GIS-Based Simulation for Landfill Site Selection in Mekong Delta: A Specific Application in Ben Tre Province
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Simulation Model Design
2.3. Data Collection and Processing
2.4. Criteria Description
2.4.1. Distance from Surface Water
2.4.2. Depth of Groundwater Table
2.4.3. Distance from Residential Areas
2.4.4. Land Use
2.4.5. Geo-Environmental-Geotechnical Characteristics
2.4.6. Distance from Main Roads
2.4.7. Distance from History and Tourism Sites (H&T Sites)
2.4.8. Distance from Industrial Zone Sites
2.5. Analytic Hierarchy Process
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Truong, M.H.; Nguyen, V.L.; Ta, T.K.O.; Takemura, J. The influence of delta formation mechanism on geotchnical property sequence of the late Pleistocene-Holocene sediments in the Mekong River Delta. Heiyon 2016, 2, e00165. [Google Scholar]
- Ta, T.K.O.; Nguyen, V.L.; Tateishi, M.; Kobayahi, I.; Saito, Y.; Nakamura, T. Sediment facies and Late Holocene progradation of the Mekong River Delta in Bentre Province, southern Vietnam: An example of evolution a tide-dominated to a tide- and wave-dominated delta. Sediment. Geol. 2002, 152, 313–325. [Google Scholar] [CrossRef]
- Ta, T.K.O.; Nguyen, V.L.; Tateishi, M.; Kobayahi, I.; Tanabe, S.; Saito, Y. Holocene delta evolution and sediment discharge of the Mekong River, Southern Vietnam. Quat. Sci. Rev. 2002, 21, 1807–1819. [Google Scholar] [CrossRef]
- Umitsu, M.; Nguyen, V.L.; Ta, T.K.O.; Uchida, C.; Ono, E. Late Holocene landform evolution of the Mekong River Delta, Vietnam. Proc. Gen. Meet. Assoc. Jpn. Geogr. 2003, 63, 106. [Google Scholar]
- Rahmat, Z.G.; Niri, M.V.; Alavi, N.; Goudarzi, G.; Babaei, A.A.; Baboli, Z.; Hosseinzadeh, M. Landfill site selection using GIS and AHP: A case study: Behbahan, Iran. KSCE J. Civ. Eng. 2017, 21, 111–118. [Google Scholar] [CrossRef]
- Uyan, M. MSW landfill site selection by combining AHP with GIS for Konya, Turkey. Environ. Earth Sci. 2014, 71, 1629–1639. [Google Scholar] [CrossRef]
- Ghobadi, M.H.; Babazadeh, R.; Bagheri, V. Siting MSW landfills by combining AHP with GIS in Hamedan province, western Iran. Environ. Earth Sci. 2013, 70, 1823–1840. [Google Scholar] [CrossRef]
- Zelenovic Vasiljecvic, T.; Srdjevic, Z.; Bajcetic, R.; Vojinovic Miloradov, M. GIS and the analytic hierarchy process for regional landfill site selection in Transitional countries: A case study from Serbia. Environ. Manag. 2012, 49, 445–458. [Google Scholar] [CrossRef]
- Khodaparast, M.; Rajabi, A.M.; Edalat, A. Municipal solid waste landfill siting by using GIS and analytical hierarchy process (AHP): A case study in Qom city, Iran. Environ. Earth Sci. 2018, 77, 52. [Google Scholar] [CrossRef]
- Kara, C.; Doratli, N. Application of GIS/AHP in siting sanitary landfill: A case study in Northern Cyprus. Waste Manag. Res. 2012, 30, 966–980. [Google Scholar] [CrossRef]
- Ding, Z.; Zhu, M.; Wang, Y.; Zhu, J. An AHP-GIS based model of C&D waste landfill site selection: A triangulation of critical factors. In Proceedings of the 21st International Symposium on Advancement of Construction Management and Real Estate; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- El Baba, M.; Kayastha, P.; De Smedt, F. Landfill site selection using multi-criteria evaluation in the GIS interface a case study from the Gaza Strip, Palestine. Arab. J. Geosci. 2015, 8, 7499–7513. [Google Scholar] [CrossRef]
