Latest Altimetry-Based Sea Ice Freeboard and Volume Inter-Annual Variability in the Antarctic over 2003–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Altimetry Data
2.1.1. CryoSat-2
2.1.2. Envisat
2.2. Snow Depth Data
2.2.1. Alti Snow Depth
2.2.2. Advanced Microwave Scanning Radiometer Data
2.3. Auxillary Data
2.3.1. ICESat-2 Data
2.3.2. Upward Looking Sonar Data
2.3.3. Operation Ice Bridge Data
2.3.4. The Sea Ice Mass Balance in the Antarctic Campaign
2.3.5. Sea Ice-Climate Change Initiative Dataset
2.3.6. Sea Ice Concentration
3. Results
3.1. Cryosat-2 Radar Freeboard
3.2. Envisat Radar Freeboard
3.2.1. Re-Calibration on CryoSat-2
3.2.2. Comparison against the SI-CCI Radar Freeboards
3.3. Comparisons with External Data
3.3.1. Sea Ice Mass Balance in the Antarctic (SIMBA) Transects
3.3.2. ULS
3.3.3. OIB
3.3.4. ICESat-2
3.4. 2003–2020 Mean Trends
3.4.1. Global Analysis
3.4.2. Regional Analysis
- Bell Amundsen: The mean radar freeboard decreased by ≈−32% per decade over 2003–2020 and by ≈−65% per decade over 2013–2020. It is relevant to observe a maximum high in 2017, when the global mean sea ice extent is at its minimum. This maximum has preceded 3 years with the thinnest freeboards of the period. The minimum is reached in 2020. The snow depth variability follows well that of the radar freeboard. The ≈−47% per decade trend for 2013–2020 is mainly driven by the last three years of minima. As a consequence, the mean SIT has also decreased, by ≈−16% per decade over 2003–2020 and by ≈−43% per decade over 2013–2020. Current thicknesses are nearly twice lower than it was at the beginning of the envisat period. Overall, the volume has also decreased, by ≈−12% over the whole period. It has been nearly divided by two over 2013–2020. Meanwhile, the extent has also increased, by about 10% per decade over 2003–2020 but has decreased by nearly −60% since 2013. Note that the minimum in 2016 was not a particular event in this region.
- Coastal Bell Amundsen: The mean radar freeboard has increased by ≈+22% per decade over 2003–2020 and by ≈+100% for 2013–2020. These trends are only driven by the period of 2013–2020 with no significant trends before. The maximum high freeboard was in 2011. It is followed by the minimum, in 2013. Since, the radar freeboards have increased, to reach maxima in recent years. Magnitudes are close to the maximum of the serie (in 2011). Unlike the previous “off-shore” Bell Amundsen zone, snow and freeboards are not well correlated, and snow depths do not show significant trends. The 2016 maximum low event is associated with a minimum of snow depth. Consequently, the mean SIT has also increased, by ≈+11% per decade over 2003–2020 and by ≈+66% per decade over 2013–2020. Logically, we do not observe significant trends for the extent (probably due to the absence of ice to ocean transition). Sea ice volumes have also increased, by ≈+10% per decade over 2003–2020 and by ≈+49% per decade over 2013–2020. An event with thick ice is also observed in 2011 but the maximum was reached in 2018. Recent thickness values are among the highest of the series. As in the Bell Amundsen sector, the 2016 event is not particularly perceptible.
- East Weddell: The radar freeboards decreased by ≈−28% per decade over 2003–2020 and by ≈−108% per decade from 2013. The “2016 event” is very well identified but does not represent the minimum since radar freeboard has continued to decrease thereafter. As a consequence the tendencies are particularly driven by the values after 2016. Trends over the period of Envisat are rather stable. Since 2016 snow depth is also strongly decreasing, by about −57% per decade. Then the sea ice thickness has decreased, by only ≈−10% per decade over the whole period, but by about −83% per decade since 2013. Before 2013, values where also quite stable. On the contrary sea ice extent and concentration have stayed relatively constant over the whole period, with highest values in recent years. However, the sea ice extent minima of 2016 and 2017 are well identified. As a consequence, sea ice volumes have strongly decreased since 2016. Our results indicates trends by nearly −90% per decade since 2013. 2020 shows a slight increase but sea ice volumes are still at their lowest.
- West Weddell: Considering the whole series, mean radar freeboards are relatively constant but they have decreased by ≈−55% per decade from 2013. However, the radar freeboard increases until 2016 and decreases thereafter. The lowest value, in 2020, is comparable to the minimum in 2006. Snow depths have also decreased, by ≈−68% per decade since 2013. The SIT was also stable over the whole period, with a decrease by about −60% per decade since 2013. These tendencies are associated with a slight positive trend of extent, with a well identified 2016 minimum. Overall, we do not find significant trends for volume. However, the decrease that was initiated by the high maximum in 2015, lead to a trend by ≈−55% per decade from 2013. This contrasts with the positive trends observed over the period of Envisat. Values are particularly low in the recent period.
