Logging Pattern Detection by Multispectral Remote Sensing Imagery in North Subtropical Plantation Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Samples
2.2. Remote Sensing Data and Preprocessing
2.3. Classification of Logging Patterns
Logging Pattern | Number of Samples | Intensity Value Range | (Pre-Logging) Volume Per Hectare (m3/ha) | ||
---|---|---|---|---|---|
Range | Mean | SD | |||
CK | 91 | 0% | 5.8~298.4 | 101.9 | 42.3 |
SL | 59 | <30% | 42.8~274.6 | 138.2 | 54.7 |
CC | 63 | 100% | 15.86~160.13 | 81.35 | 32.07 |
2.4. Feature Extraction for Logging Patterns Monitoring
2.5. Experimental Program Design
2.6. Logging Patterns’ Identification Based on a Random Forest Algorithm
2.7. Accuracy Assessment
3. Results
3.1. Evaluation of the Accuracy of Different Band Combinations
3.2. Feature Importance Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, S.; Yan, X.; Zhang, L. The relationship between forest ecosystem emergy and forest ecosystem service value in China. Acta Geogr. Sin. 2014, 69, 334–342. [Google Scholar] [CrossRef]
- Zou, W.; Chen, S.; Zhao, R. Research Advances in Remote Sensing Based Monitoring of Carbon Storage and Carbon Fluxes in Forest Ecosystem. World For. Res. 2017, 30, 1–7. [Google Scholar] [CrossRef]
- Lambert, J.; Denux, J.-P.; Verbesselt, J.; Balent, G.; Cheret, V. Detecting Clear-Cuts and Decreases in Forest Vitality Using MODIS NDVI Time Series. Remote Sens. 2015, 7, 3588–3612. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, P.; Modugno, S.; Panagos, P.; Marchetti, M.; Schütt, B.; Montanarella, L. Detection of harvested forest areas in Italy using Landsat imagery. Appl. Geogr. 2014, 48, 102–111. [Google Scholar] [CrossRef]
- Pi, X.; Zeng, Y.; He, C. Estimating urban vegetation coverage on the basis of multi-source remote sensing data and temporal mixture analysis. Natl. Remote Sens. Bull. 2021, 25, 1216–1226. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, X.; Wang, J.; Sun, Y.; Jian, G.; Pan, C. Forest resource classification based on random forest and object oriented method. Acta Geod. Et Cartogr. Sin. 2020, 49, 235–244. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Hornero, A.; Hernández-Clemente, R.; Beck, P.S.A. Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2a imagery. ISPRS J. Photogramm. Remote Sens. 2018, 137, 134–148. [Google Scholar] [CrossRef]
- Rao, Y.; Wang, C.; Huang, H. Forest fire monitoring based on multisensor remote sensing techniques in Muli County, Sichuan Province. Natl. Remote Sens. Bull. 2020, 24, 559–570. [Google Scholar] [CrossRef]
- Yu, W.; Zhao, P.; Xu, K.; Zhao, Y.; Shen, P.; Ma, J. Evaluation of red-edge features for identifying subtropical tree species based on Sentinel-2 and Gaofen-6 time series. Int. J. Remote Sens. 2022, 43, 3003–3027. [Google Scholar] [CrossRef]
- Liu, Q.; Qin, X.; Hu, X.; Li, Z. Spectral and Index Analysis for Burned Areas Identification Using GF-6 WFV Data. Spectrosc. Spectr. Anal. 2021, 41, 2536–2542. [Google Scholar] [CrossRef]
- Huang, J.; Li, Z.; Chen, E.; Zhao, L.; Mo, B. Classification of plantation types based on WFV multispectral imagery of the GF-6 satellite. Natl. Remote Sens. Bull. 2021, 25, 539–548. [Google Scholar] [CrossRef]
