Classifying Sparse Vegetation in a Proglacial Valley Using UAV Imagery and Random Forest Algorithm
Abstract
:1. Introduction
- What are the limitations of low-cost multispectral cameras fixed on commercially available UAVs in the context of vegetation remote sensing in proglacial areas?
- What combination of input parameters (e.g. sensors and Terrain Ruggedness Index) delivers the best accuracy results with regard to land cover?
- What spatial resolution could be achieved in terms of the vegetation cover classification in the glacial foreland?
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Processing
- Digital elevation model (from RGB imagery, spatial resolution: 10 cm/pixel);
- True color orthomosaic (from RGB imagery, spatial resolution: 4.5 cm/pixel);
- False color orthomosaic (from OCN imagery, spatial resolution: 4.5 cm/pixel);
- False color orthomosaic (from RE imagery, spatial resolution: 4.5 cm/pixel).
Machine Learning Methods
3. Results
Accuracy Assessment
4. Discussion
5. Conclusions
- Illumination conditions play a major role in UAV surveys and should therefore be a primary consideration. UAV operators are advised to perform their fieldwork under steady weather conditions and to try to maintain consistent illumination of the study area throughout all flights.
- When dividing the research area into several flight plans, attention must be paid to sufficient image overlap not only within the flight plans but also between them. Linear artifacts in the photogrammetric products may occur in the border regions if this is neglected.
- In cases where battery capacity plays a major role (because of a large study area or additional weight on the aircraft) or when flying under windy conditions, the use of an enterprise-segment UAV with a higher payload and more wind stability is recommended.
- Increasing the spatial resolution of the UAV imagery (by flying at a lower altitude or using a different camera setup) also increases the ground sampling distance of the final orthomosaic, which allows a more precise classification (especially of small features).
- When defining target classes, care should be taken to maintain a sharp distinctiveness of the samples, not only in the field but also on the processed orthoimage. This should lead to fewer misclassifications and reduced fuzziness of the final results.
- For multi-layer classification tasks, we recommend using a different framework than ArcGIS Pro when applying the RF algorithm, one which can include a high number of variables at the same time.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rudolf-Miklau, F.; Hübl, J.; International Research Society Interpraevent. Alpine Naturkatastrophen: Lawinen, Muren, Felsstürze, Hochwässer; Stocker: Graz, Austria, 2009. [Google Scholar]
- Scheurer, K.; Alewell, C.; Bänninger, D.; Burkhardt-Holm, P. Climate and land-use changes affecting river sediment and brown trout in alpine countries—A review. Environ. Sci. Pollut. Res. 2009, 16, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Erschbamer, B.; Niederfriniger Schlag, R.; Winkler, E. Colonization processes on a central Alpine glacier foreland. J. Veg. Sci. 2008, 19, 855–862. [Google Scholar] [CrossRef]
- Nagl, F.; Erschbamer, B. Kapitel 6. Pflanzliche Sukzessionen im Gletschervorfeld. Vegetation und Besiedlungsstrategien. In Glaziale und Periglaziale Lebensräume im Raum Obergurgl; Erschbamer, B., Koch, E.M., Eds.; Innsbruck University Press: Innsbruck, Austria, 2010; pp. 121–142. [Google Scholar]
