The Effects of Anthropogenic Pressure on Rivers: A Case Study in the Metropolitan City of Reggio Calabria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Methodology
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ozpolat, E.; Demir, T. The spatiotemporal shoreline dynamics of a delta under natural and anthropogenic conditions from 1950 to 2018: A dramatic case from the Eastern Mediterranean. Ocean Coast. Manag. 2019, 180, 104910. [Google Scholar] [CrossRef]
- Tachos, V.; Dimitrakopoulos, P.G.; Zogaris, S. Multiple anthropogenic pressures in Eastern Mediterranean rivers: Insights from fish-based bioassessment in Greece. Ecohydrol. Hydrobiol. 2022, 22, 40–54. [Google Scholar] [CrossRef]
- Burian, S.J.; Edwards, F.G. Historical perspectives of urban drainage. Glob. Solut. Urban Drain. 2002, 1–16. [Google Scholar] [CrossRef]
- Surian, N.; Rinaldi, M. Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology 2003, 50, 307–326. [Google Scholar] [CrossRef]
- Hohensinner, S.; Lager, B.; Sonnlechner, C.; Haidvogl, G.; Gierlinger, S.; Schmid, M.; Krausmann, F.; Winiwarter, V. Changes in water and land: The reconstructed Viennese riverscape from 1500 to the present. Water Hist. 2013, 5, 145–172. [Google Scholar] [CrossRef] [PubMed]
- Ceola, S.; Laio, F.; Montanari, A. Human-impacted waters: New perspectives from global high-resolution monitoring. Water Resour. Res. 2015, 51, 7064–7079. [Google Scholar] [CrossRef]
- Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 2019, 12, 7–21. [Google Scholar] [CrossRef]
- Ceola, S.; Laio, F.; Montanari, A. Global-scale human pressure evolution imprints on sustainability of river systems. Hydrol. Earth Syst. Sci. 2019, 23, 3933–3944. [Google Scholar] [CrossRef]
- Fang, Y.; Jawitz, J.W. The evolution of human population distance to water in the USA from 1790 to 2010. Nat. Commun. 2019, 10, 430. [Google Scholar] [CrossRef]
- Liu, C.; Yang, K.; Bennett, M.M.; Lu, X.; Guo, Z.; Li, M. Changes to anthropogenic pressures on reach-scale rivers in South and Southeast Asia from 1990 to 2014. Environ. Res. Lett. 2020, 16, 014025. [Google Scholar] [CrossRef]
- Brookes, A. Channelized Rivers: Perspectives for Environmental Management; Wiley: Chichester, UK, 1988. [Google Scholar]
- Gregory, K.J. The human role in changing river channels. Geomorphology 2006, 79, 172–191. [Google Scholar] [CrossRef]
- Zawiejska, J.; Wyzga, B. Twentieth-century channel change on the Dunajec River, southern Poland: Patterns, causes and controls. Geomorphology 2010, 117, 234–246. [Google Scholar] [CrossRef]
- Kiss, T.; Andrasi, G.; Hernesz, P. Morphological alteration of the Drava as the result of human impact. Landsc. Environ. 2011, 5, 58–75. [Google Scholar]
- Wild, T.C.; Bernet, J.F.; Westling, E.L.; Lerner, D.N. Deculverting: Reviewing the evidence on the “daylighting” and restoration of culverted rivers. Water Environ. J. 2011, 25, 412–421. [Google Scholar] [CrossRef]
- Everard, M.; Moggridge, H.L. Rediscovering the value of urban rivers. Urban Ecosyst. 2012, 15, 293–314. [Google Scholar] [CrossRef]
- Vandenberghe, J.; De Moor, J.J.W.; Spanjaard, G. Natural change and human impact in a present-day fluvial catchment: The Geul River, Southern Netherlands. Geomorphology 2012, 159, 1–14. [Google Scholar] [CrossRef]
- Morais, E.S.; Rocha, P.C.; Hooke, J. Spatiotemporal variations in channel changes caused by cumulative factors in a meandering river: The lower Peixe River, Brazil. Geomorphology 2016, 273, 348–360. [Google Scholar] [CrossRef]