- Parida, B.R.; Kumari, A. Mapping and modeling mangrove biophysical and biochemical parameters using Sentinel-2A satellite data in Bhitarkanika National Park, Odisha. Model. Earth Syst. Environ. 2021, 7, 2463–2474. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.; Abdullah, H.; Cherenet, E.; Ali, A.; Wang, T.; Nieuwenhuis, W.; Heurich, M.; Vrieling, A.; O’Connor, B.; et al. Mapping leaf chlorophyll content from Sentinel-2 and RapidEye data in spruce stands using the invertible forest reflectance model. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 58–70. [Google Scholar] [CrossRef] [Green Version]
- Souza, C.M.; Roberts, D. Mapping forest degradation in the Amazon region with Ikonos images. Int. J. Remote Sens. 2005, 26, 425–429. [Google Scholar] [CrossRef]
- Souza, J.C.; Siqueira, J.; Sales, M.; Fonseca, A.; Ribeiro, J.; Numata, I.; Cochrane, M.; Barber, C.; Roberts, D.; Barlow, J. Ten-Year Landsat Classification of Deforestation and Forest Degradation in the Brazilian Amazon. Remote Sens. 2013, 5, 5493–5513. [Google Scholar] [CrossRef] [Green Version]
- Bullock, E.L.; Woodcock, C.E.; Olofsson, P. Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysis. Remote Sens. Environ. 2020, 238, 110968. [Google Scholar] [CrossRef]
- Grecchi, R.C.; Beuchle, R.; Shimabukuro, Y.E.; Aragão, L.E.O.C.; Arai, E.; Simonetti, D.; Achard, F. An integrated remote sensing and GIS approach for monitoring areas affected by selective logging: A case study in northern Mato Grosso, Brazilian Amazon. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.M.; Ouimet, W.B.; Dow, S.; Haverfield, C. Estimating Historically Cleared and Forested Land in Massachusetts, USA, Using Airborne LiDAR and Archival Records. Remote Sens. 2021, 13, 4318. [Google Scholar] [CrossRef]
- Antropov, O.; Rauste, Y.; Praks, J.; Seifert, F.M.; Häme, T. Mapping Forest Disturbance Due to Selective Logging in the Congo Basin with RADARSAT-2 Time Series. Remote Sens. 2021, 13, 740. [Google Scholar] [CrossRef]
- Ota, T.; Ahmed, O.S.; Minn, S.T.; Khai, T.C.; Mizoue, N.; Yoshida, S. Estimating selective logging impacts on aboveground biomass in tropical forests using digital aerial photography obtained before and after a logging event from an unmanned aerial vehicle. For. Ecol. Manag. 2019, 433, 162–169. [Google Scholar] [CrossRef]
- d’Oliveira, M.V.N.; Figueiredo, E.O.; de Almeida, D.R.A.; Oliveira, L.C.; Silva, C.A.; Nelson, B.W.; Da Cunha, R.M.; de Almeida Papa, D.; Stark, S.C.; Valbuena, R. Impacts of selective logging on Amazon forest canopy structure and biomass with a LiDAR and photogrammetric survey sequence. For. Ecol. Manag. 2021, 500, 119648. [Google Scholar] [CrossRef]
- Huertas, C.; Sabatier, D.; Derroire, G.; Ferry, B.; Jackson, T.; Pélissier, R.; Vincent, G. Mapping tree mortality rate in a tropical moist forest using multi-temporal LiDAR. Int. J. Appl. Earth Obs. Geoinf. 2022, 109, 102780. [Google Scholar] [CrossRef]
