An Advanced Operational Approach for Tropical Cyclone Center Estimation Using Geostationary-Satellite-Based Water Vapor and Infrared Channels
Abstract
:1. Introduction
2. Data
2.1. Communication, Ocean and Meteorological Satellite Meteorological Imager
2.2. Tropical Cyclone Track Data
3. Methods
3.1. Setting Region of Interest
3.1.1. Image Segmentation Using KMA-Based Tropical Cyclone Information
3.1.2. Score Matrix
3.2. Tropical Cyclone Center Determination
3.2.1. Logarithmic Spiral Band for Matching with the Tropical Cyclone Rain Band
3.2.2. Fitting Value for Identifying a Tropical Cyclone Center
3.3. Accuracy Assessment
4. Results and Discussion
4.1. Evaluation of Tropical Cyclone Center Estimation Models by Intensity and Phase
4.2. Tropical Cyclone Center Estimations Using Typhoon YUTU in 2018
4.3. Novelty and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ARCHER | Automated Rotational Center Hurricane Eye Retrieval |
BT | Brightness temperature |
BTT | Brightness temperature template |
COMS MI | Communication, Ocean and Meteorological Satellite Meteorological Imager |
IR1 | Infrared-1 |
JWTC | Joint warning typhoon center |
KMA | Korea Meteorological Administration |
LSB | Logarithm spiral band |
MAE | Mean absolute error |
P05 | Percentage of MAE less than 0.5° |
RMSE | Root mean squared error |
ROI | Region of interest |
SCBeM | Spiral cloud belt matching |
SCM | Score matrix |
SCT | Spatial characteristic template |
SS | Skill score |
TC | Tropical cyclone |
TCCS | Tropical cyclone cloud system |
WNP | Western North Pacific |
WV | Water vapor |
References
- Jacob, S.D.; Shay, L.K. The Role of Oceanic Mesoscale Features on the Tropical Cyclone–Induced Mixed Layer Response: A Case Study. J. Phys. Oceanogr. 2003, 33, 649–676. [Google Scholar] [CrossRef]
- Weinkle, J.; Maue, R.; Pielke, R. Historical Global Tropical Cyclone Landfalls. J. Clim. 2012, 25, 4729–4735. [Google Scholar] [CrossRef]
- Moore, T.W.; Dixon, R.W. Tropical cyclone-tornado casualties. Nat. Hazards 2012, 61, 621–634. [Google Scholar] [CrossRef]
- Holland, G.; Bruyère, C.L. Recent intense hurricane response to global climate change. Clim. Dyn. 2014, 42, 617–627. [Google Scholar] [CrossRef]
- Liang, A.; Oey, L.; Huang, S.; Chou, S. Long-term trends of typhoon-induced rainfall over Taiwan: In situ evidence of poleward shift of typhoons in western North Pacific in recent decades. J. Geophys. Res. 2017, 122, 2750–2765. [Google Scholar] [CrossRef]
- Altman, J.; Ukhvatkina, O.N.; Omelko, A.M.; Macek, M.; Plener, T.; Pejcha, V.; Cerny, T.; Petrik, P.; Srutek, M.; Song, J.; et al. Poleward migration of the destructive effects of tropical cyclones during the 20th century. Proc. Natl. Acad. Sci. USA 2018, 115, 11543–11548. [Google Scholar] [CrossRef]
- Lee, J.; Im, J.; Cha, D.-H.; Park, H.; Sim, S. Tropical Cyclone Intensity Estimation Using Multi-Dimensional Convolutional Neural Networks from Geostationary Satellite Data. Remote Sens. 2020, 12, 108. [Google Scholar] [CrossRef]
