Fisheries Res. 2002, 6, 69–74. [Google Scholar]
- Muni Krishna, K. View on Bay of Bengal Upwelling Area on the Basis of 19-Years of Satellite Sea Surface Temperature. Int. J. Digit. Earth 2008, 1, 304–314. [Google Scholar] [CrossRef]
- Patel, S.; Vithalpura, M.; Mallick, S.K.; Ratheesh, S. Temporal and Spatial Variations of Monsoonal Upwelling along the South West and East Coasts of India. Mar. Geod. 2020, 43, 414–432. [Google Scholar] [CrossRef]
- Vinayachandran, P.N.M.; Masumoto, Y.; Roberts, M.J.; Huggett, J.A.; Halo, I.; Chatterjee, A.; Amol, P.; Gupta, G.V.; Singh, A.; Mukherjee, A. Reviews and Syntheses: Physical and Biogeochemical Processes Associated with Upwelling in the Indian Ocean. Biogeoscience 2021, 18, 5967–6029. [Google Scholar] [CrossRef]
- Rao, R.R.; Kumar, M.G.; Ravichandran, M.; Rao, A.R.; Gopalakrishna, V.V.; Thadathil, P. Interannual Variability of Kelvin Wave Propagation in the Wave Guides of the Equatorial Indian Ocean, the Coastal Bay of Bengal and the Southeastern Arabian Sea during 1993–2006. Deep. Sea Res. Part I 2010, 57, 1–13. [Google Scholar] [CrossRef]
- Shankar, D.; Vinayachandran, P.N.; Unnikrishnan, A.S. The Monsoon Currents in the North Indian Ocean. Prog. Oceanogr. 2002, 52, 63–120. [Google Scholar] [CrossRef]
- Bentamy, A. Quality Information Document For Wind Product WIND_GLO_WIND_L4_REP_OBSERVATIONS_012_006; Copernicus Marine Service: Toulouse, France, 2021. [Google Scholar]
- Bentamy, A.; Piolle, J.F.; Prevost, C. Product User Manual For Wind Product WIND_GLO_WIND_L4_REP_OBSERVATIONS_012_006; Copernicus Marine Service: Toulouse, France, 2021. [Google Scholar]
- Worsfold, M.; Good, S.; Martin, M.; McLaren, A.; Roberts-Jones, J.; Fielder, E. Quality Information Document Global Ocean OSTIA Sea Surface Temperature Reprocessing SST-GLO-SST-L4-REP-OBSERVATIONS-010-011; Copernicus Marine Service: Toulouse, France, 2021. [Google Scholar]
- Worsfold, M.; Good, S.; Martin, M.; McLaren, A.; Roberts-Jones, J.; Fielder, E. Product User Manual Global Ocean OSTIA Sea Surface Temperature Reprocessing SST-GLO-SST-L4-REP-OBSERVATIONS-010-011; Copernicus Marine Service: Toulouse, France, 2021. [Google Scholar]
- Pujol, M.-I.; Faugère, Y.; Taburet, G.; Dupuy, S.; Pelloquin, C.; Ablain, M.; Picot, N. DUACS DT2014: The New Multi-Mission Altimeter Data Set Reprocessed over 20 Years. Ocean Sci. 2016, 12, 1067–1090. [Google Scholar] [CrossRef]
- Taburet, G.; Pujol, M.-I. SL-TAC team Quality Information Document Sea Level TAC-DUACS Products: SEALEVEL_GLO_PHY_L4_MY_008_047; Copernicus Marine Service: Toulouse, France, 2022. [Google Scholar]
- Bakun, A. Coastal Upwelling Indices, West Coast of North America, 1946–1971; U.S. Department of Commerce NOAA Technical Report NMFS-SSRF: Seattle, WA, USA, 1973; pp. 1–103.