- Kuck, T.N.; Silva Filho, P.F.F.; Sano, E.E.; Da Bispo, P.C.; Shiguemori, E.H.; Dalagnol, R. Change Detection of Selective Logging in the Brazilian Amazon Using X-Band SAR Data and Pre-Trained Convolutional Neural Networks. Remote Sens. 2021, 13, 4944. [Google Scholar] [CrossRef]
- Zhao, F.; Sun, R.; Zhong, L.; Meng, R.; Huang, C.; Zeng, X.; Wang, M.; Li, Y.; Wang, Z. Monthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning. Remote Sens. Environ. 2022, 269, 112822. [Google Scholar] [CrossRef]
- Jayathunga, S.; Owari, T.; Tsuyuki, S. Digital Aerial Photogrammetry for Uneven-Aged Forest Management: Assessing the Potential to Reconstruct Canopy Structure and Estimate Living Biomass. Remote Sens. 2019, 11, 338. [Google Scholar] [CrossRef] [Green Version]
- Coops, N.C.; Shang, C.; Wulder, M.A.; White, J.C.; Hermosilla, T. Change in forest condition: Characterizing non-stand replacing disturbances using time series satellite imagery. For. Ecol. Manag. 2020, 474, 118370. [Google Scholar] [CrossRef]
- White, J.C.; Hermosilla, T.; Wulder, M.A.; Coops, N.C. Mapping, validating, and interpreting spatio-temporal trends in post-disturbance forest recovery. Remote Sens. Environ. 2022, 271, 112904. [Google Scholar] [CrossRef]
- Cardille, J.A.; Perez, E.; Crowley, M.A.; Wulder, M.A.; White, J.C.; Hermosilla, T. Multi-sensor change detection for within-year capture and labelling of forest disturbance. Remote Sens. Environ. 2022, 268, 112741. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Lima, T.A.; Beuchle, R.; Langner, A.; Grecchi, R.C.; Griess, V.C.; Achard, F. Comparing Sentinel-2 MSI and Landsat 8 OLI Imagery for Monitoring Selective Logging in the Brazilian Amazon. Remote Sens. 2019, 11, 961. [Google Scholar] [CrossRef]
- Zheng, D. Analysis of the “Three Total” Inspection Based on Remote Sensing Technology. For. Resour. Manag. 2013, 03, 28–30. [Google Scholar] [CrossRef]
- Brauchler, M.; Stoffels, J.; Nink, S. Extension of an Open GEOBIA Framework for Spatially Explicit Forest Stratification with Sentinel-2. Remote Sens. 2022, 14, 727. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens. Environ. 2010, 114, 2970–2980. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, K.; Ahmed, O.S.; Ponce-Hernandez, R.; Ota, T.; Win, Z.C.; Mizoue, N.; Yoshida, S. Attribution of Disturbance Agents to Forest Change Using a Landsat Time Series in Tropical Seasonal Forests in the Bago Mountains, Myanmar. Forests 2017, 8, 218. [Google Scholar] [CrossRef]
- Meyer, L.H.; Heurich, M.; Beudert, B.; Premier, J.; Pflugmacher, D. Comparison of Landsat-8 and Sentinel-2 Data for Estimation of Leaf Area Index in Temperate Forests. Remote Sens. 2019, 11, 1160. [Google Scholar] [CrossRef] [Green Version]
- Chaves, M.E.D.; Picoli, M.C.A.; Sanches, I.D. Recent Applications of Landsat 8/OLI and Sentinel-2/MSI for Land Use and Land Cover Mapping: A Systematic Review. Remote Sens. 2020, 12, 3062. [Google Scholar] [CrossRef]
- Dong, T.; Liu, J.; Shang, J.; Qian, B.; Ma, B.; Kovacs, J.M.; Walters, D.; Jiao, X.; Geng, X.; Shi, Y. Assessment of red-edge vegetation indices for crop leaf area index estimation. Remote Sens. Environ. 2019, 222, 133–143. [Google Scholar] [CrossRef]
