Enhanced Dual Filter for Floating Wind Lidar Motion Correction: The Impact of Wind and Initial Scan Phase Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Motion-Correction UKF Review
2.2.2. Enhanced Wind Models: The Auto-Regressive Approach
2.2.3. Lidar-Scan Initial-Phase Model
2.2.4. Dual UKF Estimation
2.2.5. Main UKF
2.2.6. Auxiliary UKF
2.2.7. Model Intercomparison Methodology
- (1) Basic model: Both the wind process and initial phase are modeled as RWs;
- (2) Enhanced model: The wind process is modeled as an AR process (order ) and the initial phase as UCM (see Section 2.2.3).
3. Results and Discussion
3.1. Case Examples
3.2. Global Statistics
3.3. Numerical Analyses
3.4. Method Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
AR | Auto-regressive |
DoF | Degrees of freedom |
DOAJ | Directory of open access journals |
DWL | Doppler wind lidar |
FDWL | Floating Doppler wind lidar |
HWS | Horizontal wind speed |
IMU | Inertial measurement unit |
LD | Linear dichroism |
LoS | Line of sight |
NED | North–east–down |
metmast | Meteorological mast |
MDPI | Multidisciplinary Digital Publishing Institute |
PdP | Pont del Petroli |
PSD | Power spectral density |
PSLL | Primary-to-secondary lobe level |
RW | Random walk |
SV | Spatial variation |
TI | Turbulence intensity |
TLA | Three-letter acronym |
UCM | Uniform circular motion |
UKF | Unscented Kalman filter |
UKF1 | Main filter |
UKF2 | Auxiliary filter |
VAD | Velocity–azimuth display |
VWS | Vertical wind speed |
WD | Wind direction |
Appendix A. UKF Summary
Algorithm A1 UKF algorithm [55]. |
|
References
- Offshore Wind in Europe Key Trends and Statistics 2019; Technical Report; WindEurope: Brussels, Belgium, 2020.
- Gutiérrez Antuñano, M.A. Doppler wind LIDAR Systems Data Processing and Applications: An Overview Towards Developing the New Generation of Wind Remote-Sensing Sensors for Off-Shore Wind Farms. Ph.D. Thesis, UPC, Barcelona, Spain, 2019. [Google Scholar]
- Kost, C.; Schlegl, T. Levelized Cost of Electricity Renewable Energy Technologies; Technical Report; Fraunhofer Institut for Solar Energy Systems ISE: Freiburg, Germany, 2018. [Google Scholar]
- IRENA. Technical Report, Renewable Power Generation Costs in 2020, Abu Dhabi. 2020. Available online: https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020 (accessed on 26 April 2022).
- Pichugina, Y.; Banta, R.; Brewer, W.; Sandberg, S.; Hardesty, R. Doppler Lidar–Based Wind-Profile Measurement System for Offshore Wind-Energy and Other Marine Boundary Layer Applications. J. Appl. Meteorol. Climatol. 2012, 51, 327–349. [Google Scholar] [CrossRef]
- Courtney, M.S.; Hasager, C.B. Remote sensing technologies for measuring offshore wind. In Offshore Wind Farms; Elsevier: Amsterdam, The Netherlands, 2016; Chapter 4; pp. 59–82. [Google Scholar]
- Gottschall, J.; Gribben, B.; Stein, D.; Würth, I. Floating lidar as an advanced offshore wind speed measurement technique: Current technology status and gap analysis in regard to full maturity. WIREs Energy Environ. 2017, 6, e250. [Google Scholar] [CrossRef]
- Carbon Trust. Carbon Trust Offshore Wind Accelerator Roadmap for the Commercial Acceptance of Floating LiDAR Technology; Technical Report; Carbon Trust: London, UK, 2018. [Google Scholar]
- Bischoff, O.; Wurth, I.; Gottschall, J.; Gribben, B.; Hughes, J.; Stein, D.; Verhoef, H. Recommended Practices for Floating Lidar Systems. Technical Report, IEA Wind Task 32; IEA: Paris, France, 2016. [Google Scholar]
- Gutiérrez, M.A.; Tiana-Alsina, J.; Bischoff, O.; Cateura, J.; Rocadenbosch, F. Performance evaluation of a floating doppler wind lidar buoy in mediterranean near-shore conditions. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015. [Google Scholar]
