Factors Controlling a Synthetic Aperture Radar (SAR) Derived Root-Zone Soil Moisture Product over The Seward Peninsula of Alaska
Abstract
:1. Introduction
2. Materials and Methods
2.1. Region of Interest
2.2. The Response Feature: SAR-Derived Root-Zone Soil Moisture
2.3. Predictor Features
2.3.1. Topographic Features
2.3.2. Vegetation Features
2.3.3. Meteorological Features
2.4. Modelling
2.4.1. Selecting Resolutions
2.4.2. Tuning Model Hyperparameters
2.4.3. Recursive Feature Elimination
2.4.4. Pairwise Correlation and Multicollinearity
3. Results
3.1. AirMOSS P-Band SAR-Derived Soil Moisture Product
3.2. Random Forest Modeling
3.3. Feature Importance
4. Discussion
4.1. Decreasing Importance of Vegetation in The Soil Column
4.2. Increasing Accuracy of Models at Greater Depths in The Soil Column
4.3. Importance of Winter Snow Accumulation on Soil Moisture
4.4. Mitigating Collinearity and Overfitting in Random Forest Modelling
4.5. Other Key Controls on Soil Moisture
4.6. Inherent Limitations of The SAR-Derived Soil Moisture Product
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Wind Factor Derivation
Group | Probe | Probe Depth | A | B | C | R2 | Standard Error |
---|---|---|---|---|---|---|---|
General | Hydrosense II | 20 cm | 7.693 | 1.641 | −12.341 | 0.8873 | 5.773 |
General | Hydrosense II | 12 cm | −24.28 | 134.55 | −110.245 | 0.8294 | 7.102 |
Model | Number of Trees | Max Depth | Max Samples | Min_Samples_Leaf | Min_Samples_Split | Bootstrap | Max Features |
---|---|---|---|---|---|---|---|
6 cm | 50 | 30 | 0.8 | 1 | 10 | True | sqrt |
12 cm | 50 | 30 | 0.8 | 1 | 10 | True | sqrt |
20 cm | 50 | 30 | 0.8 | 1 | 10 | True | sqrt |
References
- Tarnocai, C.; Canadell, J.G.; Schuur, E.A.G.; Kuhry, P.; Mazhitova, G.; Zimov, S. Soil Organic Carbon Pools in the Northern Circumpolar Permafrost Region. Glob. Biogeochem. Cycles 2009, 23, GB2023. [Google Scholar] [CrossRef]
- Osborne, E.; Richter-Menge, J.; Jeffries, M. Arctic Report Card 2018; National Park Service: Washington, DC, USA, 2018.
- Muller, S.W. Permafrost: Or Permanently Frozen Ground: And Related Engineering Problems; Army Map Service, U.S. Army: Arlington, VA, USA, 1945. [Google Scholar]
- Smith, L.C.; Sheng, Y.; MacDonald, G.M.; Hinzman, L.D. Disappearing Arctic Lakes. Science 2005, 308, 1429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinzman, L.D.; Bettez, N.D.; Bolton, W.R.; Chapin, F.S.; Dyurgerov, M.B.; Fastie, C.L.; Griffith, B.; Hollister, R.D.; Hope, A.; Huntington, H.P.; et al. Evidence and Implications of Recent Climate Change in Northern Alaska and Other Arctic Regions. Clim. Chang. 2005, 72, 251–298. [Google Scholar] [CrossRef]
- Keller, K.; Blum, J.D.; Kling, G.W. Stream Geochemistry as an Indicator of Increasing Permafrost Thaw Depth in an Arctic Watershed. Chem. Geol. 2010, 273, 76–81. [Google Scholar] [CrossRef]
- Liljedahl, A.K.; Hinzman, L.D.; Harazono, Y.; Zona, D.; Tweedie, C.E.; Hollister, R.D.; Engstrom, R.; Oechel, W.C. Nonlinear Controls on Evapotranspiration in Arctic Coastal Wetlands. Biogeosciences 2011, 8, 3375–3389. [Google Scholar] [CrossRef] [Green Version]
- Oberbauer, S.F.; Tenhunen, J.D.; Reynolds, J.F. Environmental Effects on CO2 Efflux from Water Track and Tussock Tundra in Arctic Alaska, USA. Arct. Alp. Res. 1991, 23, 162–169. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate Change and the Permafrost Carbon Feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Isard, S.A. Factors Influencing Soil Moisture and Plant Community Distribution on Niwot Ridge, Front Range, Colorado, USA. Arct. Alp. Res. 1986, 18, 83. [Google Scholar] [CrossRef]