- Aberson, S.D. Targeted Observations to Improve Operational Tropical Cyclone Track Forecast Guidance. Mon. Weather Rev. 2003, 131, 1613–1628. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, F. OBEST: An Observation-Based Ensemble Subsetting Technique for Tropical Cyclone Track Prediction. Weather Forecast. 2016, 31, 57–70. [Google Scholar] [CrossRef]
- Dvorak, V.F. Tropical Cyclone Intensity Analysis and Forecasting from Satellite Imagery. Mon. Weather Rev. 1975, 103, 420–430. [Google Scholar] [CrossRef]
- Wimmers, A.J.; Velden, C.S. Advancements in Objective Multisatellite Tropical Cyclone Center Fixing. J. Appl. Meteorol. Climatol. 2016, 55, 197–212. [Google Scholar] [CrossRef]
- Lu, X.; Yu, H.; Yang, X.; Li, X.; Tang, J. A new technique for automatically locating the center of tropical cyclones with multi-band cloud imagery. Front. Earth Sci. 2019, 13, 836–847. [Google Scholar] [CrossRef]
- Song, J.-J.; Wang, Y.; Wu, L. Trend discrepancies among three best track data sets of western North Pacific tropical cyclones. J. Geophys. Res. 2010, 115, D12. [Google Scholar] [CrossRef]
- Wimmers, A.J.; Velden, C.S. Objectively Determining the Rotational Center of Tropical Cyclones in Passive Microwave Satellite Imagery. J. Appl. Meteorol. Climatol. 2010, 49, 2013–2034. [Google Scholar] [CrossRef]
- Jaiswal, N.; Kishtawal, C.M. Automatic Determination of Center of Tropical Cyclone in Satellite-Generated IR Images. IEEE Geosci. Remote Sens. Lett. 2011, 8, 460–463. [Google Scholar] [CrossRef]
- Wei, K.; Jing, Z.-L.; Li, Y.-X.; Liu, S.-L. Spiral band model for locating Tropical Cyclone centers. Pattern Recognit. Lett. 2011, 32, 761–770. [Google Scholar] [CrossRef]
- Schmetz, J.; Tjemkes, S.A.; Gube, M.; van de Berg, L. Monitoring deep convection and convective overshooting with METEOSAT. Adv. Space Res. 1997, 19, 433–441. [Google Scholar] [CrossRef]
- Olander, T.L.; Velden, C.S. Tropical Cyclone Convection and Intensity Analysis Using Differenced Infrared and Water Vapor Imagery. Weather Forecast. 2009, 24, 1558–1572. [Google Scholar] [CrossRef]
- Han, H.; Lee, S.; Im, J.; Kim, M.; Lee, M.-I.; Ahn, M.H.; Chung, S.-R. Detection of Convective Initiation Using Meteorological Imager Onboard Communication, Ocean, and Meteorological Satellite Based on Machine Learning Approaches. Remote Sens. 2015, 7, 9184–9204. [Google Scholar] [CrossRef]
- Lee, J.; Kim, M.; Im, J.; Han, H.; Han, D. Pre-trained feature aggregated deep learning-based monitoring of overshooting tops using multi-spectral channels of GeoKompsat-2A advanced meteorological imagery. GIsci Remote Sens. 2021, 58, 1052–1071. [Google Scholar] [CrossRef]
- Kumar, S.; del Castillo-Velarde, C.; Rojas, J.L.F.; Moya-Álvarez, A.; Castro, D.M.; Srivastava, S.; Silva, Y. Precipitation structure during various phases the life cycle of precipitating cloud systems using geostationary satellite and space-based precipitation radar over Peru. GIsci Remote Sens. 2020, 57, 1057–1082. [Google Scholar] [CrossRef]
- Yin, G.; Baik, J.; Park, J. Comprehensive analysis of GEO-KOMPSAT-2A and FengYun satellite-based precipitation estimates across Northeast Asia. GIsci Remote Sens. 2022, 59, 782–800. [Google Scholar] [CrossRef]