- Rhoads, B.L.; Lewis, Q.W.; Andresen, W. Historical changes in channel network extent and channel planform in an intensively managed landscape: Natural versus human-induced effects. Geomorphology 2016, 252, 17–31. [Google Scholar] [CrossRef]
- Mandarino, A.; Maerker, M.; Firpo, M. ‘The stolen space’: A history of channelization, reduction of riverine areas and related management issues. The lower Scrivia River case study (NW Italy). Int. J. SDP 2019, 14, 118–129. [Google Scholar] [CrossRef]
- Mandarino, A.; Maerker, M.; Firpo, M. Channel planform changes along the Scrivia River floodplain reach in Northwest Italy from 1878 to 2016. Quat. Res. 2019, 91, 620–637. [Google Scholar] [CrossRef]
- Roccati, A.; Faccini, F.; Luino, F.; Graff, J.V.; De Turconi, L. Morphological changes and human impact in the Entella River floodplain (Northern Italy) from the 17th century. Catena 2019, 182, 104–122. [Google Scholar] [CrossRef]
- Brandolini, P.; Mandarino, A.; Paliaga, G.; Faccini, F. Anthropogenic landforms in an urbanized alluvial-coastal plain (Rapallo city, Italy). J. Maps 2020, 17, 86–97. [Google Scholar] [CrossRef]
- Procopiuck, M.; Rosa, A.; Bollmann, H.A.; de Moura, E.N. Socially evaluated impacts on a technologically transformed urban river. Environ. Impact Assess. Rev. 2020, 84, 106442. [Google Scholar] [CrossRef]
- Mandarino, A.; Faccini, F.; Terrone, M.; Paliaga, G. Anthropogenic landforms and geo-hydrological hazards of the Bisagno Stream catchment (Liguria, Italy). J. Maps 2021, 17, 122–135. [Google Scholar] [CrossRef]
- Mandarino, A.; Pepe, G.; Cevasco, A.; Brandolini, P. Quantitative assessment of riverbed planform adjustments, channelization, and associated land use/land cover changes: The Ingauna alluvial-coastal plain case (Liguria, Italy). Remote Sens. 2021, 13, 3775. [Google Scholar] [CrossRef]
- Ylla Arbos, C.; Blom, A.; Viparelli, E.; Reneerkens, M.; Frings, R.M.; Schielen, R.M.J. River response to anthropogenic modification: Channel steepening and gravel front fading in an incising river. Geophys. Res. Lett. 2021, 48, e2020GL091338. [Google Scholar] [CrossRef]
- García-Martínez, B.; Rinaldi, M. Changes in meander geometry over the last 250 years along the lower Guadalquivir River (southern Spain) in response to hydrological and human factors. Geomorphology 2022, 410, 108284. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Jiang, X.; Han, J.; Wang, Z.; Wu, D.; Lin, Q.; Li, L.; Dong, Y. Prediction of riverside greenway landscape aesthetic quality of urban canalized rivers using environmental modeling. J. Clean. Prod. 2022, 367, 133066. [Google Scholar] [CrossRef]
- Petts, G.E. Complex response of river channel morphology subsequent to reservoir construction. Prog. Phys. Geogr. Earth Environ. 1979, 3, 329–362. [Google Scholar] [CrossRef]
- Graf, W.L. Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology 2006, 79, 336–360. [Google Scholar] [CrossRef]
- Boix-Fayos, C.; Barberá, G.G.; López-Bermúdez, F.; Castillo, V.M. Effects of check dams, reforestation and land-use changes on river channel morphology: Case study of the Rogativa catchment (Murcia, Spain). Geomorphology 2007, 91, 103–123. [Google Scholar] [CrossRef]
- Blanton, P.; Marcus, W.A. Transportation infrastructure, river confinement, and impacts on floodplain and channel habitat, Yakima and Chehalis rivers, Washington, USA. Geomorphology 2013, 189, 55–65. [Google Scholar] [CrossRef]
- Ibisate, A.; Díaz, E.; Ollero, A.; Acín, V.; Granado, D. Channel response to multiple damming in a meandering river, middle and lower Aragon River (Spain). Hydrobiologia 2013, 712, 5–23. [Google Scholar] [CrossRef]