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Additional Figures and Tables
Fbr | Sd | SIT | SIV | SIE | SIC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
03-20 | 13-20 | 03-20 | 13-20 | 03-20 | 13-20 | 03-20 | 13-20 | 03-20 | 13-20 | 03-20 | 13-20 | ||
A-B | 75% | −32 | −65 | x | −47 | −16 | −43 | −12 | −98 | +10 | −59 | ≃ | −1 |
50% | −49 | −52 | x | −43 | −21 | −31 | −13 | −94 | +6 | −52 | ≃ | −2 | |
15% | −53 | −83 | x | −57 | −20 | −45 | −4 | −89 | +5 | −39 | ≃ | −8 | |
CoA-B | 75% | +22 | +103 | x | −3 | +11 | +66 | +10 | +49 | −2 | −12 | ≃ | −5 |
50% | +37 | +113 | x | +5 | +17 | +71 | +15 | +66 | ≃ | ≃ | −1 | −5 | |
15% | +37 | +113 | x | +6 | +17 | +71 | +15 | +66 | ≃ | ≃ | −1 | −5 | |
Ross | 75% | −24 | −37 | x | −24 | −13 | −30 | −11 | −48 | ≃ | −18 | ≃ | −1 |
50% | −27 | −46 | x | −25 | −13 | −33 | −13 | −49 | −2 | −16 | +1 | −1 | |
15% | −30 | −53 | x | −27 | −15 | −35 | −15 | −50 | −2 | −16 | +1 | −2 | |
Pac | 75% | +21 | −46 | x | −59 | +5 | −56 | +11 | −96 | +6 | −37 | ≃ | −2 |
50% | +20 | −60 | x | −66 | +6 | −63 | +9 | −84 | +3 | −16 | +1 | −5 | |
15% | +18 | −60 | x | −64 | +6 | −60 | +8 | −80 | +2 | −4 | +1 | −5 | |
Ind | 75% | −48 | −23 | x | −18 | −26 | −21 | −34 | −53 | −8 | −30 | ≃ | ≃ |
50% | −51 | −43 | x | −19 | −26 | −25 | −34 | −50 | −6 | −21 | ≃ | −2 | |
15% | −55 | −50 | x | −19 | −26 | −26 | −35 | −49 | −6 | −19 | ≃ | −2 | |
E.Wed | 75% | −28 | −108 | x | −57 | −11 | −83 | −14 | −88 | −3 | −5 | ≃ | +2 |
50% | −26 | −110 | x | −58 | −10 | −83 | −13 | −89 | −4 | −8 | ≃ | +1 | |
15% | −30 | −115 | x | −59 | −11 | −84 | −14 | −87 | −4 | −5 | ≃ | −2 | |
W.Wed | 75% | ≃ | −55 | x | −68 | ≃ | −59 | ≃ | −59 | +2 | +4 | ≃ | −1 |
50% | +2 | −53 | x | −63 | +1 | −57 | ≃ | −60 | +1 | −1 | ≃ | ≃ | |
15% | +1 | −53 | x | −61 | ≃ | −56 | −1 | −60 | +1 | −2 | ≃ | +1 | |
Global | 75% | −14 | −43 | x | −39 | −8 | −42 | −9 | −62 | −1 | −17 | ≃ | ≃ |
50% | −12 | −41 | x | −39 | −7 | −41 | −9 | −58 | −2 | −15 | ≃ | −1 | |
small 50% | −5 | −51 | x | −47 | −5 | −50 | −7 | −66 | −2 | −13 | ≃ | −2 | |
15% | −15 | −46 | x | −40 | −8 | -42 | −10 | −57 | −2 | −13 | ≃ | −2 |
Appendix B. From Waveforms to Thickness
Appendix C. Regional Trends
- Ross: The mean radar freeboard has constantly decreased over the whole period. Our results indicate a decrease by ≈−24% per decade over 2003–2020 and at ≈−37% per decade from 2013. Snow depth variability follows the radar freeboard with a decrease by about −24% per decade over 2013–2020. Radar freeboard and snow depth minima are reached in 2018. The last few years show a slight increase but the values remain among the lowest. Then, the sea ice thickness has also decreased, by ≈−13% per decade over the whole period and ≈−30% per decade over 2013–2020. These tendencies are not correlated with sea ice extent or concentrations, that have been relatively stable. Sea ice volume has also decreased by ≈−11% per decade over 2003–2020 and by ≈−48% per decade since 2013. Sea ice volumes maxima in 2008 and 2013 are associated with slightly higher sea ice extents. On the contrary the lowest 2018 does not seem to be linked with sea ice extent or concentration anomalies.
- Indian: The mean radar freeboard has decreased by ≈−48% per decade over 2003–2020 and by ≈−23% per decade over 2003–2020. We observe a gap in 2011 which should indicates a bias due to thin ice overestimation of the re-calibration. Then, tendencies over 2003–2020 should be overestimated in this small coastal area. Still, we can observe that values after 2011 seem much lower (2011 is CS2 also) with a minimum in 2019. The 2016 event is very well perceptible in snow depth with a clear gap in values in 2016. Since, snow depths have remained at their lowest. Overall, snow depth has decreased by ≈−18% per decade over 2013–2020. Similar conclusions can be drawn for sea ice thickness and volume that respectively have ≈−21% and ≈−53% per decade decreasing over 2013–2020. The recent minima seem associated with low sea ice extent.
- Pacific: The mean radar freeboard has increased by ≈+21% per decade over 2003–2020 but has decreased by about −46% per decade since 2013. Snow depths have also decreased, by ≈−59% per decade over 2013–2020. Consequently, although sea ice thickness have slightly increased, by about +5% over the whole period, it has decreased by ≈−56% per decade since 2013. Sea ice volumes exhibit a comparable behaviour but recent high extents lead to values on the order of magnitude to those of the Envisat period. A clear maximum in 2013, associated with high sea ice extents is present in all series. Then the 2013–2020 trends are mainly driven by this event.