- Matthews, J.A. The Ecology of Recently-Deglaciated Terrain: A Geoecological Approach to Glacier Forelands; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Ballantyne, C.K. Paraglacial geomorphology. Quat. Sci. Rev. 2002, 21, 1935–2017. [Google Scholar] [CrossRef]
- Jönsson, P.; Cai, Z.; Melaas, E.; Friedl, M.A.; Eklundh, L. A method for robust estimation of vegetation seasonality from Landsat and Sentinel-2 time series data. Remote Sens. 2018, 10, 635. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Hao, D.; Huete, A.; Dechant, B.; Berry, J.; Chen, J.M.; Joiner, J.; Frankenberg, C.; Bond-Lamberty, B.; Ryu, Y.; et al. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nat. Rev. Earth Environ. 2022, 3, 477–493. [Google Scholar] [CrossRef]
- Guerini Filho, M.; Kuplich, T.M.; Quadros, F.L.D. Estimating natural grassland biomass by vegetation indices using Sentinel 2 remote sensing data. Int. J. Remote Sens. 2020, 41, 2861–2876. [Google Scholar] [CrossRef]
- Kattenborn, T.; Eichel, J.; Fassnacht, F.E. Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery. Sci. Rep. 2019, 9, 17656. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Liu, J.; Gong, J. UAV remote sensing for urban vegetation mapping using random forest and texture analysis. Remote Sens. 2015, 7, 1074–1094. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, S.; Sohrabi, H. Tree species discrimination using RGB vegetation indices derived from UAV images. UAV Small Unmanned Aer. Syst. Env. Res 2018, 1, 5. [Google Scholar]
- Nagendra, H.; Lucas, R.; Honrado, J.P.; Jongman, R.H.; Tarantino, C.; Adamo, M.; Mairota, P. Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecol. Indic. 2013, 33, 45–59. [Google Scholar]
- Nijland, W.; Coops, N.C.; Nielsen, S.E.; Stenhouse, G. Integrating optical satellite data and airborne laser scanning in habitat classification for wildlife management. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 242–250. [Google Scholar] [CrossRef]
- Kattenborn, T.; Fassnacht, F.E.; Schmidtlein, S. Differentiating plant functional types using reflectance: Which traits make the difference? Remote Sens. Ecol. Conserv. 2019, 5, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Hammer, W. Geologische Spezialkarte der Republik Österreich. In Blatt Nauders; Geologische Reichsanstalt: Wien, Austria, 1923. [Google Scholar]
- Vehling, L. Gravitative Massenbewegungen an Alpinen Felshängen: Quantitative Bedeutung in der Sedimentkaskade proglazialer Geosysteme (Kaunertal, Tirol). Ph.D. Thesis, Friedrich-Alexander-Universität Erlangen, Nürnberg, Germany, 2016. [Google Scholar]
- Efthymiadis, D.; Jones, P.D.; Briffa, K.R.; Böhm, R.; Maugeri, M. Influence of large-scale atmospheric circulation on climate variability in the Greater Alpine Region of Europe. J. Geophys. Res. 2007, 112, D12104.4. [Google Scholar] [CrossRef] [Green Version]
- DJI. Phantom 4 Pro V2.0 Technische Daten. 2021. Available online: https://www.dji.com/at/phantom-4-pro-v2/specs (accessed on 19 December 2021).
- Curran, P.J.; Dungan, J.L.; Gholz, H.L. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiol. 1990, 7, 33–48. [Google Scholar] [CrossRef]
- EUMeTrain. Monitoring Vegetation from Space. 2010. Available online: http://www.eumetrain.org/data/3/36/navmenu.php?page=3.2.3 (accessed on 17 December 2021).
- MAPIR. OCN Filter Improves Results Compared to RGN Filter. 2021. Available online: https://www.mapir.camera/pages/ocn-filter-improves-contrast-compared-to-rgn-filter (accessed on 19 December 2021).
- MAPIR. Survey3 Camera Datasheet. 2021. Available online: https://drive.google.com/file/d/10gIzOjWVNoG9dvZwmAUG9fVqkEZHXEur/view (accessed on 10 January 2022).