- Zema, D.A.; Bombino, G.; Boix-Fayos, C.; Tamburino, V.; Zimbone, S.M.; Fortugno, D. Evaluation and modeling of scouring and sedimentation around check dams in a Mediterranean torrent in Calabria, Italy. J. Soil Water Conserv. 2014, 69, 316–329. [Google Scholar] [CrossRef]
- Fortugno, D.; Boix-Fayos, C.; Bombino, G.; Denisi, P.; Rubio, J.M.Q.; Tamburino, V.; Zema, D.A. Adjustments in channel morphology due to land-use changes and check dam installation in mountain torrents of Calabria (southern Italy). Earth Surf. Process. Landf. 2017, 42, 2469–2483. [Google Scholar] [CrossRef]
- Violin, C.R.; Cada, P.; Sudduth, E.B.; Hassett, B.A.; Penrose, D.L.; Bernhardt, E.S. Effects of urbanization and urban stream restoration on the physical and biological structure of stream ecosystems. Ecol. Appl. 2011, 21, 1932–1949. [Google Scholar] [CrossRef]
- Faccini, F.; Luino, F.; Sacchini, A.; Turconi, L.; De Graff, J.V. Geohydrological hazards and urban development in the Mediterranean area: An example from Genoa (Liguria, Italy). Nat. Hazards Earth Syst. Sci. 2015, 15, 2631–2652. [Google Scholar] [CrossRef]
- De Souza, K.I.S.; Chaffe, P.L.B.; Nogueira, T.M.P.; de Carvalho Pinto, C.R.S. Environmental damage of urbanized stream corridors in a coastal plain in Southern Brazil. Ocean Coast. Manag. 2021, 211, 105739. [Google Scholar] [CrossRef]
- Guimarães, L.F.; Teixeira, F.C.; Pereira, J.N.; Becker, B.R.; Oliveira, A.K.B.; Lima, A.F.; Veroli, A.P.; Miguez, M.G. The challenges of urban river restoration and the proposition of a framework towards river restoration goals. J. Clean. Prod. 2021, 316, 128330. [Google Scholar] [CrossRef]
- Coates, R. Infrastructural events? Flood disaster, narratives and framing under hazardous urbanisation. Int. J. Disaster Risk Reduct. 2022, 74, 102918. [Google Scholar] [CrossRef]
- Wijeratne, V.P.I.S.; Li, G. Urban sprawl and its stress on the risk of extreme hydrological events (EHEs) in the Kelani River basin, Sri Lanka. Int. J. Disaster Risk Reduct. 2022, 68, 102715. [Google Scholar] [CrossRef]
- Nilsson, C.; Berggren, K. Alterations of riparian ecosystems caused by river regulation dam operations have caused global-scale ecological changes in riparian ecosystems. How to protect river environments and human needs of rivers remains one of the most important questions of our time. Bioscience 2000, 50, 783–792. [Google Scholar] [CrossRef]
- Bunn, S.E.; Arthington, A.H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manag. 2022, 30, 492–507. [Google Scholar] [CrossRef] [PubMed]
- Niezgoda, S.L.; Johnson, P.A. Improving the urban stream restoration effort: Identifying critical form and processes relationships. Environ. Manag. 2005, 35, 579–592. [Google Scholar] [CrossRef] [PubMed]
- Gordon, E.; Meentemeyer, R.K. Effects of dam operation and land use on stream channel morphology and riparian vegetation. Geomorphology 2006, 82, 412–429. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Palmer, M.A. Restoring streams in an urbanizing world. Freshw. Biol. 2007, 52, 738–751. [Google Scholar] [CrossRef]
- O’Driscoll, M.; Clinton, S.; Jefferson, A.; Manda, A.; Mcmillan, S. Urbanization Effects on Watershed Hydrology and In-Stream Processes in the Southern United States. Water 2010, 2, 605–648. [Google Scholar] [CrossRef]
- Ahern, J. From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world. Landsc. Urban Plann. 2021, 100, 341–343. [Google Scholar] [CrossRef]
- Neale, M.W.; Moffett, E.R. Re-engineering buried urban streams: Daylighting results in rapid changes in stream invertebrate communities. Ecol. Eng. 2016, 87, 175–184. [Google Scholar] [CrossRef]