- Shahabi, H.; Keihanfard, S.; Ahmad, B.B.; Amiri, M.J.T. Evaluating Boolean, AHP and WLC methods for the selection of waste landfill sites using GIS and satellite images. Environ. Earth Sci. 2014, 71, 4221–4233. [Google Scholar] [CrossRef]
- Ait Errouhi, A.; Bahi, L.; Ouadif, L.; Akhssas, A.; Bouroumine, Y.; Bahi, A. Evaluation of landfill site choice using AHP and GIS case study: Oum Azza, Morocco. MATEC Web Conf. 2018, 149, 02047. [Google Scholar] [CrossRef]
- Bahrani, S.; Ebadi, T.; Ehsani, H.; Yousefi, H.; Maknoon, R. Modeling landfill site selection by multi-criteria decision making and fuzzy functions in GIS, case study: Shabesstar, Iran. Environ. Earth Sci. 2016, 75, 337. [Google Scholar] [CrossRef]
- Getahun, S.; Sintayehu, L.G.; Kefelegn, G. GIS-based potential landfill site selection using MCDM-AHP modeling of Gondar Town, Ethiopia. Afr. Geogr. Rev. 2021, 40, 105–125. [Google Scholar]
- Athena, E.; Hassan, S. Municipal soli waste landfill site selection using analytic hierarchy process method for Tafresh town. J. Bio Environ. Sci. 2014, 6, 9–21. [Google Scholar]
- Barakat, A.; Hilali, A.; Baghdadi, M.E.; Touhami, F. Landfill site seletion with GIS-based multi-criteria evaluation technique. A case study in Beni Mellal-Khouribga region, Morocco. Environ. Earth Sci. 2017, 76, 413. [Google Scholar] [CrossRef]
- Wang, G.; Qin, L.; Li, G.; Chen, L. Landfill site selection using spatial information technologies and AHP: A case study in Beijing, China. J. Environ. Manag. 2009, 90, 2414–2421. [Google Scholar] [CrossRef]
- Luciana, R.; Antonio, C.; Giuseppe, O.; Pietro, D.S.; Pietro, R.; Marcella, P.; Giuseppe, Z. Landfill site selection for municipal solid waste by using HJP method in GIS environment: Waste management decision-support in Sicily (Italy). Multidiscip. J. Waste Resour. Residues 2018, 2, 78–88. [Google Scholar]
- Ali, J.C.; Nadhir, A.A.; Hussain, M.H.; Sven, K.; Roland, P. Landfill siting using GIS and AHP (analytical hierarchy process): A case study Al-Qasim Qadhaa, Babylon, Iraq. J. Civ. Eng. Archit. 2016, 10, 530–543. [Google Scholar]
- Djokanović, S.; Abolmasov, B.; Jevremović, D. GIS application for landfill site selection: A case study in Pančevo, Serbia. Bull. Eng. Geol. Environ. 2016, 75, 1273–1299. [Google Scholar] [CrossRef]
- Nadali, A.; Gholamreza, G.; Ali, A.B.; Nemat, J.; Mohsen, H. Municipal solid waste landfill site selection with geographic information systems and analytical hierarchy process: A case study in Mahshahr County, Iran. Waste Manag. Res. 2013, 31, 98–105. [Google Scholar]
- Karimi, H.; Amiri, S.; Huang, J.; Karimi, A. Integrating GIS and multi-criteria decision analysis for landfill site selection, case study: Javanrood County in Iran. Int. J. Environ. Sci. Technol. 2019, 16, 7305–7318. [Google Scholar] [CrossRef]
- Khan, D.; Samadder, S.R. A simplified multi-criteria evaluation model for landfill site ranking and selection based on AHP and GIS. J. Environ. Eng. Landsc. Manag. 2015, 23, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Tercan, E.; Dereli, M.A.; Tapkın, S. A GIS-based multi-criteria evaluation for MSW landfill site selection in Antalya, Burdur, Isparta planning zone in Turkey. Environ. Earth Sci. 2020, 79, 246. [Google Scholar] [CrossRef]
- Bouroumine, Y.; Bahi, L.; Ouadif, L.; Elhachmi, D.; Errouhi, A.A. Sitting MSW Landfill Combining GIS and Analytic Hierarchy Process (AHP), Case Study: Ajdir, Morocco. Int. J. Adv. Res. Eng. Technol. 2020, 11, 318–328. [Google Scholar]