- Zhou, Y.; Matyas, C.J. Regionalization of precipitation associated with tropical cyclones using spatial metrics and satellite precipitation. GIsci Remote Sens. 2021, 58, 542–561. [Google Scholar] [CrossRef]
- Chang, F.-L.; Li, Z. Retrieving vertical profiles of water-cloud droplet effective radius: Algorithm modification and preliminary application. J. Geophys. Res. 2003, 108, D24. [Google Scholar] [CrossRef]
- Fiolleau, T.; Roca, R. An Algorithm for the Detection and Tracking of Tropical Mesoscale Convective Systems Using Infrared Images From Geostationary Satellite. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4302–4315. [Google Scholar] [CrossRef]
- Takahashi, H.; Luo, Z.J. Characterizing tropical overshooting deep convection from joint analysis of CloudSat and geostationary satellite observations. J. Geophys. Res. 2014, 119, 112–121. [Google Scholar] [CrossRef]
- Han, D.; Lee, J.; Im, J.; Sim, S.; Lee, S.; Han, H. A Novel Framework of Detecting Convective Initiation Combining Automated Sampling, Machine Learning, and Repeated Model Tuning from Geostationary Satellite Data. Remote Sens. 2019, 11, 1454. [Google Scholar] [CrossRef]
- Lee, H.-B.; Heo, J.-H.; Sohn, E.-H. Korean fog probability retrieval using remote sensing combined with machine-learning. GIsci Remote Sens. 2021, 58, 1434–1457. [Google Scholar] [CrossRef]
- Lee, S.; Choi, J. A snow cover mapping algorithm based on a multitemporal dataset for GK-2A imagery. GIsci Remote Sens. 2022, 59, 1078–1102. [Google Scholar] [CrossRef]
- Liu, C.-C.; Shyu, T.-Y.; Lin, T.-H.; Liu, C.-Y. Satellite-derived normalized difference convection index for typhoon observations. J. Appl. Remote Sens. 2015, 9, 096074. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, D.; Woodley, W.L.; Lerner, A.; Kelman, G.; Lindsey, D.T. Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase. J. Geophys. Res. 2008, 113, D4. [Google Scholar] [CrossRef]
- Frank, W.M.; Gray, W.M. Radius and Frequency of 15 m s−1 (30 kt) Winds around Tropical Cyclones. J. Appl. Meteorol. Climatol. 1980, 19, 219–223. [Google Scholar] [CrossRef]
- Cocks, S.B.; Gray, W.M. Variability of the Outer Wind Profiles of Western North Pacific Typhoons: Classifications and Techniques for Analysis and Forecasting. Mon. Weather Rev. 2002, 130, 1989–2005. [Google Scholar] [CrossRef]
- Lee, C.-S.; Cheung, K.K.W.; Fang, W.-T.; Elsberry, R.L. Initial Maintenance of Tropical Cyclone Size in the Western North Pacific. Mon. Weather Rev. 2010, 138, 3207–3223. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, C.C. Current understanding of tropical cyclone structure and intensity changes—A review. Meteorol. Atmos. Phys. 2004, 87, 257–278. [Google Scholar] [CrossRef]
- Yang, J.; Chen, M. Variations of rapidly intensifying tropical cyclones and their landfalls in the Western North Pacific. Coast. Eng. 2021, 63, 142–159. [Google Scholar] [CrossRef]
- Dvorak, V.F. Tropical Cyclone Intensity Analysis Using Satellite Data; US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service: Washington, DC, USA, 1984; Volume 11.