- Benazzouz, A.; Mordane, S.; Orbi, A.; Chagdali, M.; Hilmi, K.; Atillah, A.; Lluís Pelegrí, J.; Hervé, D. An Improved Coastal Upwelling Index from Sea Surface Temperature Using Satellite-Based Approach-The Case of the Canary Current Upwelling System. Cont. Shelf Res. 2014, 81, 38–54. [Google Scholar] [CrossRef]
- Shetye, S.R. Seasonal Variability of the Temperature Field off the South-West Coast of India. Proc. Indian Acad. Sci. Earth Planet. Sci. 1984, 93, 399–411. [Google Scholar] [CrossRef]
- Jayaram, C.; Kumar, P.D. Spatio-Temporal Variability of Upwelling along the Southwest Coast of India Based on Satellite Observations. Cont. Shelf Res. 2018, 156, 33–42. [Google Scholar] [CrossRef]
- Roberts, M.J.; Nieuwenhuys, C. Observations and Mechanisms of Upwelling in the Northern KwaZulu-Natal Bight, South Africa. Afr. J. Mar. Sci. 2016, 38, S43–S63. [Google Scholar] [CrossRef]
- Douglas, D.H.; Peucker, T.K. Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or Its Caricature. Cartographica 1973, 10, 112–122. [Google Scholar] [CrossRef]
- Cressman, G.P. An Operational Objective Analysis System. Mon. Weather Rev. 1959, 87, 367–374. [Google Scholar] [CrossRef]
- Jayaram, C.; Chacko, N.; Joseph, K.A.; Balchand, A.N. Interannual Variability of Upwelling Indices in the Southeastern Arabian Sea: A Satellite Based Study. Ocean Sci. J. 2010, 45, 27–40. [Google Scholar] [CrossRef]
- Naidu, P.D.; Kumar, M.R.; Babu, V.R. Time and Space Variations of Monsoonal Upwelling along the West and East Coasts of India. Cont. Shelf Res. 1999, 19, 559–572. [Google Scholar] [CrossRef]
- Smitha, B.R.; Sanjeevan, V.N.; Vimalkumar, K.G.; Revichandran, C. On the Upwelling off the Southern Tip and along the West Coast of India. J. Coastal Res. 2008, 95–102. [Google Scholar] [CrossRef]
- Santos, F.; Gomez-Gesteira, M.; Decastro, M.; Alvarez, I. Differences in Coastal and Oceanic SST Trends Due to the Strengthening of Coastal Upwelling along the Benguela Current System. Cont. Shelf Res. 2012, 34, 79–86. [Google Scholar] [CrossRef]
- Marcello, J.; Hernandez-Guerra, A.; Eugenio, F.; Fonte, A. Seasonal and Temporal Study of the Northwest African Upwelling System. Int. J. Remote Sens. 2011, 32, 1843–1859. [Google Scholar] [CrossRef]
- Roberts, J.; Roberts, T.D. Use of the Butterworth Low-pass Filter for Oceanographic Data. J. Geophys. Res. Ocean. 1978, 83, 5510–5514. [Google Scholar] [CrossRef]
- Wilks, D.S. Chapter 12-principal component (EOF) analysis. In International Geophysics; Wilks, D.S., Ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 100, pp. 519–562. [Google Scholar]
- Björnsson, H.; Venegas, S.A. A Manual for EOF and SVD Analyses of Climatic Data; Department of Atmospheric and Oceanic Sciences and Center for Climate and Global Change Research, McGill University: Montreal, QC, Canada, 1997; pp. 112–134. [Google Scholar]
- Preisendorfer, R. Principal Component Analysis in Meteorology and Oceanography. Dev. Atmos. Sci. 1988, 17, 425. [Google Scholar]
- Pratt, R.W.; Wallace, J.M. Zonal Propagation Characteristics of Large–Scale Fluctuations in the Mid–Latitude Troposphere. J. Atmos. Sci. 1976, 33, 1184–1194. [Google Scholar] [CrossRef]
- Trenberth, K.F. Atmospheric Quasi-Biennial Oscillations. Mon. Weather Rev. 1980, 108, 1370–1377. [Google Scholar] [CrossRef]
- Feng, M.; Meyers, G.; Wijffels, S. Interannual Upper Ocean Variability in the Tropical Indian Ocean. Geophys. Res. Lett. 2001, 28, 4151–4154. [Google Scholar] [CrossRef]