- Navarro, G.; Caballero, I.; Silva, G.; Parra, P.-C.; Vázquez, Á.; Caldeira, R. Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Snyder, G.; Vadnais, C.; Arora, R.; Babcock, M.; Stensaas, G.; Doucette, P.; Newman, T. User needs for future Landsat missions. Remote Sens. Environ. 2019, 231, 111214. [Google Scholar] [CrossRef]
- Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 170–175. [Google Scholar] [CrossRef]
- Hall-Beyer, M. Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. Int. J. Remote Sens. 2017, 38, 1312–1338. [Google Scholar] [CrossRef]
- Jian, Y.; Han, Z.; Huang, G.; Wang, X.; Li, Y.; Zhou, J.; Dian, Y. Estimation of forest biomass using high spatial resolution remote sensing imagery in north subtropical forests. Acta Ecologica Sinica 2021, 41, 2161–2169. [Google Scholar] [CrossRef]
- Hethcoat, M.G.; Edwards, D.P.; Carreiras, J.M.B.; Bryant, R.G.; França, F.M.; Quegan, S. A machine learning approach to map tropical selective logging. Remote Sens. Environ. 2019, 221, 569–582. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cyber. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Ye, T.; Wang, Y.; Guo, Z.; Li, Y. Factor contribution to fire occurrence, size, and burn probability in a subtropical coniferous forest in East China. PLoS ONE 2017, 12, e0172110. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Gordon, A.D.; Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees. Biometrics 1984, 40, 874. [Google Scholar] [CrossRef] [Green Version]
- Yue, J.; Yang, G.; Feng, H. Comparative of remote sensing estimation models of winter wheat biomass based on random forest algorithm. Trans. Chin. Soc. Agric. Eng. 2016, 32, 175–182. [Google Scholar] [CrossRef]
- Hari Poudyal, B.; Maraseni, T.; Cockfield, G. Evolutionary dynamics of selective logging in the tropics: A systematic review of impact studies and their effectiveness in sustainable forest management. For. Ecol. Manag. 2018, 430, 166–175. [Google Scholar] [CrossRef]
- Hirschmugl, M.; Gallaun, H.; Dees, M.; Datta, P.; Deutscher, J.; Koutsias, N.; Schardt, M. Methods for Mapping Forest Disturbance and Degradation from Optical Earth Observation Data: A Review. Curr. Forestry Rep. 2017, 3, 32–45. [Google Scholar] [CrossRef]
- Abdollahnejad, A.; Panagiotidis, D.; Bílek, L. An Integrated GIS and Remote Sensing Approach for Monitoring Harvested Areas from Very High-Resolution, Low-Cost Satellite Images. Remote Sens. 2019, 11, 2539. [Google Scholar] [CrossRef] [Green Version]
- Hemmerling, J.; Pflugmacher, D.; Hostert, P. Mapping temperate forest tree species using dense Sentinel-2 time series. Remote Sens. Environ. 2021, 267, 112743. [Google Scholar] [CrossRef]
- Szostak, M.; Hawryło, P.; Piela, D. Using of Sentinel-2 images for automation of the forest succession detection. Eur. J. Remote Sens. 2018, 51, 142–149. [Google Scholar] [CrossRef]
- Francini, S.; McRoberts, R.E.; D’Amico, G.; Coops, N.C.; Hermosilla, T.; White, J.C.; Wulder, M.A.; Marchetti, M.; Mugnozza, G.S.; Chirici, G. An open science and open data approach for the statistically robust estimation of forest disturbance areas. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102663. [Google Scholar] [CrossRef]
