Assessment and Calibration of ERA5 Severe Winds in the Atlantic Ocean Using Satellite Data
Abstract
:1. Introduction
2. Assessments
2.1. Data Collocation and Error Metrics
2.2. Initial Comparisons
2.3. Assessment Results
3. Calibration
3.1. Data Selection and Calibration Function
3.2. Calibration Results
4. Assessment and Calibration under Cyclonic Conditions
4.1. Cyclone Tracks and Maps of Cyclonic Areas
4.2. Wind Assessment under Cyclonic Conditions
4.3. Wind Calibration under Cyclonic Conditions
5. Final Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cavaleri, L.; Alves, J.H.G.M.; Ardhuin, F.; Babanin, A.; Banner, M.; Belibassakis, K.; Benoit, M.; Donelan, M.; Groeneweg, J.; Herbers, T.H.C.; et al. Wave modelling-The state of the art. Prog. Oceanogr. 2007, 75, 603–674. [Google Scholar] [CrossRef] [Green Version]
- Gramcianinov, C.B.; Campos, R.M.; Guedes Soares, C.; Camargo, R. Extreme waves generated by cyclonic winds in the western portion of the South Atlantic Ocean. Ocean Eng. 2020, 213, 107745. [Google Scholar] [CrossRef]
- Teixeira, J.C.; Abreu, M.P.; Guedes Soares, C. Uncertainty of ocean wave hindcasts due to wind modelling. J. Offshore Mech. Arct. Eng. 1995, 117, 294–297. [Google Scholar] [CrossRef]
- Holthuijsen, L.H.; Booji, N.; Bertotti, L. The propagation of wind errors through ocean wave hindcasts. J. Offshore Mech. Arct. Eng. 1996, 118, 184–189. [Google Scholar] [CrossRef]
- Ponce de Leon, S.; Guedes Soares, C. Sensitivity of wave model predictions to wind fields in the Western Mediterranean sea. Coast. Eng. 2008, 55, 920–929. [Google Scholar] [CrossRef]
- Campos, R.M.; Guedes Soares, C. Comparison of HIPOCAS and ERA wind and wave reanalyses in the North Atlantic Ocean. Ocean Eng. 2016, 112, 320–334. [Google Scholar] [CrossRef]
- Kirwan, A.D., Jr.; McNally, G.; Pazan, S.; Wert, R. Analysis of Surface Current Response to Wind. J. Phys. Oceanogr. 1979, 9, 401–412. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, B.; Perrie, W.; Mouche, A.; Liu, G.; Li, H.; Wang, C.; He, Y. Observed Ocean Surface Winds and Mixed Layer Currents Under Tropical Cyclones: Asymmetric Characteristics. J. Geophys. Res. 2022, 127, e2021JC017991. [Google Scholar] [CrossRef]
- Pugh, D.T. Tides, Surges, and Mean Sea-Level; John Wiley & Sons: Chichester, UK, 1987; ISBN 0-471-91505-X. Available online: https://eprints.soton.ac.uk/19157/1/sea-level.pdf (accessed on 1 July 2022).
- Yin, J.; Griffies, S.M.; Winton, M.; Zhao, M.; Zanna, L. Response of Storm-Related Extreme Sea Level along the U.S. Atlantic Coast to Combined Weather and Climate Forcing. J. Clim. 2020, 33, 3745–3769. [Google Scholar] [CrossRef] [Green Version]
- Young, I.R.; Donelan, M.A. On the determination of global ocean wind and wave climate from satellite observations. Remote Sens. Environ. 2018, 215, 228–241. [Google Scholar] [CrossRef]
- Takbash, A.; Young, I.R.; Breivik, Ø. Global Wind Speed and Wave Height Extremes Derived from Long-Duration Satellite Records. J. Clim. 2019, 109, 109–126. [Google Scholar] [CrossRef]
- Stefanakos, C. Global Wind and Wave Climate Based on Two Reanalysis Databases: ECMWF ERA5 and NCEP CFSR. J. Mar. Sci. Eng. 2021, 9, 990. [Google Scholar] [CrossRef]