- Takahashi, K. Seasonal Changes in Soil Temperature on an Upper Windy Ridge and Lower Leeward Slope in Pinus Pumila Scrub on Mt. Shogigashira, Central Japan. Polar Biosci. 2005, 18, 82–89. [Google Scholar]
- Bertoldi, G.; Notarnicola, C.; Leitinger, G.; Endrizzi, S.; Zebisch, M.; Della Chiesa, S.; Tappeiner, U. Topographical and Ecohydrological Controls on Land Surface Temperature in an Alpine Catchment. Ecohydrol. Ecosyst. Land Water Process Interact. Ecohydrogeomorphol. 2010, 3, 189–204. [Google Scholar] [CrossRef]
- Scherrer, D.; Körner, C. Topographically Controlled Thermal-habitat Differentiation Buffers Alpine Plant Diversity against Climate Warming. J. Biogeogr. 2011, 38, 406–416. [Google Scholar] [CrossRef]
- Aalto, J.; le Roux, P.C.; Luoto, M. Vegetation Mediates Soil Temperature and Moisture in Arctic-Alpine Environments. Arct. Antarct. Alp. Res. 2013, 45, 429–439. [Google Scholar] [CrossRef] [Green Version]
- Ayres, E.; Nkem, J.N.; Wall, D.H.; Adams, B.J.; Barrett, J.E.; Simmons, B.L.; Virginia, R.A.; Fountain, A.G. Experimentally Increased Snow Accumulation Alters Soil Moisture and Animal Community Structure in a Polar Desert. Polar Biol. 2010, 33, 897–907. [Google Scholar] [CrossRef]
- Kemppinen, J. Soil Moisture and Its Importance for Tundra Plants; Helsingin Yliopisto: Helsinki, Finland, 2020. [Google Scholar]
- Yoshikawa, K.; Hinzman, L.D. Shrinking Thermokarst Ponds and Groundwater Dynamics in Discontinuous Permafrost near Council, Alaska. Permafr. Periglac. Process. 2003, 14, 151–160. [Google Scholar] [CrossRef]
- Jafarov, E.E.; Coon, E.T.; Harp, D.R.; Wilson, C.J.; Painter, S.L.; Atchley, A.L.; Romanovsky, V.E. Modeling the Role of Preferential Snow Accumulation in through Talik Development and Hillslope Groundwater Flow in a Transitional Permafrost Landscape. Environ. Res. Lett. 2018, 13, 105006. [Google Scholar] [CrossRef]
- Petropoulos, G. Remote Sensing of Energy Fluxes and Soil Moisture Content; Taylor & Francis Group: Baton Rouge, LA, USA, 2013; ISBN 978-1-4665-0579-7. [Google Scholar]
- Ahlmer, A.-K.; Cavalli, M.; Hansson, K.; Koutsouris, A.J.; Crema, S.; Kalantari, Z. Soil Moisture Remote-Sensing Applications for Identification of Flood-Prone Areas along Transport Infrastructure. Environ. Earth Sci. 2018, 77, 533. [Google Scholar] [CrossRef] [Green Version]
- Crow, W.T.; Milak, S.; Moghaddam, M.; Tabatabaeenejad, A.; Jaruwatanadilok, S.; Yu, X.; Shi, Y.; Reichle, R.H.; Hagimoto, Y.; Cuenca, R.H. Spatial and Temporal Variability of Root-Zone Soil Moisture Acquired From Hydrologic Modeling and AirMOSS P-Band Radar. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4578–4590. [Google Scholar] [CrossRef]
- Hallikainen, M.T.; Ulaby, F.T.; Dobson, M.C.; El-rayes, M.A.; Wu, L. Microwave Dielectric Behavior of Wet Soil-Part 1: Empirical Models and Experimental Observations. IEEE Trans. Geosci. Remote Sens. 1985, GE-23, 25–34. [Google Scholar] [CrossRef]
- Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El-rayes, M.A. Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models. IEEE Trans. Geosci. Remote Sens. 1985, GE-23, 35–46. [Google Scholar] [CrossRef]
- Mironov, V.L.; Dobson, M.C.; Kaupp, V.H.; Komarov, S.A.; Kleshchenko, V.N. Generalized Refractive Mixing Dielectric Model for Moist Soils. IEEE Trans. Geosci. Remote Sens. 2004, 42, 773–785. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Siquera, P.; Nashashibi, A.; Sarabandi, K. Semi-Empirical Model for Radar Backscatter from Snow at 35 and 95 GHz. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1059–1065. [Google Scholar] [CrossRef]