References
- Serreze, M.; Maslanik, J.; Scambos, T.; Fetterer, F.; Stroeve, J.; Knowles, K.; Fowler, C.; Drobot, S.; Barry, R.; Haran, T. A record minimum arctic sea ice extent and area in 2002. Geophys. Res. Lett. 2003, 30, 1110. [Google Scholar] [CrossRef]
- Giles, K.A.; Laxon, S.W.; Ridout, A.L. Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum. Geophys. Res. Lett. 2008, 35, L22502. [Google Scholar] [CrossRef]
- Kwok, R.; Cunningham, G. Variability of Arctic sea ice thickness and volume from CryoSat-2. Phil. Trans. R. Soc. A 2015, 373, 20140157. [Google Scholar] [CrossRef]
- Hvidegaard, S.M.; Forsberg, R.; Skourup, H.; Kristensen, M.L.; Olesen, A.V.; Olesen, A.F.; Shepherd, A. ESA CryoVEx/KAREN and EU ICE-ARC 2017—Arctic Field Campaign with Combined Airborne Ku/Ka-Band Radar and Laser Altimeters, together with Extensive In Situ Measurements over Sea- and Land Ice; Technical Report; National Space Institute, Danish Technical University (DTU Space): Limby, Denmark, 2020; ISBN 978-87-91694-50-9. [Google Scholar]
- Comiso, J.C.; Parkinson, C.L.; Gersten, R.; Stock, L. Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett. 2008, 35, L01703. [Google Scholar] [CrossRef]
- Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018). Environ. Res. Lett. 2018, 13, 105005. [Google Scholar] [CrossRef]
- Stroeve, J.C.; Serreze, M.C.; Holland, M.M.; Kay, J.E.; Malanik, J.; Barrett, A.P. The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Clim. Chang. 2012, 110, 1005–1027. [Google Scholar] [CrossRef]
- Cai, Q.; Wang, J.; Beletsky, D.; Overland, J.; Ikeda, M.; Wan, L. Accelerated decline of summer Arctic sea ice during 1850–2017 and the amplified Arctic warming during the recent decades. Environ. Res. Lett. 2021, 16, 034015. [Google Scholar] [CrossRef]
- Vermaire, J.C.; Pisaric, M.F.; Thienpont, J.R.; Courtney Mustaphi, C.J.; Kokelj, S.V.; Smol, J.P. Arctic climate warming and sea ice declines lead to increased storm surge activity. Geophys. Res. Lett. 2013, 40, 1386–1390. [Google Scholar] [CrossRef]
- Meier, W.N.; Hovelsrud, G.K.; Van Oort, B.E.; Key, J.R.; Kovacs, K.M.; Michel, C.; Haas, C.; Granskog, M.A.; Gerland, S.; Perovich, D.K.; et al. Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Rev. Geophys. 2014, 52, 185–217. [Google Scholar] [CrossRef]
- Meredith, M.; Sommerkorn, M.; Cassotta, S.; Derksen, C.; Ekaykin, A.; Hollowed, A.; Kofinas, G.; Mackintosh, A.; Melbourne-Thomas, J.; Muelbert, M.; et al. Polar Regions. Chapter 3, IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Cambridge University Press: New York, NY, USA, 2019. [Google Scholar]
- Wang, Q.; Wekerle, C.; Wang, X.; Danilov, S.; Koldunov, N.; Sein, D.; Sidorenko, D.; von Appen, W.J.; Jung, T. Intensification of the Atlantic Water supply to the Arctic Ocean through Fram Strait induced by Arctic sea ice decline. Geophys. Res. Lett. 2020, 47, e2019GL086682. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, W.R.; Massom, R.; Stammerjohn, S.; Reid, P.; Williams, G.; Meier, W. A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Glob. Planet. Chang. 2016, 143, 228–250. [Google Scholar] [CrossRef]
- Parkinson, C.L.; DiGirolamo, N.E. Sea ice extents continue to set new records: Arctic, Antarctic, and global results. Remote Sens. Environ. 2021, 267, 112753. [Google Scholar] [CrossRef]
- Parkinson, C.L. A 40-year record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proc. Natl. Acad. Sci. USA 2019, 116, 14414–14423. [Google Scholar] [CrossRef] [PubMed]
- Hosking, J.S.; Orr, A.; Marshall, G.J.; Turner, J.; Phillips, T. The influence of the Amundsen–Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Clim. 2013, 26, 6633–6648. [Google Scholar] [CrossRef]
- Raphael, M.N.; Marshall, G.; Turner, J.; Fogt, R.; Schneider, D.; Dixon, D.; Hosking, J.; Jones, J.; Hobbs, W.R. The Amundsen sea low: Variability, change, and impact on Antarctic climate. Bull. Am. Meteorol. Soc. 2016, 97, 111–121. [Google Scholar] [CrossRef]
- Matear, R.J.; O’Kane, T.J.; Risbey, J.S.; Chamberlain, M. Sources of heterogeneous variability and trends in Antarctic sea-ice. Nat. Commun. 2015, 6, 1–9. [Google Scholar] [CrossRef]