- St Peter, J.; Anderson, C.; Drake, J.; Medley, P. Spatially Quantifying Forest Loss at Landscape-scale Following a Major Storm Event. Remote Sens. 2020, 12, 1138. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Chen, J.; Guo, S.; Deng, X.; Han, Y. Integration of Time Series Sentinel-1 and Sentinel-2 Imagery for Crop Type Mapping over Oasis Agricultural Areas. Remote Sens. 2020, 12, 158. [Google Scholar] [CrossRef] [Green Version]
- Marx, A.; Kleinschmit, B. Sensitivity analysis of RapidEye spectral bands and derived vegetation indices for insect defoliation detection in pure Scots pine stands. iForest 2017, 10, 659–668. [Google Scholar] [CrossRef] [Green Version]
- Bałazy, R.; Hycza, T.; Kamińska, A.; Osińska-Skotak, K. Factors Affecting the Health Condition of Spruce Forests in Central European Mountains-Study Based on MultitemporalRapidEye Satellite Images. Forests 2019, 10, 943. [Google Scholar] [CrossRef] [Green Version]
- Peña, M.A.; Liao, R.; Brenning, A. Using spectrotemporal indices to improve the fruit-tree crop classification accuracy. ISPRS J. Photogramm. Remote Sens. 2017, 128, 158–169. [Google Scholar] [CrossRef]
- Langner, A.; Miettinen, J.; Kukkonen, M.; Vancutsem, C.; Simonetti, D.; Vieilledent, G.; Verhegghen, A.; Gallego, J.; Stibig, H.-J. Towards Operational Monitoring of Forest Canopy Disturbance in Evergreen Rain Forests: A Test Case in Continental Southeast Asia. Remote Sens. 2018, 10, 544. [Google Scholar] [CrossRef]
- Bullock, E.L.; Woodcock, C.E.; Holden, C.E. Improved change monitoring using an ensemble of time series algorithms. Remote Sens. Environ. 2020, 238, 111165. [Google Scholar] [CrossRef]
- Tang, X.; Bullock, E.L.; Olofsson, P.; Woodcock, C.E. Can VIIRS continue the legacy of MODIS for near real-time monitoring of tropical forest disturbance? Remote Sens. Environ. 2020, 249, 112024. [Google Scholar] [CrossRef]
- Hethcoat, M.G.; Carreiras, J.M.; Edwards, D.P.; Bryant, R.G.; Quegan, S. Detecting tropical selective logging with C-band SAR data may require a time series approach. Remote Sens. Environ. 2021, 259, 112411. [Google Scholar] [CrossRef]
- Holloway-Brown, J.; Helmstedt, K.J.; Mengersen, K.L. Interpolating missing land cover data using stochastic spatial random forests for improved change detection. Remote Sens. Ecol. Conserv. 2021, 7, 649–665. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Houghton, R.A.; Dos Santos Alvalá, R.C.; Soares, J.V.; Yu, Y. Distribution of aboveground live biomass in the Amazon basin. Glob. Change Biol. 2007, 13, 816–837. [Google Scholar] [CrossRef]
- Francini, S.; McRoberts, R.E.; Giannetti, F.; Mencucci, M.; Marchetti, M.; Scarascia Mugnozza, G.; Chirici, G. Near-real time forest change detection using PlanetScope imagery. Eur. J. Remote Sens. 2020, 53, 233–244. [Google Scholar] [CrossRef]