- Perini, K.; Sabbion, P. Urban Sustainability and River Restoration: Green and Blue Infrastructure; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Brown, A.G.; Lespez, L.; Sear, D.A.; Macaire, J.J.; Houben, P.; Klimek, K.; Brazier, R.E.; Van Oost, K.; Pears, B. Natural vs anthropogenic streams in Europe: History, ecology and implications for restoration. Earth Sci. Rev. 2018, 180, 185–205. [Google Scholar] [CrossRef]
- Miguez, M.G.; Verol, A.P.; Battemarco, B.P.; Yamamoto, L.M.T.; de Brito, F.A.; Fernandez, F.F.; Rego, A.Q. A framework to support the urbanization process on lowland coastal areas: Exploring the case of Vargem Grande–Rio de Janeiro, Brazil. J. Clean. Prod. 2019, 231, 1281–1293. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Jo, H.I. Effects of audio-visual interactions on soundscape and landscape perception and their influence on satisfaction with the urban environment. Build. Environ. 2020, 169, 106544. [Google Scholar] [CrossRef]
- Jovanovska, D.; Swetnam, R.D.; Tweed, F.S.; Melovski, L. Assessing the landscape visual quality of Shar Planina, North Macedonia. Landsc. Ecol. 2020, 35, 2805–2823. [Google Scholar] [CrossRef]
- Lu, Z.C.; Xu, X.X.; Zhang, Y.W. Urban Waterfront Landscape Design Based on Visual Perception. Urban. Archit. 2020, 17, 133–136. [Google Scholar] [CrossRef]
- Li, X.; Li, L.; Wang, X.R.; Lin, Q.; Wu, D.Z.; Dong, Y.; Han, S. Visual quality evaluation model of an urban river landscape based on random forest. Ecol. Indic. 2021, 133, 108381. [Google Scholar] [CrossRef]
- Rajakumari, S.; Meenambikai, M.; Divya, V.; Sarunjith, K.J.; Ramesh, R. Morphological changes in alluvial and coastal plains of Kandaleru river, Andhra Pradesh using RS and GIS. Egypt. J. Remote Sens. Space Sci. 2021, 24, 1071–1081. [Google Scholar] [CrossRef]
- Belletti, B.; Rinaldi, M.; Buijse, A.; Gurnell, A.; Mosselman, E. A review of assessment methods for river hydromorphology. Environ. Earth Sci. 2015, 73, 2079–2100. [Google Scholar] [CrossRef]
- Knehtl, M.; Petkovska, V.; Urbanič, G. Is it time to eliminate field surveys from hydromorphological assessments of rivers?—Comparison between a field survey and a remote sensing approach. Ecohydrology 2017, 11, e1924. [Google Scholar] [CrossRef]
- Downward, S.R.; Gurnell, A.M.; Brookes, A. Variability in stream erosion and sediment transport: Poster contributions. In Proceedings of the Variability in Stream Erosion and Sediment Transport: The Canberra Symposium, IAHS Publications-Series, Canberra, Australia, 12–16 December 1994; Volume 224, pp. 449–456. [Google Scholar]
- Winterbottom, S.J.; Gilvear, D.J. A GIS-based approach to mapping probabilities of river bank erosion: Regulated river Tummel Scotland. Regul. Rivers Res. Manag. 2000, 16, 127–140. [Google Scholar] [CrossRef]
- Luck, M.; Maumenee, N.; Whited, D.; Lucotch, J.; Chilcote, S.; Lorang, M.; Goodman, D.; McDonald, K.; Kimball, J.; Stanford, J. Remote sensing analysis of physical complexity of North Pacific Rim rivers to assist wild salmon conservation. Earth Surf. Process. Landf. 2010, 35, 1330–1343. [Google Scholar] [CrossRef]
- Hossain, M.A.; Gan, T.Y.; Baki, A.B.M. Assessing morphological changes of the Ganges River using satellite images. Quat. Int. 2013, 304, 142–155. [Google Scholar] [CrossRef]
- Bizzi, S.; Demarchi, L.; Grabowski, R.C.; Weissteiner, C.J.; Van de Bund, W. The use of remote sensing to alabrianze hydromorphological properties of European rivers. Aquat. Sci. 2016, 78, 57–70. [Google Scholar] [CrossRef]