- Gutierrez-Antunano, M.A.; Tiana-Alsina, J.; Rocadenbosch, F.; Sospedra, J.; Aghabi, R.; Gonzalez-Marco, D. A wind-lidar buoy for offshore wind measurements: First commissioning test-phase results. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS-2017), Fort Worth, TX, USA, 23–28 July 2017; IEEE: Fort Worth, TX, USA, 2017; pp. 1607–1610. [Google Scholar] [CrossRef]
- Schuon, F.; González, D.; Rocadenbosch, F.; Bischoff, O.; Jané, R. KIC InnoEnergy Project Neptune: Development of a Floating LiDAR Buoy for Wind, Wave and Current Measurements. In Proceedings of the DEWEK 2012 German Wind Energy Conference, Bremen, Germany, 7–8 November 2012; DEWEK: Bremen, Germany, 2012. [Google Scholar]
- Mathisen, J.P. Measurement of wind profile with a buoy mounted lidar. Energy Procedia 2013, 12, 154. [Google Scholar]
- Gutiérrez-Antuñano, M.; Tiana-Alsina, J.; Salcedo, A.; Rocadenbosch, F. Estimation of the Motion-Induced Horizontal-Wind-Speed Standard Deviation in an Offshore Doppler Lidar. Remote Sens. 2018, 10, 2037. [Google Scholar] [CrossRef]
- Ali Shah, K.; Meng, F.; Li, Y.; Nagamune, R.; Zhou, Y.; Ren, Z.; Jiang, Z. A synthesis of feasible control methods for floating offshore wind turbine system dynamics. Renew. Sustain. Energy Rev. 2021, 151, 111525. [Google Scholar] [CrossRef]
- Tiana-Alsina, J.; Gutiérrez, M.A.; Würth, I.; Puigdefàbregas, J.; Rocadenbosch, F. Motion compensation study for a floating doppler wind lidar. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS-2015), Milan, Italy, 26–31 July 2015; pp. 5379–5382. [Google Scholar]
- Salcedo-Bosch, A.; Gutierrez-Antunano, M.A.; Tiana-Alsina, J.; Rocadenbosch, F. Floating Doppler Wind Lidar Measurement of Wind Turbulence: A Cluster Analysis. In Proceedings of the 2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS-2020), Waikoloa, HI, USA, 26 September–2 October 2020. [Google Scholar]
- Bardal, L.M.; Sætran, L. Influence of turbulence intensity on wind turbine power curves. Energy Procedia 2017, 137, 553–558. [Google Scholar] [CrossRef]
- Clifton, A.; Courtney, M. 15. Ground-Based Vertically Profiling Remote Sensing for Wind Resource Assessment; Technical Report; IEA Wind Expert Group Study on Recommended Practices; IEA Wind: Paris, France, 2013. [Google Scholar]
- Clifton, A.; Wagner, R. Accounting for the effect of turbulence on wind turbine power curves. J. Phys. Conf. Ser. 2014, 524, 012109. [Google Scholar] [CrossRef]
- Kelberlau, F.; Neshaug, V.; Lønseth, L.; Bracchi, T.; Mann, J. Taking the Motion out of Floating Lidar: Turbulence Intensity Estimates with a Continuous-Wave Wind Lidar. Remote Sens. 2020, 12, 898. [Google Scholar] [CrossRef]
- Wolken-Möhlmann, G.; Lilov, H.; Lange, B. Simulation of motion induced measurement errors for wind measurements using LIDAR on floating platforms. In Proceedings of the 15th International Symposium for the Advancement of Boundary-layer Remote Sensing (ISARS), Paris, France, 28–30 June 2010; pp. 28–30. [Google Scholar]
- Pitter, M.; Burin des Roziers, E.; Medley, J.; Mangat, M.; Slinger, C.; Harris, M. Performance Stability of Zephir in High Motion Enviroments: Floating and Turbine Mounted; Technical Report; ZephIR: Barcelona, Spain, 2014. [Google Scholar]
- Gutiérrez-Antuñano, M.A.; Tiana-Alsina, J.; Rocadenbosch, F. Performance evaluation of a floating lidar buoy in nearshore conditions. Wind Energy 2017, 20, 1711–1726. [Google Scholar] [CrossRef]
- Salcedo-Bosch, A.; Rocadenbosch, F.; Sospedra, J. A Robust Adaptive Unscented Kalman Filter for Floating Doppler Wind-LiDAR Motion Correction. Remote Sens. 2021, 13, 4167. [Google Scholar] [CrossRef]