- Hannachi, A. Tropospheric Planetary Wave Dynamics and Mixture Modeling: Two Preferred Regimes and a Regime Shift. J. Atmos. Sci. 2007, 64, 3521–3541. [Google Scholar] [CrossRef]
- Rydbeck, A.V.; Jensen, T.G.; Flatau, M. Characterization of Intraseasonal Kelvin Waves in the Equatorial Pacific Ocean. J. Geophys. Res. Ocean. 2019, 124, 2028–2053. [Google Scholar] [CrossRef]
- Rydbeck, A.V.; Jensen, T.G.; Flatau, M.K. Reciprocity in the Indian Ocean: Intraseasonal Oscillation and Ocean Planetary Waves. J. Geophys. Res. Ocean. 2021, 126, e2021JC017546. [Google Scholar] [CrossRef]
- Horel, J.D. Complex Principal Component Analysis: Theory and Examples. J. Appl. Meteorol. Climatol. 1984, 23, 1660–1673. [Google Scholar] [CrossRef]
- Nienhaus, M.J.; Subrahmanyam, B.; Murty, V.S.N. Altimetric Observations and Model Simulations of Coastal Kelvin Waves in the Bay of Bengal. Mar. Geod. 2012, 35, 190–216. [Google Scholar] [CrossRef]
- Wise, A.; Polton, J.A.; Hughes, C.W.; Huthnance, J.M. Idealised Modelling of Offshore-Forced Sea Level Hot Spots and Boundary Waves along the North American East Coast. Ocean Modell. 2020, 155, 101706. [Google Scholar] [CrossRef]
- Hannachi, A. Patterns Identification and Data Mining in Weather and Climate; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 3-030-67073-2. [Google Scholar]
- Subrahmanyam, B.; Robinson, I.S.; Blundell, J.R.; Challenor, P.G. Indian Ocean Rossby Waves Observed in TOPEX/POSEIDON Altimeter Data and in Model Simulations. Int. J. Remote Sens. 2001, 22, 141–167. [Google Scholar] [CrossRef]
- Yu, L.; O’Brien, J.J.; Yang, J. On the Remote Forcing of the Circulation in the Bay of Bengal. J. Geophys. Res. Ocean. 1991, 96, 20449–20454. [Google Scholar] [CrossRef]
- McCreary Jr, J.P.; Kundu, P.K.; Molinari, R.L. A Numerical Investigation of Dynamics, Thermodynamics and Mixed-Layer Processes in the Indian Ocean. Prog. Oceanogr. 1993, 31, 181–244. [Google Scholar] [CrossRef]
- Fu, L.-L. Ocean circulation and variability from satellite altimetry. In International Geophysics; Elsevier: Amsterdam, The Netherlands, 2001; Volume 77, pp. 141–172. ISBN 0074-6142. [Google Scholar] [CrossRef]
- Kumar, S.P.; Nuncio, M.; Ramaiah, N.; Sardesai, S.; Narvekar, J.; Fernandes, V.; Paul, J.T. Eddy-Mediated Biological Productivity in the Bay of Bengal during Fall and Spring Intermonsoons. Deep. Sea Res. Part I 2007, 54, 1619–1640. [Google Scholar] [CrossRef]
- Thushara, V.; Vinayachandran, P.N.M.; Matthews, A.J.; Webber, B.G.; Queste, B.Y. Vertical Distribution of Chlorophyll in Dynamically Distinct Regions of the Southern Bay of Bengal. Biogeoscience 2019, 16, 1447–1468. [Google Scholar] [CrossRef] [Green Version]
- Dandapat, S.; Gnanaseelan, C.; Parekh, A. Impact of Excess and Deficit River Runoff on Bay of Bengal Upper Ocean Characteristics Using an Ocean General Circulation Model. Deep. Sea Res. Part II 2020, 172, 104714. [Google Scholar] [CrossRef]
- Greene, C.A.; Thirumalai, K.; Kearney, K.A.; Delgado, J.M.; Schwanghart, W.; Wolfenbarger, N.S.; Thyng, K.M.; Gwyther, D.E.; Gardner, A.S.; Blankenship, D.D. The Climate Data Toolbox for MATLAB. Geochem. Geophys. Geosyst. 2019, 20, 3774–3781. [Google Scholar] [CrossRef] [Green Version]
- Schwanghart, W. Line Simplification. MATLAB Central File Exchange. 2021. Available online: https://www.mathworks.com/matlabcentral/fileexchange/21132-line-simplification (accessed on 11 July 2022).