- Magliulo, P.; Bozzi, F.; Pignone, M. Assessing the planform changes of the Tammaro River (southern Italy) from 1870 to 1955 using a GIS-aided historical map analysis. Environ. Earth Sci. 2016, 75, 355. [Google Scholar] [CrossRef]
- Chong, C.H. Comparison of Spatial Data Types for Urban Sprawl Analysis Using Shannon’s Entropy. Ph.D. Dissertation, University of Southern California, Los Angeles, CA, USA, 2017. [Google Scholar]
- Lauer, J.W.; Echterling, C.; Lenhart, C.; Belmont, P.; Rausch, R. Air-photo based change in channel width in the Minnesota River basin: Modes of adjustment and implications for sediment budget. Geomorphology 2017, 297, 170–184. [Google Scholar] [CrossRef]
- Bechter, T.; Baumann, K.; Birk, S.; Bolik, F.; Graf, W.; Pletterbauer, F. LaRiMo-A simple and efficient GIS-based approach for large-scale morphological assessment of large European rivers. Sci. Total Environ. 2018, 628, 1191–1199. [Google Scholar] [CrossRef]
- Akhter, S.; Eibek, K.U.; Islam, S.; Islam, A.R.M.T.; Chu, R.; Shuanghe, S. Predicting spatiotemporal changes of channel morphology in the reach of Teesta River, Bangladesh using GIS and ARIMA modeling. Quat. Int. 2019, 513, 80–94. [Google Scholar] [CrossRef]
- Pal, R.; Pani, P. Remote sensing and GIS-based analysis of evolving planform morphology of the middle-lower part of the Ganga River, India. Egypt. J. Remote Sens. Space Sci. 2019, 22, 1–10. [Google Scholar] [CrossRef]
- Mandarino, A.; Pepe, G.; Maerker, M.; Cevasco, A.; Brandolini, P. Short-term GIS analysis for the assessment of the recent active-channel planform adjustments in a widening, highly altered river: The Scrivia River Italy. Water 2020, 12, 514. [Google Scholar] [CrossRef]
- Shao, Z.; Sumari, N.S.; Portnov, A.; Ujoh, F.; Musakwa, W.; Mandela, P.J. Urban sprawl and its impact on sustainable urban development: A combination of remote sensing and social media data. Geo Spat. Inf. Sci. 2021, 24, 241–255. [Google Scholar] [CrossRef]
- Large, A.R.G.; Gilvear, D.J. Using Google Earth, a virtual-globe imaging platform, for ecosystem services-based river assessment. River Res. Appl. 2015, 31, 406–421. [Google Scholar] [CrossRef] [Green Version]
- Versaci, R.; Minniti, F.; Foti, G.; Canale, C.; Barillà, G.C. River anthropization, case studies in Reggio Calabria (Italy). WIT Trans. Ecol. Environ. 2018, 217, 903–912. [Google Scholar] [CrossRef]
- Sabato, L.; Tropeano, M. Fiumara: A kind of high hazard river. Phys. Chem. Earth 2004, 29, 707–715. [Google Scholar] [CrossRef]
- Sorriso-Valvo, M.; Terranova, O. The Calabrian fiumara Streams. Z. Geomorphol. 2006, 143, 109–125. [Google Scholar]
- Foti, G.; Barbaro, G.; Manti, A.; Foti, P.; La Torre, A.; Geria, P.F.; Puntorieri, P.; Tramontana, N. A methodology to evaluate the effects of river sediment withdrawal: The case study of the Amendolea River in southern Italy. Aquat. Ecosyst. Health Manag. 2020, 23, 465–473. [Google Scholar] [CrossRef]
- Barbaro, G.; Bombino, G.; Foti, G.; Borrello, M.M.; Puntorieri, P. Shoreline evolution near river mouth: Case study of Petrace River (Calabria, Italy). Reg. Stud. Mar. Sci. 2019, 29, 100619. [Google Scholar] [CrossRef]
- Foti, G.; Barbaro, G.; Bombino, G.; Fiamma, V.; Puntorieri, P.; Minniti, F.; Pezzimenti, C. Shoreline changes near river mouth: Case study of Sant’Agata River (Reggio Calabria, Italy). Eur. J. Remote Sens. 2019, 52, 102–112. [Google Scholar] [CrossRef]
- Bombino, G.; Barbaro, G.; D’Agostino, D.; Denisi, P.; Foti, G.; Labate, A.; Zimbone, S.M. Shoreline change and coastal erosion: The role of check dams. First indications from a case study in Calabria, southern Italy. CATENA 2022, 217, 106494. [Google Scholar] [CrossRef]