- Fung, A.K.; Bredow, J.W.; Gogineni, P. An Investigation of Scattering Mechanisms from Snow Covered Ice. In Proceedings of the 1995 International Geoscience and Remote Sensing Symposium, IGARSS ’95. Quantitative Remote Sensing for Science and Applications, Firenze, Italy, 10–14 July 1995; Volume 1, pp. 407–409. [Google Scholar]
- Peplinski, N.R.; Ulaby, F.T.; Dobson, M.C. Dielectric Properties of Soils in the 0.3-1.3-GHz Range. IEEE Trans. Geosci. Remote Sens. 1995, 33, 803–807. [Google Scholar] [CrossRef]
- Mironov, V.L.; De Roo, R.D.; Savin, I.V. Temperature-Dependable Microwave Dielectric Model for an Arctic Soil. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2544–2556. [Google Scholar] [CrossRef]
- Oh, Y.; Sarabandi, K.; Ulaby, F.T. An Empirical Model and an Inversion Technique for Radar Scattering from Bare Soil Surfaces. IEEE Trans. Geosci. Remote Sens. 1992, 30, 370–381. [Google Scholar] [CrossRef]
- Taconet, O.; Vidal-Madjar, D.; Emblanch, C.; Normand, M. Taking into Account Vegetation Effects to Estimate Soil Moisture from C-Band Radar Measurements. Remote Sens. Environ. 1996, 56, 52–56. [Google Scholar] [CrossRef]
- Quesney, A.; Le Hégarat-Mascle, S.; Taconet, O.; Vidal-Madjar, D.; Wigneron, J.P.; Loumagne, C.; Normand, M. Estimation of Watershed Soil Moisture Index from ERS/SAR Data. Remote Sens. Environ. 2000, 72, 290–303. [Google Scholar] [CrossRef]
- Zribi, M.; Dechambre, M. A New Empirical Model to Inverse Soil Moisture and Roughness Using Two Radar Configurations. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 4, pp. 2223–2225. [Google Scholar]
- Le Hegarat-Mascle, S.; Zribi, M.; Alem, F.; Weisse, A.; Loumagne, C. Soil Moisture Estimation from ERS/SAR Data: Toward an Operational Methodology. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2647–2658. [Google Scholar] [CrossRef]
- Álvarez-Mozos, J.; Casalí, J.; González-Audícana, M.; Verhoest, N.E.C. Correlation between Ground Measured Soil Moisture and RADARSAT-1 Derived Backscattering Coefficient over an Agricultural Catchment of Navarre (North of Spain). Biosyst. Eng. 2005, 92, 119–133. [Google Scholar] [CrossRef]
- Oh, Y.; Sarabandi, K.; Ulaby, F.T. An Inversion Algorithm for Retrieving Soil Moisture and Surface Roughness from Polarimetric Radar Observation. In Proceedings of the IGARSS ’94—1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August 1994; Volume 3, pp. 1582–1584. [Google Scholar]
- Dubois, P.C.; van Zyl, J.; Engman, T. Measuring Soil Moisture with Active Microwave: Effect of Vegetation. In Proceedings of the 1995 International Geoscience and Remote Sensing Symposium, IGARSS ’95. Quantitative Remote Sensing for Science and Applications, Firenze, Italy, 10–14 July 1995; Volume 1, pp. 495–497. [Google Scholar]
- Fung, A.K.; Li, Z.; Chen, K.S. Backscattering from a Randomly Rough Dielectric Surface. IEEE Trans. Geosci. Remote Sens. 1992, 30, 356–369. [Google Scholar] [CrossRef]
- Ulaby, F. Radar Measurement of Soil Moisture Content. IEEE Trans. Antennas Propag. 1974, 22, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.E.; Griffith, P.C.; Goetz, S.J.; Hoy, E.E.; Pinto, N.; McCubbin, I.B.; Thorpe, A.K.; Hofton, M.; Hodkinson, D.; Hansen, C.; et al. An Overview of ABoVE Airborne Campaign Data Acquisitions and Science Opportunities. Environ. Res. Lett. 2019, 14, 080201. [Google Scholar] [CrossRef]
- Moghaddam, M.; Tabatabaeenejad, A.; Chen, R.H.; Saatchi, S.S.; Jaruwatanadilok, S.; Burgin, M.; Duan, X.; Truong-Loi, M.L. AirMOSS: L2/3 Volumetric Soil Moisture Profiles Derived from Radar, 2012–2015; ORNL DAAC: Oak Ridge, TN, USA, 2016. [CrossRef]