- Crosta, X.; Etourneau, J.; Orme, L.C.; Dalaiden, Q.; Campagne, P.; Swingedouw, D.; Goosse, H.; Massé, G.; Miettinen, A.; McKay, R.M.; et al. Multi-decadal trends in Antarctic sea-ice extent driven by ENSO–SAM over the last 2000 years. Nat. Geosci. 2021, 14, 156–160. [Google Scholar] [CrossRef]
- Meehl, G.A.; Arblaster, J.M.; Bitz, C.M.; Chung, C.T.; Teng, H. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat. Geosci. 2016, 9, 590–595. [Google Scholar] [CrossRef]
- Bintanja, R.; van Oldenborgh, G.J.; Drijfhout, S.; Wouters, B.; Katsman, C. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci. 2013, 6, 376–379. [Google Scholar] [CrossRef]
- Turner, J.; Comiso, J.C.; Marshall, G.J.; Lachlan-Cope, T.A.; Bracegirdle, T.; Maksym, T.; Meredith, M.P.; Wang, Z.; Orr, A. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett. 2009, 36, L08502. [Google Scholar] [CrossRef] [Green Version]
- Swart, N.; Fyfe, J. The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends. Geophys. Res. Lett. 2013, 40, 4328–4332. [Google Scholar] [CrossRef]
- Bitz, C.; Polvani, L.M. Antarctic climate response to stratospheric ozone depletion in a fine resolution ocean climate model. Geophys. Res. Lett. 2012, 39, L20705. [Google Scholar] [CrossRef]
- Eayrs, C.; Li, X.; Raphael, M.N.; Holland, D.M. Rapid decline in Antarctic sea ice in recent years hints at future change. Nat. Geosci. 2021, 14, 460–464. [Google Scholar] [CrossRef]
- Stuecker, M.F.; Bitz, C.M.; Armour, K.C. Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season. Geophys. Res. Lett. 2017, 44, 9008–9019. [Google Scholar] [CrossRef]
- Schlosser, E.; Haumann, F.A.; Raphael, M.N. Atmospheric influences on the anomalous 2016 Antarctic sea ice decay. Cryosphere 2018, 12, 1103–1119. [Google Scholar] [CrossRef]
- Wang, G.; Hendon, H.H.; Arblaster, J.M.; Lim, E.P.; Abhik, S.; van Rensch, P. Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef]
- Meehl, G.A.; Arblaster, J.M.; Chung, C.T.; Holland, M.M.; DuVivier, A.; Thompson, L.; Yang, D.; Bitz, C.M. Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef]
- Kusahara, K.; Reid, P.; Williams, G.D.; Massom, R.; Hasumi, H. An ocean-sea ice model study of the unprecedented Antarctic sea ice minimum in 2016. Environ. Res. Lett. 2018, 13, 084020. [Google Scholar] [CrossRef]
- Lewis, M.; Tison, J.L.; Weissling, B.; Delille, B.; Ackley, S.; Brabant, F.; Xie, H. Sea ice and snow cover characteristics during the winter–spring transition in the Bellingshausen Sea: An overview of SIMBA 2007. Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 1019–1038. [Google Scholar] [CrossRef]
- Massom, R.A.; Worby, A.; Lytle, V.; Markus, T.; Allison, I.; Scambos, T.; Enomoto, H.; Tamura, T.; Tateyama, K.; Haran, T.; et al. ARISE (Antarctic Remote Ice Sensing Experiment) in the East 2003: Validation of satellite-derived sea-ice data products. Ann. Glaciol. 2006, 44, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Worby, A.P.; Markus, T.; Steer, A.D.; Lytle, V.I.; Massom, R.A. Evaluation of AMSR-E snow depth product over East Antarctic sea ice using in situ measurements and aerial photography. J. Geophys. Res. Ocean. 2008, 113, C05S94. [Google Scholar] [CrossRef]
- Harms, S.; Fahrbach, E.; Strass, V.H. Sea ice transports in the Weddell Sea. J. Geophys. Res. Ocean. 2001, 106, 9057–9073. [Google Scholar] [CrossRef]
- Behrendt, A.; Dierking, W.; Fahrbach, E.; Witte, H. Sea ice draft in the Weddell Sea, measured by upward looking sonars. Earth Syst. Sci. Data 2013, 5, 209–226. [Google Scholar] [CrossRef]
- Ozsoy-Cicek, B.; Ackley, S.; Xie, H.; Yi, D.; Zwally, J. Sea ice thickness retrieval algorithms based on in situ surface elevation and thickness values for application to altimetry. J. Geophys. Res. Ocean. 2013, 118, 3807–3822. [Google Scholar] [CrossRef]
- Haas, C. Evaluation of ship-based electromagnetic-inductive thickness measurements of summer sea-ice in the Bellingshausen and Amundsen Seas, Antarctica. Cold Reg. Sci. Technol. 1998, 27, 1–16. [Google Scholar] [CrossRef]
- Eicken, H.; Tucker, W.; Perovich, D. Indirect measurements of the mass balance of summer Arctic sea ice with an electromagnetic induction technique. Ann. Glaciol. 2001, 33, 194–200. [Google Scholar] [CrossRef]