- Kapilan, S.; Elangovan, K. Potential landfill site selection for solid waste disposal using GIS and multi-criteria decision analysis (MCDA). J. Cent. South Univ. 2018, 25, 570–585. [Google Scholar] [CrossRef]
- Islam, A.; Ali, S.M.; Afzaal, M.; Iqbal, S.; Zaidi, S.N.F. Landfill sites selection through analytical hierarchy process for twin cities of Islamabad and Rawalpindi, Pakistan. Environ. Earth Sci. 2018, 77, 72. [Google Scholar] [CrossRef]
- Yildirim, V. Application of raster-based GIS techniques in the siting of landfills in Trabzon Province, Turkey a case study. Waste Manag. Res. 2012, 30, 949–960. [Google Scholar] [CrossRef]
- Hazarika, R.; Saikia, A. Landfill site suitability analysis using AHP for solid waste management in the Guwahati Metropolitan Area, India. Arab. J. Geosci. 2020, 13, 1148. [Google Scholar] [CrossRef]
- Sadhasivam, N.; Sheik Mohideen, A.; Alankar, B. Optimisation of landfill sites for solid waste disposal in Thiruverumbur taluk of Tiruchirappalli district, India. Environ. Earth Sci. 2020, 79, 522. [Google Scholar] [CrossRef]
- Saatsaz, M.; Monsef, I.; Rahmani, M.; Ghods, A. Site suitability evaluation of an old operating landfill using AHP and GIS techniques and integrated hydrogeological and geophysical surveys. Environ. Monit. Assess. 2018, 190, 144. [Google Scholar] [CrossRef]
- Ismail, S.N. Landfill Site Selection Model Using an Integrated Approach of GIS and Multi Criteria Decision Analysis (MCDA): Example of Selangor, Malaysia. Asian J. Earth Sci. 2016, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sumathi, V.R.; Natesan, U.; Sarkar, C. GIS-based approach for optimized siting of municipal solid waste landfill. Waste Manag. 2008, 28, 2146–2160. [Google Scholar] [CrossRef]
- Moeinaddini, M.; Khorasani, N.; Danehkar, A.; Darvishsefat, A.A.; Zienalyan, M. Siting MSW landfill using weighted linear combination and analytical hierarchy process (AHP) methodology in GIS environment (case study Karaj). Waste Manag. 2010, 30, 912–920. [Google Scholar] [CrossRef]
- Mokhtar, A.M.D.; Wan, Z.W.J.; Obot, R.M.M.; Wan, M.A.W.H. How GIS can be a useful tool to deal with landfill site selection. Proceeding of the International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences; 2008. Available online: http://wgrass.media.osaka-cu.ac.jp/gisideas10/papers/10dd0a0e03031b43f145a1ddf3bb.pdf (accessed on 4 November 2022).
- Alexakis, D.D.; Sarris, A. Integrated GIS and remote sensing analysis for landfill siting in Western Crete, Greece. Environ. Earth Sci. 2014, 72, 467–482. [Google Scholar] [CrossRef]
- Donevska, K.R.; Gorsevski, P.V.; Jovanovski, M.; Pesevski, I. Regional non-hazardous landfill site selection by integrating fuzzy logic, AHP and geographic information systems. Environ. Earth Sci. 2012, 67, 121–131. [Google Scholar] [CrossRef]
- Chabok, M.; Asakereh, A.; Bahrami, H.; Jaafarzadeh, N.O. Selection of MSW landfill site by fuzzy-AHP approach combined with GIS: Case study in Ahvaz, Iran. Environ. Monit. Assess. 2020, 192, 433. [Google Scholar] [CrossRef]
- Pasalati, H.; Nodehi, R.N.; Mahvi, A.H.; Yaghmaeian, K.; Charrahi, Z. Landfill site selection using a hybrid system of AHP-Fuzzy in GIS environment: A case study in Shiraz city, Iran. Methods X 2019, 6, 1454–1466. [Google Scholar]