- Noble, T.; Matthews, N. Unmanned Aircraft Systems Data Post Processing. Structure from Motion Photogrammetry; USGS National UAS Project Office: Reston, VA, USA, 2017. [Google Scholar]
- Colditz, R.R. An evaluation of different training sample allocation schemes for discrete and continuous land cover classification using decision tree-based algorithms. Remote Sens. 2015, 7, 9655–9681. [Google Scholar] [CrossRef] [Green Version]
- Daryaei, A.; Sohrabi, H.; Atzberger, C.; Immitzer, M. Fine-scale detection of vegetation in semi-arid mountainous areas with focus on riparian landscapes using Sentinel-2 and UAV data. Comput. Electron. Agric. 2020, 177, 105686. [Google Scholar] [CrossRef]
- Haas, J.; Ban, Y. Urban growth and environmental impacts in jing-jin-ji, the yangtze, river delta and the pearl river delta. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 42–55. [Google Scholar] [CrossRef]
- Van Beijma, S.; Comber, A.; Lamb, A. Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sens. Environ. 2014, 149, 118–129. [Google Scholar] [CrossRef]
- Briem, G.J.; Benediktsson, J.A.; Sveinsson, J.R. Multiple classifiers applied to multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2291–2299. [Google Scholar] [CrossRef] [Green Version]
- Miao, X.; Heaton, J.S.; Zheng, S.; Charlet, D.A.; Liu, H. Applying tree-based ensemble algorithms to the classification of ecological zones using multi-temporal multi-source remote-sensing data. Int. J. Remote Sens. 2012, 33, 1823–1849. [Google Scholar] [CrossRef]
- Guan, H.; Li, J.; Chapman, M.; Deng, F.; Ji, Z.; Yang, X. Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests. Int. J. Remote Sens. 2013, 34, 5166–5186. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Topouzelis, K.; Psyllos, A. Oil spill feature selection and classification using decision tree forest on SAR image data. ISPRS J. Photogramm. Remote Sens. 2012, 68, 135–143. [Google Scholar] [CrossRef]
- Du, P.; Samat, A.; Waske, B.; Liu, S.; Li, Z. Random forest and rotation forest for fully polarized SAR image classification using polarimetric and spatial features. ISPRS J. Photogramm. Remote Sens. 2015, 105, 38–53. [Google Scholar] [CrossRef]
- ESRI. An Overview of the Segmentation and Classification Toolset. 2022. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/an-overview-of-the-segmentation-and-classification-tools.htm (accessed on 12 January 2022).
- Liu, K.; Shi, W.; Zhang, H. A fuzzy topology-based maximum likelihood classification. ISPRS J. Photogramm. Remote Sens. 2011, 66, 103–114. [Google Scholar] [CrossRef]
- Humboldt State University. Accuracy Metrics. Introduction to Remote Sensing. 2019. Available online: http://gsp.humboldt.edu/olm_2019/courses/GSP_216_Online/lesson6-2/metrics.html (accessed on 23 January 2022).
- de Castro, A.I.; Shi, Y.; Maja, J.M.; Peña, J.M. UAVs for vegetation monitoring: Overview and recent scientific contributions. Remote Sens. 2021, 13, 2139. [Google Scholar] [CrossRef]
- Berni JA, J.; Zarco-Tejada, P.J.; Suarez, L.; González-Dugo, V.; Fereres, E. Remote sensing of vegetation from UAV platforms using lightweight multispectral and thermal imaging sensors. Int. Arch. Photogramm. Remote Sens. Spat. Inform. Sci. 2009, 38, 6. [Google Scholar]
- Berni, J.A.; Zarco-Tejada, P.J.; Suárez, L.; Fereres, E. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar] [CrossRef] [Green Version]
- Moriya EA, S.; Imai, N.N.; Tommaselli AM, G.; Miyoshi, G.T. Mapping mosaic virus in sugarcane based on hyperspectral images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 740–748. [Google Scholar] [CrossRef]