- Stopa, J.E. Seasonality of wind speeds and wave heights from 30 years of satellite altimetry. Adv. Space Res. 2021, 68, 787–801. [Google Scholar] [CrossRef]
- Kozubek, M.; Laštovička, J.; Zajicek, R. Climatology and Long-Term Trends in the Stratospheric Temperature and Wind Using ERA5. Remote Sens. 2021, 13, 4923. [Google Scholar] [CrossRef]
- Caires, S.; Sterl, A. Validation of ocean wind and wave data using triple collocation. J Geophys Res. 2003, 108, 3098. [Google Scholar] [CrossRef]
- Campos, R.M.; Alves, J.H.G.M.; Guedes Soares, C.; Parente, C.E.; Guimaraes, L.G. Regional long-term extreme wave analysis using hindcast data from the South Atlantic Ocean. Ocean Eng. 2019, 179, 202–212. [Google Scholar] [CrossRef]
- Uppala, S.M.; Kållberg, P.W.; Simmons, A.J.; Andrae, U.; da Costa Bechtold, V.; Fiorino, M.; Gibson, J.K.; Haseler, J.; Hernandez, A.; Kelly, G.A.; et al. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 2005, 131, 2961–3012. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hersbach, H.; de Rosnay, P.; Bell, B.; Schepers, D.; Simmons, A.J.; Soci, C.; Abdalla, S.; Balmaseda, M.A.; Balsamo, G.; Bechtold, P.; et al. Operational Global Reanalysis: Progress, Future Directions and Synergies with NWP. ERA Rep. Ser. 2018. Available online: https://www.ecmwf.int/node/18765 (accessed on 1 March 2022). [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.-K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Moorthi, S.; Pan, H.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Wollen, J.; Behringer, D.; et al. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1057. [Google Scholar] [CrossRef] [Green Version]
- Stopa, J.E.; Cheung, K.F. Intercomparison of wind and wave data from the ECMWF reanalysis Interim and the NCEP climate forecast system reanalysis. Ocean Model. 2014, 75, 65–83. [Google Scholar] [CrossRef]
- Caires, S.; Sterl, A.; Bidlot, J.R.; Graham, N.; Swail, V. Intercomparison of different wind–Wave reanalyses. J. Clim. 2004, 17, 1893–1913. [Google Scholar] [CrossRef]
- Campos, R.M.; Guedes Soares, C. Assessment of three wind reanalyses in the North Atlantic Ocean. J. Oper. Oceanogr. 2016, 10, 30–44. [Google Scholar] [CrossRef] [Green Version]
- Sharp, E.; Dodds, P.; Barrett, M.; Spataru, C. Evaluating the accuracy of CFSR reanalysis hourly wind speed forecasts for the UK, using in situ measurements and geographical information. Renew. Energy 2015, 77, 527–538. [Google Scholar] [CrossRef] [Green Version]
- Zabolotskikh, E.V.; Chapron, B. Accuracy of Era-Interim Re-analysis Data on Some Atmospheric Parameters over Open Oceans, Estimated with the AMSR2 Data. In Proceedings of the 2019 PhotonIcs & Electromagnetics Research Symposium-Spring (PIERS-Spring), Rome, Italy, 17–20 June 2019; pp. 1632–1636. [Google Scholar] [CrossRef]
- Carvalho, D. An Assessment of NASA’s GMAO MERRA-2 Reanalysis Surface Winds. J. Clim. 2019, 32, 8261–8281. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service (C3S). ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS), July 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 1 March 2022).
- ECMWF Newsletter No. 159-Spring 2019, Issue 159. Available online: https://www.ecmwf.int/node/19001 (accessed on 1 March 2022).