- Haas, C.; Nicolaus, M.; Willmes, S.; Worby, A.; Flinspach, D. Sea ice and snow thickness and physical properties of an ice floe in the western Weddell Sea and their changes during spring warming. Deep Sea Res. Part II Top. Stud. Oceanogr. 2008, 55, 963–974. [Google Scholar] [CrossRef]
- Worby, A.P.; Geiger, C.A.; Paget, M.J.; Van Woert, M.L.; Ackley, S.F.; DeLiberty, T.L. Thickness distribution of Antarctic sea ice. J. Geophys. Res. Ocean. 2008, 113, C05S92. [Google Scholar] [CrossRef]
- Giles, K.A.; Laxon, S.W.; Worby, A.P. Antarctic sea ice elevation from satellite radar altimetry. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Kurtz, N.; Farrell, S.; Studinger, M.; Galin, N.; Harbeck, J.; Lindsay, R.; Onana, V.; Panzer, B.; Sonntag, J. Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data. Cryosphere 2013, 7, 1035–1056. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R.; Maksym, T. Snow depth of the weddell and bellingshausen sea ice covers from ice bridge surveys in 2010 and 2011: An examination. J. Geophys. Res. Ocean. 2014, 119, 4141–4167. [Google Scholar] [CrossRef]
- Hvidegaard, S.; Forsberg, R.; Skourup, H.; Kristensen, M.; Olesen, A.; Olesen, A.; Coccia, A.; Macedo, K.; Helm, V.; Ladkin, R.; et al. ESA CryoVEx/KAREN Antarctica 2017-18; Technical Report; DTU Technical University of Denmark: Lyngby, Denmark, 2020. [Google Scholar]
- Price, D.; Beckers, J.; Ricker, R.; Kurtz, N.; Rack, W.; Haas, C.; Helm, V.; Hendricks, S.; Leonard, G.; Langhorne, P. Evaluation of CryoSat-2 derived sea-ice freeboard over fast ice in McMurdo Sound, Antarctica. J. Glaciol. 2015, 61, 285–300. [Google Scholar] [CrossRef]
- Schwegmann, S.; Rinne, E.; Ricker, R.; Hendricks, S.; Helm, V. About the consistency between Envisat and CryoSat-2 radar freeboard retrieval over Antarctic sea ice. Cryosphere 2016, 10, 1415–1425. [Google Scholar] [CrossRef]
- Paul, S.; Hendricks, S.; Ricker, R.; Kern, S.; Rinne, E. Empirical parametrization of Envisat freeboard retrieval of Arctic and Antarctic sea ice based on CryoSat-2: Progress in the ESA Climate Change Initiative. Cryosphere 2018, 12, 2437–2460. [Google Scholar] [CrossRef]
- Zwally, H.J.; Yi, D.; Kwok, R.; Zhao, Y. ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. J. Geophys. Res. Ocean. 2008, 113, C02S15. [Google Scholar] [CrossRef]
- Yi, D.; Zwally, H.J.; Robbins, J.W. ICESat observations of seasonal and interannual variations of sea-ice freeboard and estimated thickness in the Weddell Sea, Antarctica (2003–2009). Ann. Glaciol. 2011, 52, 43–51. [Google Scholar] [CrossRef]
- Markus, T.; Massom, R.; Worby, A.; Lytle, V.; Kurtz, N.; Maksym, T. Freeboard, snow depth and sea-ice roughness in East Antarctica from in situ and multiple satellite data. Ann. Glaciol. 2011, 52, 242–248. [Google Scholar] [CrossRef]
- Kurtz, N.; Markus, T. Satellite observations of Antarctic sea ice thickness and volume. J. Geophys. Res. Ocean. 2012, 117, C08025. [Google Scholar] [CrossRef]
- Kern, S.; Ozsoy-Çiçek, B.; Worby, A.P. Antarctic sea-ice thickness retrieval from ICESat: Inter-comparison of different approaches. Remote Sens. 2016, 8, 538. [Google Scholar] [CrossRef]
- Kwok, R.; Kacimi, S. Three years of sea ice freeboard, snow depth, and ice thickness of the Weddell Sea from Operation IceBridge and CryoSat-2. Cryosphere 2018, 12, 2789–2801. [Google Scholar] [CrossRef] [Green Version]
- Kacimi, S.; Kwok, R. The Antarctic sea ice cover from ICESat-2 and CryoSat-2: Freeboard, snow depth, and ice thickness. Cryosphere 2020, 14, 4453–4474. [Google Scholar] [CrossRef]
- Xu, Y.; Li, H.; Liu, B.; Xie, H.; Ozsoy-Cicek, B. Deriving Antarctic Sea-Ice Thickness From Satellite Altimetry and Estimating Consistency for NASA’s ICESat/ICESat-2 Missions. Geophys. Res. Lett. 2021, 48, e2021GL093425. [Google Scholar] [CrossRef]
- Guerreiro, K.; Fleury, S.; Zakharova, E.; Kouraev, A.; Rémy, F.; Maisongrande, P. Comparison of CryoSat-2 and ENVISAT radar freeboard over Arctic sea ice: Toward an improved Envisat freeboard retrieval. Cryosphere 2017, 11, 2059–2073. [Google Scholar] [CrossRef]
- Meloni, M.; Bouffard, J.; Parrinello, T.; Dawson, G.; Garnier, F.; Helm, V.; Di Bella, A.; Hendricks, S.; Ricker, R.; Webb, E.; et al. CryoSat Ice Baseline-D validation and evolutions. Cryosphere 2020, 14, 1889–1907. [Google Scholar] [CrossRef]