- Chabuk, A.J.; Al-Ansari, N.; Hussain, H.M.; Knutsson, S.; Pusch, R. GIS-based assessment of combined AHP and SAW methods for selecting suitable sites for landfill in Al-Musayiab Qadhaa, Babylon, Iraq. Environ. Earth Sci. 2017, 76, 209. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.A.; Parvin, F.; Al-Ansari, N.; Pham, Q.B.; Ahmad, A.; Sansar Raj, M.; Duong, T.A.; Le, H.B.; Le, H.B.; Thai, V.N. Sanitary landfill site selection by integrating AHP and FTOPSIS with GIS: A case study of Memari Municipality, India. Environ. Sci. Polut. Res. 2021, 28, 7528–7550. [Google Scholar] [CrossRef] [PubMed]
- Soroudi, M.; Omrani, G.; Moataar, F.; Jozi, S.A. A comprehensive multi-criteria decision making-based land capability assessment for municipal solid waste landfill sitting. Environ. Sci. Pollut. Res. 2018, 25, 27877–27889. [Google Scholar] [CrossRef] [PubMed]
- Karakuş, C.B.; Demiroğlu, D.; Çoban, A.; Coban, A.; Ulutas, A. Evaluation of GIS-based multi-criteria decision-making methods for sanitary landfill site selection: The case of Sivas city, Turkey. J. Mater. Cycles Waste Manag. 2020, 22, 254–272. [Google Scholar] [CrossRef]
- Ghobadi, M.H.; Taheri, M.; Taheri, K. Municipal solid waste landfill siting by using analytical hierarchy process (AHP) and a proposed karst vulnerability index in Ravansar County, west of Iran. Environ. Earth Sci. 2017, 76, 68. [Google Scholar] [CrossRef]
- Solomon, P.G.; Paul, B.T.; Jinnah, S.M.; James, M.; Victor, T.S.K. Modelling landfill location using Geographic Information Systems (GIS) and Multi-Criteria Decision Analysis (MCDA): Case study Bo, Southern Sierra Leone. Appl. Geogr. 2013, 36, 3–12. [Google Scholar]
- Karwan, A.; Salahalddin, S.A.; Nadhir, A.A.; Jan, L.; Ali, C. Landfill Site Selection Using MCDM Methods and GIS in the Sulaimaniyah Governorate, Iraq. Sustainability 2019, 11, 4530. [Google Scholar]
- Chabuk, A.; Al-Ansari, N.; Hussain, H.M.; Jan, L.; Answer, H.; Sven, K.; Roland, P. Landfill sites selection using MCDM and comparing method of change detection for Babylon Governorate, Iraq. Environ. Sci. Pollut. Res. 2019, 26, 35325–35339. [Google Scholar] [CrossRef] [Green Version]
- Jamshidi-Zanjani, A.; Rezaei, M. Landfill site selection using combination of fuzzy logic and multi-attribute decision-making approach. Environ. Earth Sci. 2017, 76, 448. [Google Scholar] [CrossRef]
- Özkan, B.; Sarıçiçek, İ.; Özceylan, E. Evaluation of landfill sites using GIS-based MCDA with hesitant fuzzy linguistic term sets. Environ. Sci. Pollut. Res. 2020, 27, 42908–42932. [Google Scholar] [CrossRef]
- Hanine, M.; Boutkhoum, O.; Maknissi, A.E.; Tikniouine, A.; Agouti, T. Decision making under uncertainty using PEES–fuzzy AHP–fuzzy TOPSIS methodology for landfill location selection. Environ. Syst. Decis. 2016, 36, 351–367. [Google Scholar] [CrossRef]
- Mortazavi Chamchali, M.; Ghazifard, A. The use of fuzzy logic spatial modeling via GIS for landfill site selection (case study: Rudbar-Iran). Environ. Earth Sci. 2019, 78, 305. [Google Scholar] [CrossRef]
- Akbari, V.; Rajabi, M.A.; Chavoshi, S.H.; Shams, R. Lndfill site selection by combining GIS and Fuzzy multi criteria decision analysis, case study: Bandar Abbas, Iran. World Appl. Sci. J. 2008, 3, 39–47. [Google Scholar]
- Yashon, O.O.; Emmanuel, C.K.; Ryutaro, T. MCDA-GIS integrated approach for optimized landfill site selection for growing urban regions: An application of neighborhood-proximity analysis. Ann. GIS 2011, 17, 43–62. [Google Scholar]