- Bischoff, O.; Schlipf, D.; Würth, I.; Cheng, P. Dynamic Motion Effects and Compensation Methods of a Floating Lidar Buoy. In Proceedings of the EERA DeepWind 2015 Deep Sea Offshore Wind Conference, Trondheim, Norway, 3–5 February 2015. [Google Scholar]
- Gottschall, J.; Wolken-Möhlmann, G.; Viergutz, T.; Lange, B. Results and conclusions of a floating-lidar offshore test. Energy Procedia 2014, 53, 156–161. [Google Scholar] [CrossRef]
- Gottschall, J.; Lilov, H.; Wolken-Möhlmann, G.; Lange, B. Lidars on floating offshore platforms about the correction of motion-induced lidar measurement errors. In EWEA 2012 Proceedings; The European Wind Energy Association, Ed.; EWEA: Lisbon, Portugal, 2012. [Google Scholar]
- Schlipf, D.; Rettenmeier, A.; Haizmann, F.; Hofsäß, M.; Courtney, M.; Cheng, P.W. Model based wind vector field reconstruction from lidar data. In Proceedings of the 11th German Wind Energy Conference DEWEK, Bremen, Germany, 7–8 November 2012. [Google Scholar]
- Robert Grover, R.; Y.C. Hwang, P. Introduction to Random Signals and Kalman Filtering: With MATLAB Exercises, 4th ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Shannon, C. Communication in the Presence of Noise. Proc. IRE 1949, 37, 10–21. [Google Scholar] [CrossRef]
- Slinger, C.; Harris, M. Introduction to Continuous-Wave Doppler Lidar. Available online: http://breeze.colorado.edu/ftp/RSWE/Chris_Slinger.pdf (accessed on 21 July 2021).
- Schlipf, D. Lidars and wind turbine control. In Remote Sensing for Wind Energy; Number 0084(EN) in DTU Wind Energy E; DTU Wind Energy: Denmark, Roskilde, 2015. [Google Scholar]
- Olondriz, J.; Elorza, I.; Trojaola, I.; Pujana, A.; Landaluze, J. On the effects of basic platform design characteristics on floating offshore wind turbine control and their mitigation. J. Phys. Conf. Ser. 2016, 753, 052008. [Google Scholar] [CrossRef]
- James, J.E.; Hooper, W.P. Beam Pointing Stabilization for a Shipboard Volume Imaging Lidar. Nav. Res. Lab. 1995, 20375–25320. [Google Scholar]
- Proakis, J.; Manolakis, D. Digital Signal Processing, 4th ed.; Prentice Hall: Hoboken, NJ, USA, 2006. [Google Scholar]
- Smith, D.A.; Mehta, K.C. Investigation of stationary and nonstationary wind data using classical Box-Jenkins models. J. Wind Eng. Ind. Aerodyn. 1993, 49, 319–328. [Google Scholar] [CrossRef]
- Wan, E.A.; Van Der Merwe, R. The unscented Kalman filter for nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), Lake Louise, AB, Canada, 4 October 2000; pp. 153–158. [Google Scholar] [CrossRef]
- Salcedo-Bosch, A.; Rocadenbosch, F.; Gutiérrez-Antuñano, M.A.; Tiana-Alsina, J. Estimation of Wave Period from Pitch and Roll of a Lidar Buoy. Sensors 2021, 21, 1310. [Google Scholar] [CrossRef]
- Rocadenbosch, F.; Soriano, C.; Comerón, A.; Baldasano, J.M. Lidar inversion of atmospheric backscatter and extinction-to-backscatter ratios by use of a Kalman filter. Appl. Opt. 1999, 38, 3175–3189. [Google Scholar] [CrossRef] [PubMed]
- Araújo da Silva, M.P.; Rocadenbosch, F.; Tanamachi, R.L.; Saeed, U. Motivating a Synergistic Mixing-Layer Height Retrieval Method Using Backscatter Lidar Returns and Microwave-Radiometer Temperature Observations. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–18. [Google Scholar] [CrossRef]
- Araújo da Silva, M.P.; Rocadenbosch, F.; Farré-Guarné, J.; Salcedo-Bosch, A.; González-Marco, D.; Peña, A. Assessing Obukhov Length and Friction Velocity from Floating Lidar Observations: A Data Screening and Sensitivity Computation Approach. Remote Sens. 2022, 14, 1394. [Google Scholar] [CrossRef]