- Chen, R.H.; Tabatabaeenejad, A.; Moghaddam, M. Retrieval of Permafrost Active Layer Properties Using Time-Series P-Band Radar Observations. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6037–6054. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Chapin, E.; Chau, A.; Chen, J.; Heavey, B.; Hensley, S.; Lou, Y.; Machuzak, R.; Moghaddam, M. AirMOSS: An Airborne P-Band SAR to Measure Root-Zone Soil Moisture. In Proceedings of the 2012 IEEE Radar Conference, Atlanta, GA, USA, 7–11 May 2012; pp. 693–698. [Google Scholar]
- Rosen, P.A.; Hensley, S.; Wheeler, K.; Sadowy, G.; Miller, T.; Shaffer, S.; Muellerschoen, R.; Jones, C.; Zebker, H.; Madsen, S. UAVSAR: A New NASA Airborne SAR System for Science and Technology Research. In Proceedings of the 2006 IEEE Conference on Radar, Verona, NY, USA, 24–27 April 2006; p. 8. [Google Scholar]
- Hensley, S.; Wheeler, K.; Sadowy, G.; Jones, C.; Shaffer, S.; Zebker, H.; Miller, T.; Heavey, B.; Chuang, E.; Chao, R. The UAVSAR Instrument: Description and First Results. In Proceedings of the 2008 IEEE Radar Conference, Rome, Italy, 26–30 May 2008; pp. 1–6. [Google Scholar]
- Tabatabaeenejad, A.; Burgin, M.; Duan, X.; Moghaddam, M. P-Band Radar Retrieval of Subsurface Soil Moisture Profile as a Second-Order Polynomial: First AirMOSS Results. IEEE Trans. Geosci. Remote Sens. 2015, 53, 645–658. [Google Scholar] [CrossRef]
- Zona, D.; Gioli, B.; Commane, R.; Lindaas, J.; Wofsy, S.C.; Miller, C.E.; Dinardo, S.J.; Dengel, S.; Sweeney, C.; Karion, A.; et al. Cold Season Emissions Dominate the Arctic Tundra Methane Budget. Proc. Natl. Acad. Sci. USA 2016, 113, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.H.; Tabatabaeenejad, A.; Moghaddam, M. ABoVE: Active Layer and Soil Moisture Properties from AirMOSS P-Band SAR in Alaska; ORNL DAAC: Oak Ridge, TN, USA, 2019. [CrossRef]
- Bourgeau-Chavez, L.L.; Garwood, G.C.; Riordan, K.; Koziol, B.W.; Slawski, J. Development of Calibration Algorithms for Selected Water Content Reflectometry Probes for Burned and Non-Burned Organic Soils of Alaska. Int. J. Wildland Fire 2010, 19, 961. [Google Scholar] [CrossRef]
- Western, A.W.; Grayson, R.B.; Blöschl, G. Scaling of Soil Moisture: A Hydrologic Perspective. Annu. Rev. Earth Planet. Sci. 2002, 30, 149–180. [Google Scholar] [CrossRef] [Green Version]
- Southee, F.M.; Treitz, P.M.; Scott, N.A. Application of Lidar Terrain Surfaces for Soil Moisture Modeling. Photogramm. Eng. Remote Sens. 2012, 78, 1241–1251. [Google Scholar] [CrossRef]
- Murphy, P.N.; Ogilvie, J.; Meng, F.-R.; White, B.; Bhatti, J.S.; Arp, P.A. Modelling and Mapping Topographic Variations in Forest Soils at High Resolution: A Case Study. Ecol. Model. 2011, 222, 2314–2332. [Google Scholar] [CrossRef]
- Amatulli, G.; Domisch, S.; Tuanmu, M.-N.; Parmentier, B.; Ranipeta, A.; Malczyk, J.; Jetz, W. A Suite of Global, Cross-Scale Topographic Variables for Environmental and Biodiversity Modeling. Sci. Data 2018, 5, 180040. [Google Scholar] [CrossRef] [Green Version]
- Gallant, J.C. Primary Topographic Attributes. In Terrain Analysis-Principles and Application; John Wiley & Sons: Hoboken, NJ, USA, 2000; pp. 51–86. [Google Scholar]