- Dinardo, S.; Restano, M.; Ambrózio, A.; Benveniste, J. SAR altimetry processing on demand service for CryoSat-2 and Sentinel-3 at ESA G-POD. In Proceedings of the 2016 Conference on Big Data from Space (BiDS’16), Santa Cruz de Tenerife, Spain, 15–17 March 2016; pp. 15–17. [Google Scholar]
- Laforge, A.; Fleury, S.; Dinardo, S.; Garnier, F.; Remy, F.; Benveniste, J.; Bouffard, J.; Verley, J. Toward improved sea ice freeboard observation with SAR altimetry using the physical retracker SAMOSA+. Adv. Space Res. 2020, 68, 732–745. [Google Scholar] [CrossRef]
- Garnier, F.; Fleury, S.; Garric, G.; Bouffard, J.; Tsamados, M.; Laforge, A.; Bocquet, M.; Fredensborg Hansen, R.M.; Rémy, F. Advances in altimetric snow depth estimates using bi-frequency SARAL and CryoSat-2 Ka–Ku measurements. Cryosphere 2021, 15, 5483–5512. [Google Scholar] [CrossRef]
- Meier, W.; Markus, T.; Comiso, J. AMSR-E/AMSR2 Unified L3 Daily 12.5 km Brightness Temperatures, Sea Ice Concentration, Motion and Snow Depth Polar Grids, Version 1; NASA National Snow and Ice Data Center Distributed Archive Center: Boulder, CO, USA, 2018. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Kwok, R.; Kacimi, S.; Markus, T.; Kurtz, N.; Studinger, M.; Sonntag, J.; Manizade, S.; Boisvert, L.; Harbeck, J. ICESat-2 surface height and sea ice freeboard assessed with ATM lidar acquisitions from Operation IceBridge. Geophys. Res. Lett. 2019, 46, 11228–11236. [Google Scholar] [CrossRef]
- Petty, A.A.; Kurtz, N.T.; Kwok, R.; Markus, T.; Neumann, T.A. Winter Arctic sea ice thickness from ICESat-2 freeboards. J. Geophys. Res. Ocean. 2020, 125, e2019JC015764. [Google Scholar] [CrossRef]
- Kwok, R.; Cunningham, G.; Markus, T.; Hancock, D.; Morison, J.; Palm, S.; Farrell, S.; Ivanoff, A. ATLAS/ICESat-2 L3A Sea Ice Freeboard, Version 3; NSIDC: National Snow and Ice Data Center: Boulder, CO, USA, 2020. [Google Scholar]
- Behrendt, A.; Dierking, W.; Witte, H. Thermodynamic sea ice growth in the central W eddell S ea, observed in upward-looking sonar data. J. Geophys. Res. Ocean. 2015, 120, 2270–2286. [Google Scholar] [CrossRef]
- Studinger, M. IceBridge Narrow Swath ATM L1B Elevation and Return Strength, Version 2; National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2014. [Google Scholar] [CrossRef]
- Kwok, R.; Cunningham, G.F.; Manizade, S.; Krabill, W. Arctic sea ice freeboard from IceBridge acquisitions in 2009: Estimates and comparisons with ICESat. J. Geophys. Res. Ocean. 2012, 117, C02018. [Google Scholar] [CrossRef]
- Fetterer, F.; Knowles, K.; Meier, W.; Savoie, M.; Windnagel, A. Sea Ice Index, Version 3; National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Meier, W.; Stewart, J.; Wilcox, H.; Hardman, M.; Scott, D. Near-Real-Time DMSP SSMIS Daily Polar Gridded Sea Ice Concentrations, Version 2; National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2021. [Google Scholar] [CrossRef]
- Ricker, R.; Hendricks, S.; Helm, V.; Skourup, H.; Davidson, M. Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation. Cryosphere 2014, 8, 1607–1622. [Google Scholar] [CrossRef]
- Drucker, R.; Martin, S.; Kwok, R. Sea ice production and export from coastal polynyas in the Weddell and Ross Seas. Geophys. Res. Lett. 2011, 38, L17502. [Google Scholar] [CrossRef]
- Paul, S.; Willmes, S.; Heinemann, G. Long-term coastal-polynya dynamics in the southern Weddell Sea from MODIS thermal-infrared imagery. Cryosphere 2015, 9, 2027–2041. [Google Scholar] [CrossRef]
- Landy, J.C.; Petty, A.A.; Tsamados, M.; Stroeve, J.C. Sea ice roughness overlooked as a key source of uncertainty in CryoSat-2 ice freeboard retrievals. J. Geophys. Res. Ocean. 2020, 125, e2019JC015820. [Google Scholar] [CrossRef]
- Turner, J.; Phillips, T.; Marshall, G.J.; Hosking, J.S.; Pope, J.O.; Bracegirdle, T.J.; Deb, P. Unprecedented springtime retreat of Antarctic sea ice in 2016. Geophys. Res. Lett. 2017, 44, 6868–6875. [Google Scholar] [CrossRef] [Green Version]
- Bocquet, M.; Fleury, S.; Moreau, T.; Frederique, R.; Garnier, F. Arctic sea ice radar freeboard retrieval from ERS-2 using altimetry: Toward sea ice thickness observation from 1995 to 2021. EGUsphere 2022, 1–33. [Google Scholar] [CrossRef]