- Toma, A.; Sandric, I. Mapping Flooded Areas Using Sentinel-1 Radar Satellite Imagery Series through Machine Learning and Deep Learning Methods. In Proceedings of the EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022. [Google Scholar] [CrossRef]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
Count | X Error (cm) | Y Error (cm) | Z Error (cm) | XY Error (cm) | Total (cm) | |
---|---|---|---|---|---|---|
Control points | 30 | 3.20 | 3.27 | 5.44 | 4.58 | 7.11 |
Check points | 9 | 3.66 | 4.37 | 5.53 | 5.70 | 7.94 |
Class Value | Class Description | Number of Samples |
---|---|---|
1 | Snow | 423 |
2 | Water | 307 |
3 | Bedrock | 399 |
4 | Coarse sediment | 585 |
5 | Fine sediment | 305 |
6 | Juniper (Juniperus communis) | 300 |
7 | Thistle (Cirsium spinosissimum) | 399 |
8 | Mixed vegetation with >50% grass | 310 |
9 | Mixed vegetation with >50% forbs and moss | 317 |
Supplementary Layer | DEM | OCN | TRI | Slope | RE | No Suppl. Layer |
---|---|---|---|---|---|---|
Overall accuracy (%) | 87.1 | 73.1 | 73.0 | 70.9 | 69.2 | 67.0 |
Class Name | Snow | Water | Bedrock | Coarse Sed. | Fine Sed. | Juniper | Thistle | >50% Grass | >50% Forbs and Moss | Total | UA (%) | Kappa |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Snow | 77 | 0 | 1 | 3 | 1 | 0 | 0 | 0 | 0 | 82 | 93.9 | 0 |
Water | 0 | 53 | 1 | 13 | 0 | 0 | 1 | 0 | 0 | 68 | 77.9 | 0 |
Bedrock | 0 | 0 | 70 | 14 | 0 | 0 | 1 | 0 | 1 | 86 | 81.4 | 0 |
Coarse sed. | 0 | 8 | 6 | 81 | 0 | 0 | 0 | 1 | 1 | 97 | 83.5 | 0 |
Fine sed. | 1 | 0 | 1 | 3 | 60 | 0 | 0 | 0 | 0 | 65 | 92.3 | 0 |
Juniper | 0 | 0 | 0 | 0 | 0 | 55 | 4 | 1 | 0 | 60 | 91.7 | 0 |
Thistle | 0 | 0 | 0 | 2 | 0 | 3 | 69 | 4 | 3 | 81 | 85.2 | 0 |
>50% grass | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 51 | 0 | 55 | 92.7 | 0 |
>50% forbs and moss | 0 | 0 | 1 | 2 | 0 | 0 | 2 | 2 | 58 | 65 | 89.2 | 0 |
Total | 78 | 61 | 80 | 118 | 61 | 60 | 79 | 59 | 63 | 659 | 0.0 | 0 |
PA (%) | 98.7 | 86.9 | 87.5 | 68.6 | 98.4 | 91.7 | 87.3 | 86.4 | 92.1 | 0.0 | 87.1 | 0.0 |
Kappa | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.854 |
OA (%) | 87.1 |
Class Name | Total Area (Hectares) | Relative Area (%) |
---|---|---|
Snow | 5.38 | 3.05 |
Water | 17.96 | 10.17 |
Bedrock | 41.95 | 23.76 |
Coarse sediment | 56.99 | 32.27 |
Fine sediment | 4.47 | 2.53 |
Juniper (Juniperus communis) | 6.26 | 3.55 |
Thistle (Cirsium spinosissimum) | 7.75 | 4.39 |
Mixed vegetation with >50% grass | 17.53 | 9.93 |
Mixed vegetation with >50% forbs and moss | 18.29 | 10.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zangerl, U.; Haselberger, S.; Kraushaar, S. Classifying Sparse Vegetation in a Proglacial Valley Using UAV Imagery and Random Forest Algorithm. Remote Sens. 2022, 14, 4919. https://doi.org/10.3390/rs14194919
Zangerl U, Haselberger S, Kraushaar S. Classifying Sparse Vegetation in a Proglacial Valley Using UAV Imagery and Random Forest Algorithm. Remote Sensing. 2022; 14(19):4919. https://doi.org/10.3390/rs14194919
Chicago/Turabian StyleZangerl, Ulrich, Stefan Haselberger, and Sabine Kraushaar. 2022. "Classifying Sparse Vegetation in a Proglacial Valley Using UAV Imagery and Random Forest Algorithm" Remote Sensing 14, no. 19: 4919. https://doi.org/10.3390/rs14194919
APA StyleZangerl, U., Haselberger, S., & Kraushaar, S. (2022). Classifying Sparse Vegetation in a Proglacial Valley Using UAV Imagery and Random Forest Algorithm. Remote Sensing, 14(19), 4919. https://doi.org/10.3390/rs14194919