- Bennett, K.E.; Miller, G.; Busey, R.; Chen, M.; Lathrop, E.R.; Dann, J.B.; Nutt, M.; Crumley, R.; Dafflon, B.; Kumar, J.; et al. Spatial Patterns of Snow Distribution for Improved Earth System Modelling in the Arctic. Cryosphere 2021. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A Physically Based, Variable Contributing Area Model of Basin Hydrology/Un Modèle à Base Physique de Zone d’appel Variable de l’hydrologie Du Bassin Versant. Hydrol. Sci. J. 1979, 24, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Böhner, J.; Koethe, R.; Conrad, O.; Gross, J.; Ringeler, A.; Selige, T. Soil Regionalisation by Means of Terrain Analysis and Process Parameterisation. Soil Classif. 2001, 7, 213. [Google Scholar]
- Böhner, J.; McCloy, K.R. SAGA-Analysis and Modelling Applications. In Collection Göttinger Geographische Abhandlungen; Goltze: Göttingen, Germany, 2006; Volume 115, 130p. [Google Scholar]
- Böhner, J.; Selige, T. Spatial Prediction of Soil Attributes Using Terrain Analysis and Climate Regionalisation. In SAGA-Analyses and Modelling Applications; Goltze: Göttingen, Germany, 2006. [Google Scholar]
- Zevenbergen, L.W.; Thorne, C.R. Quantitative Analysis of Land Surface Topography. Earth Surf. Process. Landf. 1987, 12, 47–56. [Google Scholar] [CrossRef]
- Dwyer, J.L.; Roy, D.P.; Sauer, B.; Jenkerson, C.B.; Zhang, H.K.; Lymburner, L. Analysis Ready Data: Enabling Analysis of the Landsat Archive. Remote Sens. 2018, 10, 1363. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud Detection Algorithm Comparison and Validation for Operational Landsat Data Products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Crist, E.P. A TM Tasseled Cap Equivalent Transformation for Reflectance Factor Data. Remote Sens. Environ. 1985, 17, 301–306. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary Analysis of the Performance of the Landsat 8/OLI Land Surface Reflectance Product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Jia, G.J.; Epstein, H.E.; Walker, D.A. Greening of Arctic Alaska, 1981–2001. Geophys. Res. Lett. 2003, 30, 2067. [Google Scholar] [CrossRef]
- Myneni, R.B.; Keeling, C.D.; Tucker, C.J.; Asrar, G.; Nemani, R.R. Increased Plant Growth in the Northern High Latitudes from 1981 to 1991. Nature 1997, 386, 698–702. [Google Scholar] [CrossRef]
- Stow, D.A.; Hope, A.; McGuire, D.; Verbyla, D.; Gamon, J.; Huemmrich, F.; Houston, S.; Racine, C.; Sturm, M.; Tape, K. Remote Sensing of Vegetation and Land-Cover Change in Arctic Tundra Ecosystems. Remote Sens. Environ. 2004, 89, 281–308. [Google Scholar] [CrossRef] [Green Version]
- Goetz, S.J.; Bunn, A.G.; Fiske, G.J.; Houghton, R.A. Satellite-Observed Photosynthetic Trends across Boreal North America Associated with Climate and Fire Disturbance. Proc. Natl. Acad. Sci. USA 2005, 102, 13521–13525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunn, A.G.; Goetz, S.J.; Kimball, J.S.; Zhang, K. Northern High-latitude Ecosystems Respond to Climate Change. Eos Trans. Am. Geophys. Union 2007, 88, 333–335. [Google Scholar] [CrossRef]
- Verbyla, D. The Greening and Browning of Alaska Based on 1982–2003 Satellite Data. Glob. Ecol. Biogeogr. 2008, 17, 547–555. [Google Scholar] [CrossRef]
- Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-Density Cypress Forest. Sensors 2007, 7, 2636–2651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raynolds, M.K.; Walker, D.A. Increased Wetness Confounds Landsat-Derived NDVI Trends in the Central Alaska North Slope Region, 1985–2011. Environ. Res. Lett. 2016, 11, 085004. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Dai, A.; Trenberth, K.E.; Qian, T. A Global Dataset of Palmer Drought Severity Index for 1870–2002: Relationship with Soil Moisture and Effects of Surface Warming. J. Hydrometeorol. 2004, 5, 1117–1130. [Google Scholar] [CrossRef] [Green Version]