- Gualtieri, G. Reliability of ERA5 Reanalysis Data for Wind Resource Assessment: A Comparison against Tall Towers. Energies 2021, 14, 4169. [Google Scholar] [CrossRef]
- Molina, M.O.; Gutiérrez, C.; Sánchez, E. Comparison of ERA5 surface wind speed climatologies over Europe with observations from the HadISD dataset. Int. J. Climatol. R. Meteorol. Soc. 2020, 41, 4864–4878. [Google Scholar] [CrossRef]
- Çalışır, E.; Soran, M.B.; Akpınar, A. Quality of the ERA5 and CFSR winds and their contribution to wave modelling performance in a semi-closed sea. J. Oper. Oceanogr. 2021, 1–25. [Google Scholar] [CrossRef]
- Belmonte Rivas, M.; Stoffelen, A. Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean Sci. 2019, 15, 831–852. [Google Scholar] [CrossRef] [Green Version]
- Gramcianinov, C.B.; Campos, R.M.; de Camargo, R.; Hodges, K.I.; Guedes Soares, C.; da Silva Dias, P.L. Analysis of Atlantic extratropical storm tracks characteristics in 41 years of ERA5 and CFSR/CFSv2 databases. Ocean Eng. 2020, 216, 108111. [Google Scholar] [CrossRef]
- Pu, Z.; Wang, Y.; Li, X.; Ruf, C.; Bi, L.; Mehra, A. Impacts of Assimilating CYGNSS Satellite Ocean-Surface Wind on Prediction of Landfalling Hurricanes with the HWRF Model. Remote Sens. 2022, 14, 2118. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Yang, X.; Zhou, W.; Lv, A.; Jin, X.; Dang, H. Sea Surface Wind Retrieval under Rainy Conditions from Active and Passive Microwave Measurements. Remote Sens. 2022, 14, 3016. [Google Scholar] [CrossRef]
- Ricciardulli, L.; Manaster, A. Intercalibration of ASCAT Scatterometer Winds from MetOp-A, -B, and -C, for a Stable Climate Data Record. Remote Sens. 2021, 13, 3678. [Google Scholar] [CrossRef]
- Ribal, A.; Young, I.R. Calibration and cross validation of global ocean wind speed based on scatterometer observation. J. Atmos. Ocean. Technol. 2020, 37, 279–297. [Google Scholar] [CrossRef]
- Young, I.R.; Kirezci, E.; Ribal, A. The Global Wind Resource Observed by Scatterometer. Remote Sens. 2020, 12, 2920. [Google Scholar] [CrossRef]
- Ribal, A.; Young, I.R. 33 years of globally calibrated wave height and wind speed data based on altimeter observations. Sci. Data 2019, 6, 77. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, J.; Jia, Y.; Fan, C.; Cui, W. Validation of Sentinel-3A/3B and Jason-3 Altimeter Wind Speeds and Significant Wave Heights Using Buoy and ASCAT Data. Remote Sens. 2020, 12, 2079. [Google Scholar] [CrossRef]
- Bentamy, A.; Grodsky, S.A.; Cambon, G.; Tandeo, P.; Capet, X.; Roy, C.; Herbette, S.; Grouazel, A. Twenty-Seven Years of Scatterometer Surface Wind Analysis over Eastern Boundary Upwelling Systems. Remote Sens. 2021, 13, 940. [Google Scholar] [CrossRef]
- Ribal, A.; Young, I.R. Global Calibration and Error Estimation of Altimeter, Scatterometer, and Radiometer Wind Speed Using Triple Collocation. Remote Sens. 2020, 12, 1997. [Google Scholar] [CrossRef]
- Monaldo, F. Expected Differences between Buoy and Radar Altimeter Estimates of Wind Speed and Significant Wave Height and Their Implications on Buoy-Altimeter Comparisons. J. Geophys. Res. 1988, 93-C3, 2285–2302. [Google Scholar] [CrossRef]
- Young, I.R.; Holland, G.J. Atlas of the Oceans: Wind and Wave Climate; Pergamon Press: New York, NY, USA, 1996; p. 241. [Google Scholar]
- Sepulveda, H.H.; Queffeulou, P.; Ardhuin, F. Assessment of SARAL AltiKa wave height measurements relative to buoy, Jason-2 and Cryosat-2 data. Mar. Geod. 2015, 38, 449–465. [Google Scholar] [CrossRef] [Green Version]
- Campos, R.M.; Alves, J.H.G.M.; Penny, S.G.; Krasnopolsky, V. Global assessments of the NCEP Ensemble Forecast System using altimeter data. Ocean Dyn. 2020, 70, 405–419. [Google Scholar] [CrossRef]
- Amante, C.; Eakins, B.W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis; NOAA Technical Memorandum NESDIS NGDC-24; National Geophysical Data Center, NOAA: Washington, DC, USA, 2009. [Google Scholar] [CrossRef]
- National Geophysical Data Center/NESDIS/NOAA/U.S. Department of Commerce. ETOPO1, Global 1 Arc-Minute Ocean Depth and Land Elevation from the US National Geophysical Data Center (NGDC). Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. 2011. Available online: https://rda.ucar.edu/datasets/ds759.4/ (accessed on 1 March 2022). [CrossRef]
- Queffeulou, P.; Croizé-Fillon, D. Global Altimeter SWH Data Set. Laboratoire d’Océanographie Physique et Spatiale IFREMER. 2017. Available online: ftp://tp.ifremer.fr/ifremer/cersat/products/swath/altimeters/waves/documentation/altimeter_wave_merge_11.4.pdf (accessed on 1 March 2022).
- Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell, J.; Rowe, C.M. Statistics for the evaluation and comparison of models. J. Geophys. Res. 1985, 90, 8995–9005. [Google Scholar] [CrossRef] [Green Version]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 9780123850225. [Google Scholar]
- Mentaschi, L.; Besio, G.; Cassola, F.; Mazzino, A. Problems in RMSE-based wave model validations. Ocean Model. 2013, 72, 53–58. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model. Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef] [Green Version]
- Priestley, M.D.K.; Catto, J.L. Improved representation of extratropical cyclone structure in HighResMIP models. Geophys. Res. Lett. 2022, 49, e2021GL096708. [Google Scholar] [CrossRef]
- Binder, H.; Boettcher, M.; Joos, H.; Wernli, H. The Role of Warm Conveyor Belts for the Intensification of Extratropical Cyclones in Northern Hemisphere Winter. J. Atmos. Sci. 2016, 73, 3997–4020. [Google Scholar] [CrossRef]
- Oertel, A.; Boettcher, M.; Joos, H.; Sprenger, M.; Konow, H.; Hagen, M.; Wernli, H. Convective activity in an extratropical cyclone and its warm conveyor belt-A case-study combining observations and a convection-permitting model simulation. Q. J. R. Meteorol. Soc. 2019, 135, 1406–1426. [Google Scholar] [CrossRef]
- Caires, S.; Sterl, A. 100-Year Return Value Estimates for Ocean Wind Speed and Significant Wave Height from the ERA-40 Data. J. Clim. 2005, 18, 1032–1048. [Google Scholar] [CrossRef]
- Hulst, S.; van Vledder, G.P. CFSR Surface Wind Calibration for Wave Modelling Purposes. In Proceedings of the 13th International Workshop on Wave Hindcasting and Forecasting and Coastal Hazards Symposium, Banff, AB, Canada, 27 October–1 November 2013; Available online: https://waveworkshop.org/13thWaves/Papers/2013_CFSR_10m_wind_calibration.pdf (accessed on 1 March 2022).
- Campos, R.M.; Alves, J.H.G.M.; Guedes Soares, C.; Guimaraes, L.G.; Parente, C.E. Extreme wind-wave modeling and analysis in the south Atlantic ocean. Ocean Model. 2018, 124, 75–93. [Google Scholar] [CrossRef]
- Tolman, H.L. Validation of NCEP’s ocean winds for the use in wind wave models. Glob. Atmos. Ocean. Syst. 1998, 6, 243–268. [Google Scholar]
- Ribal, A.; Tamizi, A.; Young, I.R. Calibration of Scatterometer Wind Speed under Hurricane Conditions. J. Atmos. Ocean. Technol. 2021, 38, 1859–1870. [Google Scholar] [CrossRef]
- Sgouropoulos, N.; Yao, Q.; Yastremiz, C. Matching a Distribution by Matching Quantiles Estimation. J. Am. Stat. Assoc. 2015, 110, 742–759. [Google Scholar] [CrossRef] [Green Version]
- Enayati, M.; Bozorg-Haddad, O.; Bazrafshan, J.; Hejabi, S.; Chu, X. Bias correction capabilities of quantile mapping methods for rainfall and temperature variables. J. Water Clim. Change 2021, 12, 401–419. [Google Scholar] [CrossRef]
- Ringard, J.; Seyler, F.; Linguet, L. A Quantile Mapping Bias Correction Method Based on Hydroclimatic Classification of the Guiana Shield. Sensors 2017, 17, 1413. [Google Scholar] [CrossRef] [Green Version]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Piani, C.; Haerter, J.O.; Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 2010, 99, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Piani, C.; Weedon, G.P.; Best, M.; Gomes, S.M.; Viterbo, P.; Hagemann, S.; Haerter, J.O. Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J. Hydrol. 2010, 395, 199–215. [Google Scholar] [CrossRef]