Parameter | Dataset | Grid Spacing | Temporal Resolution |
---|---|---|---|
Zonal and Meridional Windstress | CMEMS WIND_GLO_WIND_L4 _REP_ OBSERVATIONS_012_006 | 0.25° × 0.25° | 6 h |
Sea Surface Temperature | OSTIA Near Real Time Level 4 SST | 0.05° × 0.05° | Daily |
Sea Surface Height Anomaly | CMEMS SEALEVEL_GLO _PHY_L4_MY_008_047 | 0.25° × 0.25° | Daily |
Point Identifier | Geographic Reference | Latitude | Longitude | Tolerance Value for Coastal Angle Determination (Distances) | |||
---|---|---|---|---|---|---|---|
0.25° | 0.5° | 1.0° | 2.5° | ||||
1 | Kashinagara | 18.790 | 84.558 | 307.881 | 305.986 | 305.986 | 328.321 |
2 | - | 18.554 | 84.359 | 307.881 | 305.986 | 305.986 | 328.321 |
3 | Kalingapatnam | 18.309 | 84.129 | 307.881 | 305.986 | 305.986 | 328.321 |
4 | - | 18.026 | 83.557 | 307.881 | 305.986 | 305.986 | 328.321 |
5 | - | 17.590 | 83.215 | 307.881 | 305.986 | 305.986 | 328.321 |
6 | Tandava river mouth | 17.276 | 82.589 | 314.701 | 305.986 | 305.986 | 328.321 |
7 | Kakinada | 16.909 | 82.371 | 310.404 | 305.986 | 305.986 | 328.321 |
8 | Lanka Islands | 16.558 | 82.303 | 303.787 | 305.986 | 305.986 | 328.321 |
9 | - | 16.372 | 81.553 | 301.885 | 305.986 | 328.321 | 328.321 |
10 | - | 16.293 | 81.267 | 301.885 | 309.486 | 328.321 | 328.321 |
11 | - | 15.972 | 81.152 | 293.506 | 309.486 | 328.321 | 328.321 |
12 | - | 15.889 | 80.677 | 305.507 | 309.486 | 328.321 | 328.321 |
13 | Chinnaganjam | 15.672 | 80.264 | 329.142 | 331.124 | 328.321 | 328.321 |
14 | Kavali | 15.074 | 80.048 | 361.978 | 331.124 | 328.321 | 328.321 |
15 | - | 14.577 | 80.196 | 355.912 | 355.912 | 328.321 | 328.321 |
16 | - | 14.066 | 80.126 | 361.978 | 355.912 | 328.321 | 328.321 |
17 | Sriharikota | 13.782 | 80.257 | 352.805 | 355.912 | 349.842 | 328.321 |
18 | Ennore Port | 13.283 | 80.346 | 352.805 | 355.912 | 349.842 | 328.321 |
19 | Mamallapuram | 12.462 | 80.156 | 352.805 | 355.912 | 349.842 | 328.321 |
20 | Puducherry | 12.040 | 79.872 | 351.102 | 355.912 | 349.842 | 328.321 |
21 | - | 11.672 | 79.759 | 351.102 | 355.912 | 349.842 | 328.321 |
22 | Sirkazhi | 11.196 | 79.857 | 351.102 | 349.842 | 349.842 | 328.321 |
23 | Point Calimere | 10.308 | 79.880 | 341.777 | 349.842 | 349.842 | 328.321 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ray, S.; Swain, D.; Ali, M.M.; Bourassa, M.A. Coastal Upwelling in the Western Bay of Bengal: Role of Local and Remote Windstress. Remote Sens. 2022, 14, 4703. https://doi.org/10.3390/rs14194703
Ray S, Swain D, Ali MM, Bourassa MA. Coastal Upwelling in the Western Bay of Bengal: Role of Local and Remote Windstress. Remote Sensing. 2022; 14(19):4703. https://doi.org/10.3390/rs14194703
Chicago/Turabian StyleRay, Sthitapragya, Debadatta Swain, Meer M. Ali, and Mark A. Bourassa. 2022. "Coastal Upwelling in the Western Bay of Bengal: Role of Local and Remote Windstress" Remote Sensing 14, no. 19: 4703. https://doi.org/10.3390/rs14194703
APA StyleRay, S., Swain, D., Ali, M. M., & Bourassa, M. A. (2022). Coastal Upwelling in the Western Bay of Bengal: Role of Local and Remote Windstress. Remote Sensing, 14(19), 4703. https://doi.org/10.3390/rs14194703