- Chrysafis, I.; Mallinis, G.; Tsakiri, M.; Patias, P. Evaluation of single-date and multi-seasonal spatial and spectral information of Sentinel-2 imagery to assess growing stock volume of a Mediterranean forest. Int. J. Appl. Earth Obs. Geoinf. 2019, 77, 1–14. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, X.; Wu, F.; Sun, Z.; Xia, H.; Meng, Q.; Huang, W.; Zhou, H.; Gao, J.; Li, W.; et al. Estimating Forest Stock Volume in Hunan Province, China, by Integrating In Situ Plot Data, Sentinel-2 Images, and Linear and Machine Learning Regression Models. Remote Sens. 2020, 12, 186. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, Z.; Lin, H.; Wang, G.; Sun, H.; Long, J.; Zhang, M. Estimating the Growing Stem Volume of Chinese Pine and Larch Plantations based on Fused Optical Data Using an Improved Variable Screening Method and Stacking Algorithm. Remote Sens. 2020, 12, 871. [Google Scholar] [CrossRef] [Green Version]
- Melendy, L.; Hagen, S.C.; Sullivan, F.B.; Pearson, T.; Walker, S.M.; Ellis, P.; Kustiyo; Sambodo, A.K.; Roswintiarti, O.; Hanson, M.A.; et al. Automated method for measuring the extent of selective logging damage with airborne LiDAR data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 228–240. [Google Scholar] [CrossRef]
- Hansen, M.C.; Krylov, A.; Tyukavina, A.; Potapov, P.V.; Turubanova, S.; Zutta, B.; Ifo, S.; Margono, B.; Stolle, F.; Moore, R. Humid tropical forest disturbance alerts using Landsat data. Environ. Res. Lett. 2016, 11, 34008. [Google Scholar] [CrossRef]
- Chen, N.; Tsendbazar, N.-E.; Hamunyela, E.; Verbesselt, J.; Herold, M. Sub-annual tropical forest disturbance monitoring using harmonized Landsat and Sentinel-2 data. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102386. [Google Scholar] [CrossRef]
- Reiche, J.; Hamunyela, E.; Verbesselt, J.; Hoekman, D.; Herold, M. Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2. Remote Sens. Environ. 2018, 204, 147–161. [Google Scholar] [CrossRef]
- Joshi, N.; Baumann, M.; Ehammer, A.; Fensholt, R.; Grogan, K.; Hostert, P.; Jepsen, M.; Kuemmerle, T.; Meyfroidt, P.; Mitchard, E.; et al. A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring. Remote Sens. 2016, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Higginbottom, T.P.; Symeonakis, E.; Meyer, H.; van der Linden, S. Mapping fractional woody cover in semi-arid savannahs using multi-seasonal composites from Landsat data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 88–102. [Google Scholar] [CrossRef]
Bands | Center Wavelength/µm | Resolution/m |
---|---|---|
Band 1—Coastal aerosol | 0.443 | 60 |
Band 2—Blue | 0.490 | 10 |
Band 3—Green | 0.560 | 10 |
Band—Red | 0.665 | 10 |
Band 5—Vegetation red edge 1 | 0.705 | 20 |
Band 6—Vegetation red edge 2 | 0.740 | 20 |
Band 7—Vegetation red edge 3 | 0.783 | 20 |
Band 8—NIR | 0.842 | 10 |
Band 8A—Vegetation red edge 4 | 0.865 | 20 |
Band 9—Water vapor | 0.945 | 60 |
Band 10—Cirrus | 1.375 | 60 |
Band 11—SWIR 1 | 1.610 | 20 |
Band 12—SWIR 2 | 2.190 | 20 |
Image Date | Number of Logging Subcompartments | Time Lag Days after Logging | Number of Unlogged Samples |
---|---|---|---|
2016-08-01* | 38 | 0~81 | 10 |
2016-09-10 | 9 | 0~30 | 5 |
2017-08-06 | 15 | 0~15 | 13 |
2018-05-08 | 18 | 0~4 | 12 |
2018-06-07 | 10 | 0~4 | 14 |
2018-07-22 | 17 | 0~24 | 10 |