- Sabato, L. Human impact on alluvial environments in Calabria (southern Italy). Mem. Soc. Geol. Ital. 1994, 48, 935–941. [Google Scholar]
- Hughes, M.L.; McDowell, P.F.; Marcus, W.A. Accuracy assessment of georectified aerial photographs: Implications for measuring lateral channel movement in a GIS. Geomorphology 2006, 74, 1–16. [Google Scholar] [CrossRef]
- Donovan, M.; Belmont, P.; Notebaert, B.; Coombs, T.; Larson, P.; Souffront, M. Accounting for uncertainty in remotely-sensed measurements of river planform change. Earth-Sci. Rev. 2019, 193, 220–236. [Google Scholar] [CrossRef]
- Wolf, P.R.; Dewitt, B.A. Elements of Photogrammetry with Applications in GIS; McGraw-Hill: Madison, WI, USA, 2000. [Google Scholar]
- Paliaga, G.; Luino, F.; Turconi, L.; Marincioni, F.; Faccini, F. Exposure to Geo-hydrological hazards of the Metropolitan area of Genoa, Italy: A Multi-Temporal analysis of the Bisagno Stream. Sustainability 2020, 12, 1114. [Google Scholar] [CrossRef]
- Manawadu, L.; Wijeratne, V.P.I.S. Anthropogenic drivers and impacts of urban flooding-A case study in Lower Kelani River Basin, Colombo Sri Lanka. Int. J. Disaster Risk Reduct. 2021, 57, 102076. [Google Scholar] [CrossRef]
- Tom, R.O.; George, K.O.; Joanes, A.O.; Haron, A. Review of flood modelling and models in developing cities and informal settlements: A case of Nairobi city. J. Hydrol. Reg. Stud. 2022, 43, 101188. [Google Scholar] [CrossRef]
- Nassar, D.M.; Elsayed, H.G. From informal settlements to sustainable communities. Alex. Eng. J. 2018, 57, 2367–2376. [Google Scholar] [CrossRef]
- O’Neill, E.; Brereton, F.; Shahumyan, H.; Clinch, J.P. The impact of perceived flood exposure on flood-risk perception: The role of distance. Risk Anal. 2016, 36, 2158–2186. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.A.; Rajasekar, U.; Patel, D.P.; Coulthard, T.J.; Keiler, M. Flood modeling can make a difference: Disaster risk-reduction and resilience-building in urban areas. Hydrol. Earth Syst. Sci. Discuss. 2016, 1–21. [Google Scholar] [CrossRef]
- Miller, J.D.; Hess, T. Urbanisation impacts on storm runoff along a rural-urban gradient. J. Hydrol. 2017, 552, 474–489. [Google Scholar] [CrossRef]
- Cutter, S.L.; Emrich, C.T.; Gall, M.; Reeves, R. Flash flood risk and the paradox of urban development. Nat. Hazards Rev. 2018, 19, 05017005. [Google Scholar] [CrossRef]
- Tate, E.; Rahman, M.A.; Emrich, C.T.; Sampson, C.C. Flood exposure and social vulnerability in the United States. Nat. Hazards 2021, 106, 435–457. [Google Scholar] [CrossRef]
- Pallathadka, A.; Sauer, J.; Chang, H.; Grimm, N.B. Urban flood risk and green infrastructure: Who is exposed to risk and who benefits from investment? A case study of three US Cities. Landsc. Urban Plan. 2022, 223, 104417. [Google Scholar] [CrossRef]
- Umukiza, E.; Raude, J.M.; Wandera, S.M.; Petroselli, A.; Gathenya, J.M. Impacts of land use and land cover changes on peakdischarge and flow volume in kakia and esamburmbur sub-catchments of narok town, kenya. Hydrology 2021, 8, 82. [Google Scholar] [CrossRef]
- Mandarino, A. Morphological adjustments of the lower Orba River (NW Italy) since the mid-nineteenth century. Geomorphology 2022, 410, 108280. [Google Scholar] [CrossRef]
- Faccini, F.; Luino, F.; Sacchini, A.; Turconi, L. Flash flood events and urban development in Genoa (Italy): Lost in translation. In Engineering Geology for Society and Territory; Springer: Cham, Switzerland, 2015; Volume 5, pp. 797–801. [Google Scholar] [CrossRef]