- Nguyen, T.M.T.; Nguyen, D.T.; Truong, M.H.; Doan, N.A. GIS-based simulation for deep-water port site selection using analytic hierarchy process: A case study from Southern East of Vietnam. Appl. Geomat. 2021, 13, 107–118. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Truong, M.H.; Phan, D.T. Gis-based simulation for solar farm site selection in south-central Vietnam. GeoJournal 2021, 87, 3685–3699. [Google Scholar] [CrossRef]
- Moradi, S.; Yousefi, H.; Noorollahi, Y.; Rosso, D. Multi-criteria decision support system for wind farm site selection and sensitivity analysis: Case study of Alborz Province, Iran. Energy Strategy Rev. 2020, 29, 100478. [Google Scholar] [CrossRef]
- Modica, G.; Pollino, M.; Lanucara, S.; Porta, L.L.; Pellicone, G.; Fazio, S.D.; Fichera, C.R. Land Suitability Evaluation for Agro-forestry: Definition of a Web-Based Multi-Criteria Spatial Decision Support System (MC-SDSS): Preliminary Results. In Internationl Conference on Computational Science and Its Applications-ICCSA 2016; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9788. [Google Scholar] [CrossRef]
- Modica, G.; Pollino, M.; La Porta, L.; Di Fazio, S. Proposal of a Web-Based Multi-criteria Spatial Decision Support System (MC-SDSS) for Agriculture. In Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production; Coppola, A., Di Renzo, G., Altieri, G., D’Antonio, P., Eds.; MID-TERM AIIA 2019. Lecture Notes in Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2020; Volume 67. [Google Scholar] [CrossRef]
- Agus, F.; Azhari, M.; Kusnandar. Web GIS decision support system for increasing community participation in urban spatial planning using hybrid AHP-TOPSIS. Int. J. Eng. Technol. 2018, 7, 4253–4259. [Google Scholar] [CrossRef]
- Özkan, B.; Özceylan, E.; Sarıçiçek, İ. GIS-based MCDM modeling for landfill site suitability analysis: A comprehensive review of the literature. Environ. Sci. Pollut. Res. 2019, 26, 30711–30730. [Google Scholar] [CrossRef]
- Spigolon, L.M.G.; Giannotti, M.; Larocca, A.P.; Russo, M.A.T.; Souza, N.D.C. Landfill siting based on optimization multiple decision analysis and geographic information system analyses. Waste Manag. Res. 2018, 36, 606–615. [Google Scholar] [CrossRef]
- Truong, M.H.; Nguyen, V.L.; Ta, T.K.O.; Takemura, J. Changes in late Pleistocene-Holocene sedimentary facies of the Mekong River Delta and the influence of sedimentary environment on geotechnical engineering properties. Eng. Geol. 2011, 122, 146–159. [Google Scholar] [CrossRef]
- Tiêu chuẩn xây dựng Việt Nam TCXDVN 261:2001, bãi chôn lấp chất thải rắn–tiêu chuẩn thiết kế (Solid Waste Landfill–Design Standard). Available online: https://vanbanphapluat.co/tcxdvn-261-2001-bai-chon-lap-chat-thai-ran-tieu-chuan-thiet-ke#:~:text=Ti%C3%AAu%20chu%E1%BA%A9n%20x%C3%A2y%20d%E1%BB%B1ng%20Vi%E1%BB%87t%20Nam%20TCXDVN%20261%3A%202001%20%E2%80%93%20B%C3%A3i,26%20th%C3%A1ng%2012%20n%C4%83m%202001 (accessed on 30 May 2022). (In Vietnamese).
- Braja, M.D. Principles of Geotechnical Engineering, 7th ed.; International Thomson Publishing: London, UK, 2010; p. 398. [Google Scholar]
- Ta, T.K.O.; Nguyen, V.L.; Tateishi, M.; Kobayahi, I.; Saito, Y. Holocene Delta Evolution and Depositional Models of the Mekong River Delta, Southern Vietnam. In River Deltas-Concepts, Model, and Example; Gioán, L., Bhattacharya, J.P., Eds.; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 2005; pp. 453–466. Available online: https://pubs.geoscienceworld.org/books/book/1380/chapter-abstract/10817742/Holocene-Delta-Evolution-and-Depositional-Models?redirectedFrom=fulltext (accessed on 4 November 2022).