2018-09-15* | 8 | 15~37 | 21 |
2018-10-10 | 7 | 0~20 | 6 |
Total | 122 | 10 (average lag days) | 91 |
Type | Feature Full Name | Abbreviation | Equations |
---|---|---|---|
Spectral feature | Band | B | B2,B3,B4,B5,B6,B7,B8,B8A,B11,B12 |
Vegetation index | Normalized difference vegetation index | NDVI | (B8−B4)/(B8+B4) |
GND | GNDVI | (B8−B3)/(B8+B3) | |
Simple ratio | SR | B8/B4 | |
Difference vegetation index | DVI | B8−B4 | |
SWIR vegetation index | Normalized burn ratio | NBR | (B8−B12)/(B8+B12) |
Red-edge vegetation index | Normalized difference vegetation index red edge 1 narrow | NDVIre1n | (B8A−B5)/(B8A+B5) |
Normalized difference vegetation index red edge 3 narrow | NDVIre3n | (B8A−B7)/(B8A+B7) | |
Chlorophyll index red edge | CIre | B7/B5-1 | |
Normalized difference red edge 1 | NDre1 | (B6−B5)/(B6+B5) | |
Normalized difference red edge 2 | NDre2 | (B7−B5)/(B7+B5) | |
Texture features | Mean | ME | Reference [44] |
Variance | VA | ||
Homogeneity | HO | ||
Contrast | CO | ||
Dissimilarity | DI | ||
Entropy | EN | ||
Angular second moment | ASM | ||
Correlation | CR |
Cases | Band Combinations | Features |
---|---|---|
1 | VIS+NIR | B2+B3+B4+B8+NDVI+GNDVI+SR+DVI +ME+VA+HO+CO+DI+EN+ASM+CR |
2 | VIS+NIR+Red-edge | B2+B3+B4+B8+NDVI+GNDVI+SR+DVI +B5+B6+B7+B8A+NDVIre1n+NDVIre3n+ CIre+NDre1+NDre2 +ME+VA+HO+CO+DI+EN+ASM+CR |
3 | VIS+NIR+SWIR | B2+B3+B4+B8+NDVI+GNDVI+SR+DVI +B11+B12+NBR +ME+VA+HO+CO+DI+EN+ASM+CR |
4 | VIS+NIR+Red-edge+SWIR | B2+B3+B4+B8+NDVI+GNDVI+SR+DVI +B5+B6+B7+B8A+NDVIre1n+NDVIre3n+CIre+NDre1+NDre2 + B11+B12+NBR +ME+VA+HO+CO+DI+EN+ASM+CR |
Cases | Logging Pattern | Evaluation Indicators | ||||
---|---|---|---|---|---|---|
Precision/% | Recall/% | F1-Score/% | Acc/% | Kappa | ||
case 1 | CK | 76 | 86 | 80 | 80 | 0.69 |
SL | 69 | 58 | 63 | |||
CC | 97 | 94 | 95 | |||
case 2 | CK | 78 | 90 | 84 | 84 | 0.75 |
SL | 78 | 61 | 69 | |||
CC | 98 | 97 | 98 | |||
case 3 | CK | 79 | 90 | 84 | 84 | 0.74 |
SL | 77 | 61 | 68 | |||
CC | 97 | 95 | 96 | |||
case 4 | CK | 81 | 91 | 86 | 85 | 0.77 |
SL | 79 | 64 | 71 | |||
CC | 97 | 95 | 96 |
Ground Truth | ||||
CK | SL | CC | ||
Prediction | CK | 83 | 19 | 1 |
SL | 8 | 38 | 2 | |
CC | 0 | 2 | 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Wang, Z.; Zhang, Y.; Dian, Y. Logging Pattern Detection by Multispectral Remote Sensing Imagery in North Subtropical Plantation Forests. Remote Sens. 2022, 14, 4987. https://doi.org/10.3390/rs14194987
Hu Y, Wang Z, Zhang Y, Dian Y. Logging Pattern Detection by Multispectral Remote Sensing Imagery in North Subtropical Plantation Forests. Remote Sensing. 2022; 14(19):4987. https://doi.org/10.3390/rs14194987
Chicago/Turabian StyleHu, Yue, Zhuna Wang, Yahao Zhang, and Yuanyong Dian. 2022. "Logging Pattern Detection by Multispectral Remote Sensing Imagery in North Subtropical Plantation Forests" Remote Sensing 14, no. 19: 4987. https://doi.org/10.3390/rs14194987
APA StyleHu, Y., Wang, Z., Zhang, Y., & Dian, Y. (2022). Logging Pattern Detection by Multispectral Remote Sensing Imagery in North Subtropical Plantation Forests. Remote Sensing, 14(19), 4987. https://doi.org/10.3390/rs14194987