- Jeffreys, H.; Taylor, G.I. On the formation of water waves by wind. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1925, 107, 189–206. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Fu, J.; Chan, P.W.; Li, Q.; Shu, Z.; Zhou, K. Reduced Sea-Surface Roughness Length at a Coastal Site. Atmosphere 2021, 12, 991. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Monin, A. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 1954, 151, e187. [Google Scholar]
- Türk, M.; Emeis, S. The dependence of offshore turbulence intensity on wind speed. J. Wind Eng. Ind. Aerodyn. 2010, 98, 466–471. [Google Scholar] [CrossRef]
- MacEachern, C. İlhami Yıldız. 1.16 Wind Energy. In Comprehensive Energy Systems; Dincer, I., Ed.; Elsevier: Oxford, UK, 2018; pp. 665–701. [Google Scholar] [CrossRef]
- Lange, B.; Larsen, S.; Højstrup, J.; Barthelmie, R. Importance of thermal effects and sea surface roughness for offshore wind resource assessment. J. Wind Eng. Ind. Aerodyn. 2004, 92, 959–988. [Google Scholar] [CrossRef]
- Salcedo-Bosch, A.; Rocadenbosch, F.; Sospedra, J. On Adaptive Unscented Kalman Filtering for Floating Doppler Wind-Lidar Motion Correction: Effect of the Number of Lidar Measurement Heights. In Proceedings of the 2022 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Kuala Lumpur, Malaysia, 17–22 July 2022. [Google Scholar]
- Micallef, D.; Rezaeiha, A. Floating offshore wind turbine aerodynamics: Trends and future challenges. Renew. Sustain. Energy Rev. 2021, 152, 111696. [Google Scholar] [CrossRef]
- Gottschall, J. Wake Measurements with Lidar. In Handbook of Wind Energy Aerodynamics; Stoevesandt, B., Schepers, G., Fuglsang, P., Yuping, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–18. [Google Scholar] [CrossRef]
- Gao, Z.t.; Feng, X.y.; Zhang, Z.t.; Liu, Z.l.; Gao, X.x.; Zhang, L.j.; Li, S.; Li, Y. A brief discussion on offshore wind turbine hydrodynamics problem. J. Hydrodyn. 2022, 34, 15–30. [Google Scholar] [CrossRef]
- Mann, J. Wind field simulation. Probabilistic Eng. Mech. 1998, 13, 269–282. [Google Scholar] [CrossRef]
- Julier, S.J.; Uhlmann, J.K. New extension of the Kalman filter to nonlinear systems. In Signal Processing, Sensor Fusion, and Target Recognition VI; Kadar, I., Ed.; International Society for Optics and Photonics; SPIE: Bellingham, WA, USA, 1997; Volume 3068, pp. 182–193. [Google Scholar] [CrossRef]
Model Combinations | Wind Model | Initial-Phase Model | Dual UKF |
---|---|---|---|
Basic | RW (Equation (4)) | RW (Equation (11)) | No |
Enhanced | AR (Equation (18)) | UCM (Equation (19)) | Yes |
Uncorrected | Corrected (Basic) | Corrected (Enhanced) | |
---|---|---|---|
Correlated | vs. | vs. | vs. |
variables | |||
0.90 | 0.93 | 0.96 | |
1.87% | 0.81% | 0.58% | |
1.62% | −0.32% | −0.07% | |
Slope | 0.96 | 0.97 | 0.99 |
Offset | 1.81 × 10 | 1.70 × 10 | 7.41 × 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salcedo-Bosch, A.; Rocadenbosch, F.; Sospedra, J. Enhanced Dual Filter for Floating Wind Lidar Motion Correction: The Impact of Wind and Initial Scan Phase Models. Remote Sens. 2022, 14, 4704. https://doi.org/10.3390/rs14194704
Salcedo-Bosch A, Rocadenbosch F, Sospedra J. Enhanced Dual Filter for Floating Wind Lidar Motion Correction: The Impact of Wind and Initial Scan Phase Models. Remote Sensing. 2022; 14(19):4704. https://doi.org/10.3390/rs14194704
Chicago/Turabian StyleSalcedo-Bosch, Andreu, Francesc Rocadenbosch, and Joaquim Sospedra. 2022. "Enhanced Dual Filter for Floating Wind Lidar Motion Correction: The Impact of Wind and Initial Scan Phase Models" Remote Sensing 14, no. 19: 4704. https://doi.org/10.3390/rs14194704
APA StyleSalcedo-Bosch, A., Rocadenbosch, F., & Sospedra, J. (2022). Enhanced Dual Filter for Floating Wind Lidar Motion Correction: The Impact of Wind and Initial Scan Phase Models. Remote Sensing, 14(19), 4704. https://doi.org/10.3390/rs14194704