- Markus, T.; Kottmeier, C.; Fahrbach, E. Ice formation in coastal polynyas in the Weddell Sea and their impact on oceanic salinity. Antarct. Sea Ice Phys. Process. Interact. Var. 1998, 74, 273–292. [Google Scholar]
- Renfrew, I.A.; King, J.C.; Markus, T. Coastal polynyas in the southern Weddell Sea: Variability of the surface energy budget. J. Geophys. Res. Ocean. 2002, 107, 16-1–16-22. [Google Scholar] [CrossRef]
- Xie, H.; Tekeli, A.E.; Ackley, S.F.; Yi, D.; Zwally, H.J. Sea ice thickness estimations from ICESat Altimetry over the Bellingshausen and Amundsen Seas, 2003–2009. J. Geophys. Res. Ocean. 2013, 118, 2438–2453. [Google Scholar] [CrossRef]
- Nandan, V.; Scharien, R.K.; Geldsetzer, T.; Kwok, R.; Yackel, J.J.; Mahmud, M.S.; Rösel, A.; Tonboe, R.; Granskog, M.; Willatt, R.; et al. Snow Property Controls on Modeled Ku-Band Altimeter Estimates of First-Year Sea Ice Thickness: Case Studies From the Canadian and Norwegian Arctic. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1082–1096. [Google Scholar] [CrossRef]
- Willatt, R.C.; Giles, K.A.; Laxon, S.W.; Stone-Drake, L.; Worby, A.P. Field investigations of Ku-band radar penetration into snow cover on Antarctic sea ice. IEEE Trans. Geosci. Remote Sens. 2009, 48, 365–372. [Google Scholar] [CrossRef]
- Lange, M.A.; Ackley, S.F.; Wadhams, P.; Dieckmann, G.; Eicken, H. Development of sea ice in the Weddell Sea. Ann. Glaciol. 1989, 12, 92–96. [Google Scholar] [CrossRef]
- Parkinson, C.L.; Cavalieri, D.J. Antarctic sea ice variability and trends, 1979–2010. Cryosphere 2012, 6, 871–880. [Google Scholar] [CrossRef]
- Bracegirdle, T.J.; Krinner, G.; Tonelli, M.; Haumann, F.A.; Naughten, K.A.; Rackow, T.; Roach, L.A.; Wainer, I. Twenty first century changes in Antarctic and Southern Ocean surface climate in CMIP6. Atmos. Sci. Lett. 2020, 21, e984. [Google Scholar] [CrossRef]
- Gilbert, E.; Kittel, C. Surface melt and runoff on Antarctic ice shelves at 1.5 C, 2 C, and 4 C of future warming. Geophys. Res. Lett. 2021, 48, e2020GL091733. [Google Scholar] [CrossRef]
- Tewari, K.; Mishra, S.K.; Salunke, P.; Dewan, A. Future projections of temperature and precipitation for Antarctica. Environ. Res. Lett. 2022, 17, 014029. [Google Scholar] [CrossRef]
- Laxon, S.; Peacock, N.; Smith, D. High interannual variability of sea ice thickness in the Arctic region. Nature 2003, 425, 947. [Google Scholar] [CrossRef]
- Tilling, R.L.; Ridout, A.; Shepherd, A. Estimating Arctic sea ice thickness and volume using CryoSat-2 radar altimeter data. Adv. Space Res. 2018, 62, 1203–1225. [Google Scholar] [CrossRef]
- Lawrence, I.R.; Armitage, T.W.; Tsamados, M.C.; Stroeve, J.C.; Dinardo, S.; Ridout, A.L.; Muir, A.; Tilling, R.L.; Shepherd, A. Extending the Arctic sea ice freeboard and sea level record with the Sentinel-3 radar altimeters. Adv. Space Res. 2019, 68, 711–723. [Google Scholar] [CrossRef]
- Helm, V.; Humbert, A.; Miller, H. Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. Cryosphere 2014, 8, 1539–1559. [Google Scholar] [CrossRef]
- Dinardo, S.; Fenoglio-Marc, L.; Buchhaupt, C.; Becker, M.; Scharroo, R.; Fernandes, M.J.; Benveniste, J. Coastal sar and plrm altimetry in german bight and west baltic sea. Adv. Space Res. 2018, 62, 1371–1404. [Google Scholar] [CrossRef]
- Ricker, R.; Hendricks, S.; Beckers, J.F. The impact of geophysical corrections on sea-ice freeboard retrieved from satellite altimetry. Remote Sens. 2016, 8, 317. [Google Scholar] [CrossRef]
- Kwok, R.; Panzer, B.; Leuschen, C.; Pang, S.; Markus, T.; Holt, B.; Gogineni, S. Airborne surveys of snow depth over Arctic sea ice. J. Geophys. Res. Ocean. 2011, 116, C11018. [Google Scholar] [CrossRef]
- Mallett, R.D.C.; Lawrence, I.R.; Stroeve, J.C.; Landy, J.C.; Tsamados, M. Brief communication: Conventional assumptions involving the speed of radar waves in snow introduce systematic underestimates to sea ice thickness and seasonal growth rate estimates. Cryosphere 2020, 14, 251–260. [Google Scholar] [CrossRef]
- Ulaby, F.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive. Volume 3-From Theory to Applications; University Ann Arbor: Ann Arbor, MI, USA, 1986. [Google Scholar]