- Faccini, F.; Luino, F.; Paliaga, G.; Sacchini, A.; Turconi, L.; de Jong, C. Role of rainfall intensity and urban sprawl in the 2014 flash flood in Genoa City, Bisagno catchment (Liguria, Italy). Appl. Geogr. 2018, 98, 224–241. [Google Scholar] [CrossRef]
- Acquaotta, F.; Faccini, F.; Fratianni, S.; Paliaga, G.; Sacchini, A.; Vilímek, V. Increased flash flooding in Genoa Metropolitan Area: A combination of climate changes and soil consumption? Meteorol. Atmos. Phys. 2019, 131, 1099–1110. [Google Scholar] [CrossRef]
- Bonati, S. Contested flood risk reduction: An analysis of environmental and social claims in the city of Genoa. Int. J. Disaster Risk Reduct. 2022, 67, 102637. [Google Scholar] [CrossRef]
- Foti, G.; Barbaro, G.; Barillà, G.C.; Mancuso, P.; Puntorieri, P. Shoreline evolutionary trends along Calabrian coasts: Causes and classification. Front. Mar. Sci. 2022, 9, 846914. [Google Scholar] [CrossRef]
- Barillà, G.C.; Foti, G.; Barbaro, G.; Puntorieri, P. Shoreline changes of a pocket beach. In A remote sensing application. In Proceedings of the Eighth International conference on Remote Sensing and Geoinformations of Environment (RSCy), Paphos, Cyprus, 16–18 March 2020; SPIE—The International Society for Optical Engineering: Bellingham, WA, USA, 2020; p. 1152425. [Google Scholar] [CrossRef]
- De Franco, M.; Minniti, M.; Versaci, R.; Foti, G.; Canale, C.; Puntorieri, P. Flash floods in urban areas: Case studies in Reggio Calabria (Italy). In Proceedings of the International Conference on Urban Drainage Modelling, Palermo, Italy, 23–26 September 2018. [Google Scholar] [CrossRef]
- Barbaro, G.; Petrucci, O.; Canale, C.; Foti, G.; Mancuso, P.; Puntorieri, P. Contemporaneity of floods and storms. A case study of Metropolitan Area of Reggio Calabria in Southern Italy. In Smart Innovation, Systems and Technologies, Proceedings of the 3rd International Symposium New Metropolitan Perspectives (ISTH2020), Reggio Calabria, Italy, 22–25 May 2018; Springer Nature: Cham, Switzerland, 2019; Volume 101, pp. 614–620. [Google Scholar] [CrossRef]
- Canale, C.; Barbaro, G.; Petrucci, O.; Fiamma, V.; Foti, G.; Barillà, G.C.; Puntorieri, P.; Minniti, F.; Bruzzaniti, L. Analysis of floods and storms: Concurrent conditions. Ital. J. Eng. Geol. Environ. 2020, 1, 23–29. [Google Scholar] [CrossRef]
- Canale, C.; Barbaro, G.; Foti, G.; Petrucci, O.; Besio, G.; Barillà, G.C. Bruzzano river mouth damage due to meteorological events. Int. J. River Basin Manag. 2021. [Google Scholar] [CrossRef]
- Vezzoli, R.; Mercogliano, P.; Pecora, S.; Zollo, A.L.; Cacciamani, C. Hydrological simulation of Po River (North Italy) discharge under climate change scenarios using the RCM COSMO-CLM. Sci. Total Environ. 2015, 521, 346–358. [Google Scholar] [CrossRef]
- Darvini, G.; Memmola, F. Assessment of the impact of climate variability and human activities on the runoff in five catchments of the Adriatic Coast of south-central Italy. J. Hydrol. Reg. Stud. 2020, 31, 100712. [Google Scholar] [CrossRef]
- Bibi, S.; Song, Q.; Zhang, Y.; Liu, Y.; Kamran, M.A.; Sha, L.; Zhou, W.; Wang, S.; Gnanamoorthy, P. Effects of climate change on terrestrial water storage and basin discharge in the lancang River Basin. J. Hydrol. Reg. Stud. 2021, 37, 100896. [Google Scholar] [CrossRef]
- Abou Rafee, S.A.; Uvo, C.B.; Martins, J.A.; Machado, C.B.; Freitas, E.D. Land Use and Cover Changes versus climate shift: Who is the main player in river discharge? A case study in the Upper Paraná River Basin. J. Environ. Manag. 2022, 309, 114651. [Google Scholar] [CrossRef] [PubMed]