- le Roux, P.C.; Aalto, J.; Luoto, M. Soil Moisture’s Underestimated Role in Climate Change Impact Modelling in Low-energy Systems. Glob. Chang. Biol. 2013, 19, 2965–2975. [Google Scholar] [CrossRef]
- Sturm, M.; Wagner, A.M. Using Repeated Patterns in Snow Distribution Modeling: An Arctic Example. Water Resour. Res. 2010, 46, W12549. [Google Scholar] [CrossRef] [Green Version]
- Dvornikov, Y.; Khomutov, A.; Mullanurov, D.; Ermokhina, K.; Gubarkov, A.; Leibman, M. GIS and Field Data Based Modelling of Snow Water Equivalent in Shrub Tundra. Fennia 2015, 193, 53–65. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Ward, J.H., Jr. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Shaeri Karimi, S.; Saintilan, N.; Wen, L.; Valavi, R. Application of Machine Learning to Model Wetland Inundation Patterns Across a Large Semiarid Floodplain. Water Resour. Res. 2019, 55, 8765–8778. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A Review of Methods to Deal with It and a Simulation Study Evaluating Their Performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Koven, C.D.; Swenson, S.C.; Riley, W.J.; Slater, A.G. Permafrost Thaw and Resulting Soil Moisture Changes Regulate Projected High-Latitude CO2 and CH4 Emissions. Environ. Res. Lett. 2015, 10, 094011. [Google Scholar] [CrossRef] [Green Version]
- Natali, S.M.; Schuur, E.A.; Mauritz, M.; Schade, J.D.; Celis, G.; Crummer, K.G.; Johnston, C.; Krapek, J.; Pegoraro, E.; Salmon, V.G. Permafrost Thaw and Soil Moisture Driving CO2 and CH4 Release from Upland Tundra. J. Geophys. Res. Biogeosci. 2015, 120, 525–537. [Google Scholar] [CrossRef]
- Elberling, B.; Michelsen, A.; Schädel, C.; Schuur, E.A.; Christiansen, H.H.; Berg, L.; Tamstorf, M.P.; Sigsgaard, C. Long-Term CO2 Production Following Permafrost Thaw. Nat. Clim. Chang. 2013, 3, 890–894. [Google Scholar] [CrossRef] [Green Version]
- Olefeldt, D.; Turetsky, M.R.; Crill, P.M.; McGuire, A.D. Environmental and Physical Controls on Northern Terrestrial Methane Emissions across Permafrost Zones. Glob. Chang. Biol. 2013, 19, 589–603. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; Bockheim, J.; Canadell, J.G.; Euskirchen, E.; Field, C.B.; Goryachkin, S.V.; Hagemann, S.; Kuhry, P.; Lafleur, P.M.; Lee, H.; et al. Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle. BioScience 2008, 58, 701–714. [Google Scholar] [CrossRef] [Green Version]
- Zwieback, S.; Westermann, S.; Langer, M.; Boike, J.; Marsh, P.; Berg, A. Improving Permafrost Modeling by Assimilating Remotely Sensed Soil Moisture. Water Resour. Res. 2019, 55, 1814–1832. [Google Scholar] [CrossRef]
- Tape, K.E.N.; Sturm, M.; Racine, C. The Evidence for Shrub Expansion in Northern Alaska and the Pan-Arctic. Glob. Chang. Biol. 2006, 12, 686–702. [Google Scholar] [CrossRef]
- Kemppinen, J.; Niittynen, P.; Riihimäki, H.; Luoto, M. Modelling Soil Moisture in a High-Latitude Landscape Using LiDAR and Soil Data. Earth Surf. Process. Landf. 2018, 43, 1019–1031. Available online: https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/esp.4301 (accessed on 3 February 2022). [CrossRef] [Green Version]
- Canadell, J.; Jackson, R.B.; Ehleringer, J.B.; Mooney, H.A.; Sala, O.E.; Schulze, E.-D. Maximum Rooting Depth of Vegetation Types at the Global Scale. Oecologia 1996, 108, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Liston, G.E.; Mcfadden, J.P.; Sturm, M.; Pielke, R.A. Modelled Changes in Arctic Tundra Snow, Energy and Moisture Fluxes Due to Increased Shrubs. Glob. Chang. Biol. 2002, 8, 17–32. [Google Scholar] [CrossRef]