- Massom, R.A.; Eicken, H.; Hass, C.; Jeffries, M.O.; Drinkwater, M.R.; Sturm, M.; Worby, A.P.; Wu, X.; Lytle, V.I.; Ushio, S.; et al. Snow on Antarctic sea ice. Rev. Geophys. 2001, 39, 413–445. [Google Scholar] [CrossRef]
- Wadhams, P.; Tucker III, W.; Krabill, W.B.; Swift, R.N.; Comiso, J.C.; Davis, N. Relationship between sea ice freeboard and draft in the Arctic Basin, and implications for ice thickness monitoring. J. Geophys. Res. Ocean. 1992, 97, 20325–20334. [Google Scholar] [CrossRef]
- Alexandrov, V.; Sandven, S.; Wahlin, J.; Johannessen, O. The relation between sea ice thickness and freeboard in the Arctic. Cryosphere 2010, 4, 373–380. [Google Scholar] [CrossRef]
- Maksym, T.; Markus, T. Antarctic sea ice thickness and snow-to-ice conversion from atmospheric reanalysis and passive microwave snow depth. J. Geophys. Res. Ocean. 2008, 113, C02S12. [Google Scholar] [CrossRef]
Mean (cm) | Sd (cm) | RMSD (cm) | R | |||
---|---|---|---|---|---|---|
CS2 | ENV_NN | CS2 | ENV_NN | CS2 vs. ENV_NN | CS2 vs. ENV_NN | |
May | 9.9 | 10 | 20.7 | 12.8 | 14.9 | 0.62 |
June | 9.7 | 9.9 | 21.4 | 12.2 | 14.4 | 0.64 |
July | 9.7 | 10.2 | 19.5 | 12.2 | 13.0 | 0.63 |
August | 10.6 | 11.3 | 21.1 | 12.9 | 13.7 | 0.63 |
September | 10.7 | 10.9 | 20.7 | 13.4 | 13.7 | 0.69 |
October | 9.6 | 11 | 21.7 | 14 | 14.8 | 0.67 |
Mean | 10.0 | 10.5 | 20.8 | 12.9 | 14.1 | 0.65 |
Mean Ice Freeboard | Mean Snow Depth | Mean Extended SIT | ||||
---|---|---|---|---|---|---|
ENV/AMSR | SIMBA | AMSR | SIMBA | ENV/AMSR | SIMBA | |
Fabra | 0.14 | −0.03 | 0.25 | 0.69 | 1.52 | 2.3 |
Brussels | 0.12 | 0.05 | 0.27 | 0.07 | 1.41 | 0.55 |
Patria | 0.12 | 0 | 0.25 | 0.33 | 1.44 | 0.9 |
Stat1 | 0.2 | −0.09 | 0.27 | 0.40 | 1.95 | 1.12 |
Stat2 | 0.2 | −0.09 | 0.28 | 0.52 | 2.02 | 1.45 |
Stat3 | 0.1 | −0.03 | 0.27 | 0.2 | 1.32 | 0.63 |
All stations | 0.15 | −0.03 | 0.27 | 0.36 | 1.61 | 1.16 |
05 | 06 | 07 | 08 | 09 | 10 | Mean | ||
---|---|---|---|---|---|---|---|---|
ULS drafts | Mean | 1.35 | 1.33 | 1.47 | 1.66 | 1.61 | 1.52 | 1.5 |
STD | 0.72 | 0.74 | 0.82 | 0.95 | 0.87 | 0.83 | 0.83 | |
Envisat+AMSR-E drafts | Mean | 1.15 | 1.25 | 1.42 | 1.48 | 1.49 | 0.96 | 1.3 |
STD | 0.91 | 0.8 | 0.87 | 0.94 | 0.84 | 0.83 | 0.87 | |
RMSD | 0.90 | 0.83 | 0.99 | 1.08 | 1.01 | 1.08 | 0.98 | |
Envisat+AMSR-clim drafts | Mean | 1.40 | 1.47 | 1.64 | 1.76 | 1.72 | 1.13 | 1.52 |
STD | 0.79 | 0.79 | 0.74 | 0.92 | 0.78 | 0.86 | 0.81 | |
RMSD | 0.96 | 0.8 | 0.94 | 1.06 | 0.97 | 0.96 | 0.95 |
20091021 (ab) | 20091024 (w) | 20091030 (w) | 20101026 (w) | 20101028 (w) | 20101030 (ab) | Mean | ||
---|---|---|---|---|---|---|---|---|
ATM OIB | Mean | 0.32 | 0.42 | 0.45 | 0.46 | 0.49 | 0.69 | 0.47 |
STD | 0.15 | 0.17 | 0.26 | 0.13 | 0.15 | 0.23 | 0.18 | |
ENV+AMSR-E | Mean | 0.26 | 0.42 | 0.43 | 0.40 | 0.38 | 0.32 | 0.37 |
STD | 0.16 | 0.22 | 0.27 | 0.19 | 0.15 | 0.15 | 0.19 | |
RMSD | 0.16 | 0.17 | 0.21 | 0.17 | 0.21 | 0.41 | 0.22 | |
ENV+AMSR-clim | Mean | 0.39 | 0.44 | 0.42 | 0.43 | 0.41 | 0.42 | 0.42 |
STD | 0.13 | 0.17 | 0.21 | 0.15 | 0.14 | 0.16 | 0.16 | |
RMSD | 0.19 | 0.15 | 0.19 | 0.13 | 0.19 | 0.30 | 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garnier, F.; Bocquet, M.; Fleury, S.; Bouffard, J.; Tsamados, M.; Remy, F.; Garric, G.; Chenal, A. Latest Altimetry-Based Sea Ice Freeboard and Volume Inter-Annual Variability in the Antarctic over 2003–2020. Remote Sens. 2022, 14, 4741. https://doi.org/10.3390/rs14194741
Garnier F, Bocquet M, Fleury S, Bouffard J, Tsamados M, Remy F, Garric G, Chenal A. Latest Altimetry-Based Sea Ice Freeboard and Volume Inter-Annual Variability in the Antarctic over 2003–2020. Remote Sensing. 2022; 14(19):4741. https://doi.org/10.3390/rs14194741
Chicago/Turabian StyleGarnier, Florent, Marion Bocquet, Sara Fleury, Jérôme Bouffard, Michel Tsamados, Frédérique Remy, Gilles Garric, and Aliette Chenal. 2022. "Latest Altimetry-Based Sea Ice Freeboard and Volume Inter-Annual Variability in the Antarctic over 2003–2020" Remote Sensing 14, no. 19: 4741. https://doi.org/10.3390/rs14194741
APA StyleGarnier, F., Bocquet, M., Fleury, S., Bouffard, J., Tsamados, M., Remy, F., Garric, G., & Chenal, A. (2022). Latest Altimetry-Based Sea Ice Freeboard and Volume Inter-Annual Variability in the Antarctic over 2003–2020. Remote Sensing, 14(19), 4741. https://doi.org/10.3390/rs14194741