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
No. | Name of Data | File Type | Source |
---|---|---|---|
1 | Network of surface water | Shape file | Extracted from land use map |
2 | Depth of groundwater table | Shape file | Created from bore-hold data |
3 | Distribution of residential areas | Shape file | Extracted from land use map |
4 | Land use map | AutoCAD file | Department of Natural Resources and Environment, Thanh Phu district, Ben Tre province |
5 | Road network | Shapefile | https://www.geofabrik.de (accessed on 15 March 2021) |
6 | Geomorphological map | JPEG | [67] |
7 | Bore-hole | Excel file | Department of Hydrogeology and Engineering Geology, University of Science, HCM-VNU |
8 | History and tourism sites | Shape file | Extracted from land use map |
9 | Industrial zones sites | Shape file | Extracted from land use map |
Score | Advantage for Geo-Environmental and Geotechnical Characteristics |
---|---|
<2 | Rather advantageous |
2 and <4 | Advantageous |
4 | Very Advantageous |
Value of pij | Explanation |
---|---|
1 | i is equally important to j |
3 | i is slightly more important than j |
5 | i is strongly more important than j |
7 | i is very strongly more important than j |
9 | i is extremely more important than j |
2, 4, 6, 8 | Intermediate values |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
RI | 0.00 | 0.00 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
Criteria | Weight | CR | Sub-Criteria | Weight | CR |
---|---|---|---|---|---|
Distance from surface water | 0.325 | 0.062 | >450 m | 0.602 | 0.033 |
>300–450 m | 0.243 | ||||
>150–300 m | 0.105 | ||||
0–150 m | 0.050 | ||||
Depth of groundwater table | 0.224 | >1.8–2.3 m | 0.602 | 0.033 | |
>1.2–1.8 m | 0.243 | ||||
>0.6–1.2 m | 0.105 | ||||
0–0.6 m | 0.050 | ||||
Distance from residential areas | 0.152 | >600 m | 0.602 | 0.033 | |
>400–600 m | 0.243 | ||||
>200–400 m | 0.105 | ||||
0–200 m | 0.050 | ||||
Land use | 0.101 | Perennial tree land | 0.550 | - | |
Paddy field | 0.540 | ||||
Geo-environmental and geotechnical characteristics | 0.064 | Very advantage | 0.602 | 0.033 | |
Advantage | 0.243 | ||||
Rather advantage | 0.105 | ||||
Disadvantage | 0.050 | ||||
Distance from main roads | 0.064 | 0–200 m | 0.602 | 0.033 | |
>200–400 m | 0.243 | ||||
>400–600 m | 0.105 | ||||
>600 m | 0.050 | ||||
Distance from history and tourism sites | 0.041 | >1500 m | 0.602 | 0.033 | |
>1000–1500 m | 0.243 | ||||
>500–1000 m | 0.105 | ||||
0–500 m | 0.050 | ||||
Distance from industrial zone sites | 0.028 | >3000 m | 0.602 | 0.033 | |
>2000–3000 m | 0.243 | ||||
>1000–2000 m | 0.105 | ||||
0–1000 m | 0.050 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, D.-T.; Truong, M.-H.; Ngo, T.-P.-U.; Le, A.-M.; Yamato, Y. GIS-Based Simulation for Landfill Site Selection in Mekong Delta: A Specific Application in Ben Tre Province. Remote Sens. 2022, 14, 5704. https://doi.org/10.3390/rs14225704
Nguyen D-T, Truong M-H, Ngo T-P-U, Le A-M, Yamato Y. GIS-Based Simulation for Landfill Site Selection in Mekong Delta: A Specific Application in Ben Tre Province. Remote Sensing. 2022; 14(22):5704. https://doi.org/10.3390/rs14225704
Chicago/Turabian StyleNguyen, Dinh-Thanh, Minh-Hoang Truong, Thi-Phuong-Uyen Ngo, Anh-Minh Le, and Yuya Yamato. 2022. "GIS-Based Simulation for Landfill Site Selection in Mekong Delta: A Specific Application in Ben Tre Province" Remote Sensing 14, no. 22: 5704. https://doi.org/10.3390/rs14225704
APA StyleNguyen, D. -T., Truong, M. -H., Ngo, T. -P. -U., Le, A. -M., & Yamato, Y. (2022). GIS-Based Simulation for Landfill Site Selection in Mekong Delta: A Specific Application in Ben Tre Province. Remote Sensing, 14(22), 5704. https://doi.org/10.3390/rs14225704