- Wong, K.Y.; Yip, C.L.; Li, P.W. Automatic tropical cyclone eye fix using genetic algorithm. Expert Syst. Appl. 2008, 34, 643–656. [Google Scholar] [CrossRef]
- Ming, J.; Zhang, J.A. Effects of surface flux parameterization on the numerically simulated intensity and structure of Typhoon Morakot (2009). Adv. Atmos. Sci. 2016, 33, 58–72. [Google Scholar] [CrossRef]
- Liu, C.; Shyu, T.; Chao, C.; Lin, Y. Analysis on typhoon Long Wang intensity changes over the ocean via satellite data. J. Mar. Sci. Technol. 2009, 17, 23–28. [Google Scholar] [CrossRef]
- Fujita, T.; Izawa, T.; Watanabe, K.; Imai, I. A Model of Typhoons Accompanied by Inner and Outer Rainbands. J. Appl. Meteorol. Climatol. 1967, 6, 3–19. [Google Scholar] [CrossRef]
- Holland, G.J. Angular momentum transports in tropical cyclones. Q. J. R. Meteorol. Soc. 1983, 109, 187–209. [Google Scholar] [CrossRef]
- Bai, Q.; Wei, K.; Jing, Z.; Li, Y.; Tuo, H.; Liu, C. Tropical cyclone spiral band extraction and center locating by binary ant colony optimization. Sci. China Earth Sci. 2012, 55, 332–346. [Google Scholar] [CrossRef]
- Willoughby, H.E. Forced secondary circulations in hurricanes. J. Geophys. Res. Oceans. 1979, 84, 3173–3183. [Google Scholar] [CrossRef]
- Smith, R.K. Tropical Cyclone Eye Dynamics. J. Atmos. Sci. 1980, 37, 1227–1232. [Google Scholar] [CrossRef]
- Willoughby, H.E. Temporal Changes of the Primary Circulation in Tropical Cyclones. J. Atmos. Sci. 1990, 47, 242–264. [Google Scholar] [CrossRef]
- Tsujino, S.; Horinouchi, T.; Tsukada, T.; Kuo, H.-C.; Yamada, H.; Tsuboki, K. Inner-Core Wind Field in a Concentric Eyewall Replacement of Typhoon Trami (2018): A Quantitative Analysis Based on the Himawari-8 Satellite. J. Geophys. Res. 2021, 126, e2020JD034434. [Google Scholar] [CrossRef]
Channel | Wavelength Range (µm) | Central Wavelength (µm) | Spatial Resolution (km) | Temporal Resolution (min) |
---|---|---|---|---|
Visible | 0.55–0.8 | 0.67 | 1 | 15 |
Shortwave Infrared | 3.5–4.0 | 3.7 | 4 | |
Water Vapor | 6.5–7.0 | 6.7 | ||
Infrared 1 | 10.3–11.3 | 10.8 | ||
Infrared 2 | 11.5–12.5 | 12.0 |
Category | Maximum Sustained Wind | |
---|---|---|
m/s | Knots (kts) | |
Category 1 | 17–25 | 34–48 |
Category 2 | 25–33 | 48–64 |
Category 3 | 33–44 | 64–85 |
Category 4 | 44–54 | 85–105 |
Category 5 | 54– | 105– |
Category | Size | a | ω | b | |
---|---|---|---|---|---|
Cat. 1 | S M L | 24 26 28 | [0 13] [0 14] [0 15] | 0.17 | |
Cat. 2 | S M L | 24 26 28 | [0 12] [0 13] [0 14] | 0.17 | [0 |
Cat. 3 | S M L | 22 24 26 | [0 11] [0 12] [0 13] | 0.17 | [0 |
Cat. 4 | S M L | 20 22 24 | [0 10] [0 11] [0 12] | 0.17 | |
Cat. 5 | S M L | 20 22 24 | [0 10] [0 11] [0 12] | 0.17 |
Scheme 1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Control Model | Model A | Model B | # of Samples | |||||||
MAE | RMSE | P05 | MAE (SS) | RMSE | P05 | MAE (SS) | RMSE | P05 | ||
Cat. 1 | 0.59 | 0.76 | 0.38 | 0.63 (−6.2) | 0.80 | 0.35 | 0.58 (+1.2) | 0.76 | 0.42 | 1023 |
Cat. 2 | 0.54 | 0.68 | 0.42 | 0.55 (−0.9) | 0.69 | 0.41 | 0.49 (+9.0) | 0.63 | 0.49 | 620 |
Cat. 3 | 0.51 | 0.63 | 0.47 | 0.43 (+15.7) | 0.55 | 0.60 | 0.38 (+24.0) | 0.52 | 0.65 | 888 |