- Gonzalez-Arceo, A.; Musitu, M.Z.-M.; Ulazia, A.; del Rio, M.; Garcia, O. Calibration of Reanalysis Data against Wind Measurements for Energy Production Estimation of Building Integrated Savonius-Type Wind Turbine. Appl. Sci. 2020, 10, 9017. [Google Scholar] [CrossRef]
- Gramcianinov, C.B.; Campos, R.M.; de Camargo, R.; Hodges, K.I.; Guedes Soares, C.; da Silva Dias, P.L. Atlantic Extratropical Cyclone Tracks in 41 Years of ERA5 and CFSR/CFSv2 Databases, V4; Mendeley Data; Data Archiving and Networked Services: Zuid-Holland, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Hodges, K.I. A general-method for tracking analysis and its application to meteorological data. Mon. Weather Rev. 1994, 122, 2573–2586. [Google Scholar] [CrossRef]
- Hodges, K.I. Feature tracking on the unit sphere. Mon. Weather Rev. 1995, 123, 3458–3465. [Google Scholar] [CrossRef]
- Hodges, K.I. Adaptative constraints for feature tracking. Mon. Weather Rev. 1999, 127, 1362–1373. [Google Scholar] [CrossRef]
- Pérez-Alarcón, A.; Sorí, R.; Fernández-Alvarez, J.C.; Nieto, R.; Gimeno, L. Comparative climatology of outer tropical cyclone size using radial wind profiles. Weather Clim. Extrem. 2021, 33, 100366. [Google Scholar] [CrossRef]
- Schneidereit, A.; Blender, R.; Fraedrich, K. A radius-depth model for mid-latitude cyclones in reanalysis data and simulations. Q. J. R. Meteorol. Soc. 2010, 136, 50–60. [Google Scholar] [CrossRef]
- Carrasco, C.A.; Landsea, C.W.; Lin, Y.-L. The Influence of Tropical Cyclone Size on Its Intensification. Weather Forecast. 2014, 29, 582–590. [Google Scholar] [CrossRef] [Green Version]
- Chavas, D.R.; Lin, N.; Dong, W.; Lin, Y. Observed Tropical Cyclone Size Revisited. J. Clim. 2016, 29, 2923–2939. [Google Scholar] [CrossRef]
- Ponce de León, S.; Guedes Soares, C. Hindcast of the Hércules winter storm in the North Atlantic. Nat. Hazards 2015, 78, 1883–1897. [Google Scholar] [CrossRef]
- Campos, R.M. Calibration of reanalysis data in the Atlantic Ocean using satellite data. Mendeley Data 2022, V1. Available online: https://data.mendeley.com/datasets/tkf74fy9wh (accessed on 1 August 2022). [CrossRef]
Bias | RMSE | SI | CC | Bias (U > 20) | RMSE (U > 20) | |
---|---|---|---|---|---|---|
ERA5 | −0.487 | 1.366 | 0.173 | 0.919 | −3.642 | 5.257 |
ERA5.LR | 0.075 | 1.281 | 0.173 | 0.919 | −3.247 | 4.961 |
ERA5.QM | 0.060 | 1.289 | 0.174 | 0.919 | −1.861 | 4.514 |
ERA5.LR_C | −0.416 | 1.316 | 0.169 | 0.923 | −3.005 | 4.794 |
ERA5.QM_C | −0.436 | 1.352 | 0.173 | 0.919 | −1.685 | 4.719 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos, R.M.; Gramcianinov, C.B.; de Camargo, R.; da Silva Dias, P.L. Assessment and Calibration of ERA5 Severe Winds in the Atlantic Ocean Using Satellite Data. Remote Sens. 2022, 14, 4918. https://doi.org/10.3390/rs14194918
Campos RM, Gramcianinov CB, de Camargo R, da Silva Dias PL. Assessment and Calibration of ERA5 Severe Winds in the Atlantic Ocean Using Satellite Data. Remote Sensing. 2022; 14(19):4918. https://doi.org/10.3390/rs14194918
Chicago/Turabian StyleCampos, Ricardo M., Carolina B. Gramcianinov, Ricardo de Camargo, and Pedro L. da Silva Dias. 2022. "Assessment and Calibration of ERA5 Severe Winds in the Atlantic Ocean Using Satellite Data" Remote Sensing 14, no. 19: 4918. https://doi.org/10.3390/rs14194918
APA StyleCampos, R. M., Gramcianinov, C. B., de Camargo, R., & da Silva Dias, P. L. (2022). Assessment and Calibration of ERA5 Severe Winds in the Atlantic Ocean Using Satellite Data. Remote Sensing, 14(19), 4918. https://doi.org/10.3390/rs14194918