- Sturm, M.; Douglas, T.; Racine, C.; Liston, G.E. Changing Snow and Shrub Conditions Affect Albedo with Global Implications. J. Geophys. Res. Biogeosci. 2005, 110, G01004. [Google Scholar] [CrossRef]
- Raynolds, M.K.; Walker, D.A.; Maier, H.A. NDVI Patterns and Phytomass Distribution in the Circumpolar Arctic. Remote Sens. Environ. 2006, 102, 271–281. [Google Scholar] [CrossRef]
- Raynolds, M.K.; Comiso, J.C.; Walker, D.A.; Verbyla, D. Relationship between Satellite-Derived Land Surface Temperatures, Arctic Vegetation Types, and NDVI. Remote Sens. Environ. 2008, 112, 1884–1894. [Google Scholar] [CrossRef]
- Tape, D.K.; Hallinger, M.; Welker, J.M.; Ruess, R.W. Landscape Heterogeneity of Shrub Expansion in Arctic Alaska. Ecosystems 2012, 15, 711–724. [Google Scholar] [CrossRef]
- McCaully, R.E.J. Sources and Variability of Nitrate on an Alaskan Hillslope Dominated by Alder Shrubs; North Carolina State University: Raleigh, NC, USA, 2019; ISBN 1-65841-135-8. [Google Scholar]
- Salmon, V.G.; Breen, A.L.; Kumar, J.; Lara, M.J.; Thornton, P.E.; Wullschleger, S.D.; Iversen, C.M. Alder Distribution and Expansion Across a Tundra Hillslope: Implications for Local N Cycling. Front. Plant Sci. 2019, 10, 1099. [Google Scholar] [CrossRef]
- Dozier, J.; Bair, E.H.; Davis, R.E. Estimating the Spatial Distribution of Snow Water Equivalent in the World’s Mountains. WIREs Water 2016, 3, 461–474. [Google Scholar] [CrossRef]
- Homan, W.J.; Kane, D.L. Arctic Snow Distribution Patterns at the Watershed Scale. Hydrol. Res. 2015, 46, 507–520. [Google Scholar] [CrossRef]
- Assini, J.; Young, K.L. Snow Cover and Snowmelt of an Extensive High Arctic Wetland: Spatial and Temporal Seasonal Patterns. Hydrol. Sci. J. 2012, 57, 738–755. [Google Scholar] [CrossRef] [Green Version]
- Shook, K.; Gray, D.M. Small-scale Spatial Structure of Shallow Snowcovers. Hydrol. Process. 1996, 10, 1283–1292. [Google Scholar] [CrossRef]
- Woo, M.-k.; Steer, P. Slope Hydrology as Influenced by Thawing of the Active Layer, Resolute, NWT. Can. J. Earth Sci. 1983, 20, 978–986. [Google Scholar] [CrossRef]
- Quinton, W.L.; Marsh, P. A Conceptual Framework for Runoff Generation in a Permafrost Environment. Hydrol. Process. 1999, 13, 2563–2581. [Google Scholar] [CrossRef]
- Wright, N.; Hayashi, M.; Quinton, W.L. Spatial and Temporal Variations in Active Layer Thawing and Their Implication on Runoff Generation in Peat-Covered Permafrost Terrain. Water Resour. Res. 2009, 45, W05414. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, S.S.; Gangodagamage, C.; Dafflon, B.; Wainwright, H.; Peterson, J.; Gusmeroli, A.; Ulrich, C.; Wu, Y.; Wilson, C.; Rowland, J.; et al. Quantifying and Relating Land-Surface and Subsurface Variability in Permafrost Environments Using LiDAR and Surface Geophysical Datasets. Hydrogeol. J. 2013, 21, 149–169. [Google Scholar] [CrossRef]
- Evans, B.M.; Walker, D.A.; Benson, C.S.; Nordstrand, E.A.; Petersen, G.W. Spatial Interrelationships between Terrain, Snow Distribution and Vegetation Patterns at an Arctic Foothills Site in Alaska. Ecography 1989, 12, 270–278. [Google Scholar] [CrossRef]
- Pa, S.; Wr, R. Impacts of Increased Winter Snow Cover on Upland Tundra Vegetation: A Case Example. Clim. Res. 1995, 5, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Sturm, M.; Racine, C.; Tape, K. Increasing Shrub Abundance in the Arctic. Nature 2001, 411, 546–547. [Google Scholar] [CrossRef] [PubMed]
- Vajda, A.; Venalainen, A.; Hanninen, P.; Sutinen, R. Effect of Vegetation on Snow Cover at the Northern Timberline: A Case Study in Finnish Lapland. Silva Fenn. 2006, 40, 195. [Google Scholar] [CrossRef] [Green Version]