Cat. 4 | 0.46 | 0.55 | 0.50 | 0.34 (+26.9) | 0.43 | 0.73 | 0.24 (+47.1) | 0.36 | 0.84 | 530 |
Cat. 5 | 0.40 | 0.48 | 0.61 | 0.25 (+38.7) | 0.31 | 0.91 | 0.11 (+72.8) | 0.19 | 0.97 | 109 |
All | 0.53 | 0.67 | 0.44 | 0.49 (+6.6) | 0.65 | 0.51 | 0.44 (+17.4) | 0.60 | 0.59 | 3170 |
Scheme 2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Control Model | Model A | Model B | # of Samples | |||||||
MAE | RMSE | P05 | MAE (SS) | RMSE | P05 | MAE (SS) | RMSE | P05 | ||
Cat. 1 | 1.32 | 1.68 | 0.09 | 1.27 (+3.8) | 1.63 | 0.13 | 1.29 (+2.8) | 1.66 | 0.13 | 1023 |
Cat. 2 | 1.26 | 1.61 | 0.11 | 1.10 (+12.5) | 1.45 | 0.18 | 1.09 (+13.5) | 1.46 | 0.20 | 620 |
Cat. 3 | 1.29 | 1.64 | 0.14 | 0.88 (+32.1) | 1.23 | 0.32 | 0.85 (+33.8) | 1.21 | 0.33 | 888 |
Cat. 4 | 1.02 | 1.33 | 0.20 | 0.66 (+35.5) | 0.99 | 0.49 | 0.60 (+41.2) | 0.93 | 0.52 | 530 |
Cat. 5 | 0.82 | 1.07 | 0.29 | 0.38 (+53.2) | 0.55 | 0.72 | 0.23 (+72.3) | 0.43 | 0.83 | 109 |
All | 1.23 | 1.59 | 0.13 | 0.99 (+19.3) | 1.36 | 0.27 | 0.98 (+20.8) | 1.36 | 0.29 | 3170 |
Method | Used Imagery | MAE | |
---|---|---|---|
Operational report (Wimmers and Velden, 2010; 2016) | ARCHER | Himawari-8 AHI IR | 0.45 |
Control model (Lu et al., 2018) | SCBeM | COMS MI IRW | 0.50 |
Model A | LSB | COMS MI IRW, WV | 0.46 |
Model B | LSB + SCM | COMS MI IRW, WV | 0.38 |
Observed Time (UTC) | Phase | Category | ROI Size (Pixels) | Detection Error (°) | ||||
---|---|---|---|---|---|---|---|---|
Control | Model A | Model B | Control | Model A | Model B | |||
10/22/2018 1200 | Developing | 1 | 14,845 | 7681 | 7681 | 2.01 | 0.72 | 0.51 |
10/23/2018 0600 | 2 | 13,936 | 5490 | 5490 | 1.41 | 0.10 | 0 | |
10/23/2018 1800 | 3 | 15,180 | 9483 | 9483 | 1.02 | 0.28 | 0.10 | |
10/24/2018 0600 | 4 | 15,338 | 10,540 | 10,540 | 0.58 | 0.22 | 0.14 | |
10/25/2018 0000 | 5 | 13,379 | 8112 | 8112 | 1.53 | 0.67 | 0.22 | |
10/25/2018 0600 | Decaying | 5 | 10,490 | 5939 | 5939 | 0.95 | 0.14 | 0.10 |
10/26/2018 0600 | 4 | 14,634 | 5916 | 5916 | 0.32 | 0.36 | 0.10 | |
10/30/2018 0600 | 3 | 12,446 | 7067 | 7067 | 2.82 | 0.70 | 0.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, Y.; Lee, J.; Im, J.; Sim, S. An Advanced Operational Approach for Tropical Cyclone Center Estimation Using Geostationary-Satellite-Based Water Vapor and Infrared Channels. Remote Sens. 2022, 14, 4800. https://doi.org/10.3390/rs14194800
Shin Y, Lee J, Im J, Sim S. An Advanced Operational Approach for Tropical Cyclone Center Estimation Using Geostationary-Satellite-Based Water Vapor and Infrared Channels. Remote Sensing. 2022; 14(19):4800. https://doi.org/10.3390/rs14194800
Chicago/Turabian StyleShin, Yeji, Juhyun Lee, Jungho Im, and Seongmun Sim. 2022. "An Advanced Operational Approach for Tropical Cyclone Center Estimation Using Geostationary-Satellite-Based Water Vapor and Infrared Channels" Remote Sensing 14, no. 19: 4800. https://doi.org/10.3390/rs14194800
APA StyleShin, Y., Lee, J., Im, J., & Sim, S. (2022). An Advanced Operational Approach for Tropical Cyclone Center Estimation Using Geostationary-Satellite-Based Water Vapor and Infrared Channels. Remote Sensing, 14(19), 4800. https://doi.org/10.3390/rs14194800