- Barbaro, G.; Miguez, M.G.; De Sousa, M.M.; Da Cruz Franco, A.B.R.; De Magalhaes, P.M.C.; Foti, G.; Valadao, M.R.; Occhiuto, I. Innovations in best practices: Approaches to managing urban areas and reducing flood risk in Reggio Calabria (Italy). Sustainability 2021, 13, 3463. [Google Scholar] [CrossRef]
- Tian, G.; Wu, J. Comparing urbanization patterns in Guangzhou of China and Phoenix of the USA: The influences of roads and rivers. Ecol. Indic. 2015, 52, 23–30. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, P.; Jiang, L.; Zhang, Y.; Liu, Z.; Rong, T. Spatial change and scale dependence of built-up land expansion and landscape pattern evolution—Case study of affected area of the lower Yellow River. Ecol. Indic. 2022, 141, 109123. [Google Scholar] [CrossRef]
- Hodgkins, G.A.; Dudley, R.W.; Archfield, S.A.; Renard, B. Effects of climate, regulation, and urbanization on historical flood trends in the United States. J. Hydrol. 2019, 573, 697–709. [Google Scholar] [CrossRef]
River | A [km2] | Lm [km] | La [km] | Wmax,’50 [m] | Wmax,’20 [m] | ∆Wmax [m] | ∆Wmax [%] | Wmin,’50 [m] | Wmin,’20 [m] | ∆Wmin% [m] | ∆Wmin% [%] | Am,’50 [%] | Am,’20 [%] | E’50 | E’20 | ∆E |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Molaro | 14.5 | 7.9 | 0.9 | 170 | 100 | 70 | 41 | 110 | 90 | 20 | 18 | <5 | 25 | 3.02 | 3.5 | 0.48 |
Valanidi | 29.0 | 19.9 | 2.0 | 350 | 350 | 0 | 0 | 30 | 30 | 0 | 0 | <5 | 60 | 3.06 | 4.2 | 1.14 |
Armo | 15.0 | 10.5 | 0.7 | 60 | 60 | 0 | 0 | 30 | 20 | 10 | 33 | <5 | 60 | 3.04 | 4.2 | 1.16 |
Sant’Agata | 52.3 | 28.5 | 3.0 | 190 | 80 | 110 | 58 | 90 | 20 | 70 | 78 | 10 | 85 | 3.16 | 4.7 | 1.54 |
Calopinace | 53.5 | 22.7 | 2.8 | 80 | 35 | 45 | 56 | 15 | 15 | 0 | 0 | 60 | 95 | 4.2 | 4.9 | 0.7 |
Annunziata | 22.5 | 21.3 | 1.5 | 25 | 25 | 0 | 0 | 25 | 25 | 0 | 0 | 75 | 95 | 4.5 | 4.9 | 0.4 |
Scaccioti | 7.3 | 7.3 | 1.2 | 150 | 35 | 115 | 77 | 100 | 35 | 65 | 65 | 10 | 65 | 3.2 | 4.3 | 1.1 |
Solano | 2.1 | 3.6 | 1.3 | 20 | 5 | 15 | 75 | 5 | 5 | 0 | 0 | 40 | 70 | 3.8 | 4.4 | 0.6 |
Zagarella | 0.6 | 1.8 | 0.3 | 15 | 10 | 5 | 33 | 10 | 5 | 5 | 50 | 15 | 80 | 3.3 | 4.6 | 1.3 |
Piria | 0.6 | 1.8 | 0.3 | 15 | 5 | 10 | 67 | 10 | 5 | 5 | 50 | 15 | 80 | 3.3 | 4.6 | 1.3 |
Fosso Marina Grande | 1.3 | 2.3 | 0.2 | 10 | 10 | 0 | 0 | 5 | 5 | 0 | 0 | 75 | 90 | 4.5 | 4.8 | 0.3 |
Gaziano | 2.5 | 2.0 | 0.3 | 10 | 10 | 0 | 0 | 5 | 5 | 0 | 0 | 20 | 95 | 3.4 | 4.9 | 1.5 |
Budello | 84.2 | 18.9 | 1.3 | 15 | 15 | 0 | 0 | 10 | 10 | 0 | 0 | 10 | 60 | 3.2 | 4.2 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foti, G.; Bombino, G.; D’Agostino, D.; Barbaro, G. The Effects of Anthropogenic Pressure on Rivers: A Case Study in the Metropolitan City of Reggio Calabria. Remote Sens. 2022, 14, 4781. https://doi.org/10.3390/rs14194781
Foti G, Bombino G, D’Agostino D, Barbaro G. The Effects of Anthropogenic Pressure on Rivers: A Case Study in the Metropolitan City of Reggio Calabria. Remote Sensing. 2022; 14(19):4781. https://doi.org/10.3390/rs14194781
Chicago/Turabian StyleFoti, Giandomenico, Giuseppe Bombino, Daniela D’Agostino, and Giuseppe Barbaro. 2022. "The Effects of Anthropogenic Pressure on Rivers: A Case Study in the Metropolitan City of Reggio Calabria" Remote Sensing 14, no. 19: 4781. https://doi.org/10.3390/rs14194781
APA StyleFoti, G., Bombino, G., D’Agostino, D., & Barbaro, G. (2022). The Effects of Anthropogenic Pressure on Rivers: A Case Study in the Metropolitan City of Reggio Calabria. Remote Sensing, 14(19), 4781. https://doi.org/10.3390/rs14194781