- Winstral, A.; Marks, D. Simulating Wind Fields and Snow Redistribution Using Terrain-Based Parameters to Model Snow Accumulation and Melt over a Semi-Arid Mountain Catchment. Hydrol. Process. 2002, 16, 3585–3603. [Google Scholar] [CrossRef]
- Litaor, M.I.; Williams, M.; Seastedt, T.R. Topographic Controls on Snow Distribution, Soil Moisture, and Species Diversity of Herbaceous Alpine Vegetation, Niwot Ridge, Colorado. J. Geophys. Res. Biogeosci. 2008, 113, G02008. [Google Scholar] [CrossRef] [Green Version]
- Engstrom, R.; Hope, A.; Kwon, H.; Stow, D.; Zamolodchikov, D. Spatial Distribution of near Surface Soil Moisture and Its Relationship to Microtopography in the Alaskan Arctic Coastal Plain. Hydrol. Res. 2005, 36, 219–234. [Google Scholar] [CrossRef]
- Cosby, B.J.; Hornberger, G.M.; Clapp, R.B.; Ginn, T.R. A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils. Water Resour. Res. 1984, 20, 682–690. [Google Scholar] [CrossRef] [Green Version]
- Romanovsky, V.E.; Osterkamp, T.E. Thawing of the Active Layer on the Coastal Plain of the Alaskan Arctic. Permafr. Periglac. Process. 1997, 8, 1–22. [Google Scholar] [CrossRef]
- Osterkamp, T.E.; Romanovsky, V.E. Freezing of the Active Layer on the Coastal Plain of the Alaskan Arctic. Permafr. Periglac. Process. 1997, 8, 23–44. [Google Scholar] [CrossRef]
- Tabatabaeenejad, A.; Chen, R.H.; Burgin, M.S.; Duan, X.; Cuenca, R.H.; Cosh, M.H.; Scott, R.L.; Moghaddam, M. Assessment and Validation of AirMOSS P-Band Root-Zone Soil Moisture Products. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6181–6196. [Google Scholar] [CrossRef]
- Andresen, C.G.; Lawrence, D.M.; Wilson, C.J.; McGuire, A.D.; Koven, C.; Schaefer, K.; Jafarov, E.; Peng, S.; Chen, X.; Gouttevin, I.; et al. Soil Moisture and Hydrology Projections of the Permafrost Region—A Model Intercomparison. Cryosphere 2020, 14, 445–459. [Google Scholar] [CrossRef]
Depth | Features (In Order of Decreasing Permutation Importance) | Train R2 | Test R2 |
---|---|---|---|
6 cm | NDVI @240 m, SAGA Wetness Index @240 m, Elevation @30 m, Curvature @240 m, Areal Solar Radiation @120 m, Wind Factor @60 m | 0.654 | 0.447 |
12 cm | Elevation @240 m, Areal Solar Radiation @240 m, SAGA Wetness Index @240 m, Wind Factor @120 m, Curvature @240 m | 0.587 | 0.517 |
20 cm | Elevation @240 m, SAGA Wetness Index @240 m, Areal Solar Radiation @120 m, Curvature @240 m, Wind Factor @60 m | 0.713 | 0.576 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dann, J.; Bennett, K.E.; Bolton, W.R.; Wilson, C.J. Factors Controlling a Synthetic Aperture Radar (SAR) Derived Root-Zone Soil Moisture Product over The Seward Peninsula of Alaska. Remote Sens. 2022, 14, 4927. https://doi.org/10.3390/rs14194927
Dann J, Bennett KE, Bolton WR, Wilson CJ. Factors Controlling a Synthetic Aperture Radar (SAR) Derived Root-Zone Soil Moisture Product over The Seward Peninsula of Alaska. Remote Sensing. 2022; 14(19):4927. https://doi.org/10.3390/rs14194927
Chicago/Turabian StyleDann, Julian, Katrina E. Bennett, W. Robert Bolton, and Cathy J. Wilson. 2022. "Factors Controlling a Synthetic Aperture Radar (SAR) Derived Root-Zone Soil Moisture Product over The Seward Peninsula of Alaska" Remote Sensing 14, no. 19: 4927. https://doi.org/10.3390/rs14194927
APA StyleDann, J., Bennett, K. E., Bolton, W. R., & Wilson, C. J. (2022). Factors Controlling a Synthetic Aperture Radar (SAR) Derived Root-Zone Soil Moisture Product over The Seward Peninsula of Alaska. Remote Sensing, 14(19), 4927. https://doi.org/10.3390/rs14194927