Assessing Spatiotemporal Changes of SDG Indicators at the Neighborhood Level in Guilin, China: A Geospatial Big Data Approach
Abstract
:1. Introduction
1.1. The SDG11 Indicators
1.2. The Role of Geospatial Big Data for SDG11 Indicators Monitoring
1.3. Research Questions, Motivation and Objectives
2. Literature Review
2.1. Geospatial Datasets for SDG11 Indicators Monitoring
2.2. Methods for SDG11 Indicators Monitoring
2.3. Research Challenges
3. Study Area
4. Materials and Methods
4.1. Datasets
4.2. Methods
4.2.1. SDG11.2.1
4.2.2. SDG11.3.1
4.2.3. SDG11.7.1
5. Results
5.1. Spatiotemporal Variation of Population with Access to Public Transport Stops (SDG 11.2.1)
5.2. Spatiotemporal Variation of Land Consumption vs. Population Growth (SDG 11.3.1)
5.3. Spatiotemporal Variation of Open Public Space (SDG 11.7.1)
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UN. Transforming our World: The 2030 Agenda for Sustainable Development. 2015. Available online: http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/.70/1&Lang=E (accessed on 30 June 2022).
- Patel, Z.; Greyling, S.; Simon, D.; Arfvidsson, H.; Moodley, N.; Primo, N.; Wright, C. Local responses to global sustainability agendas: Learning from experimenting with the urban sustainable development goal in Cape Town. Sustain. Sci. 2017, 12, 785–797. [Google Scholar] [CrossRef]
- Ballerini, L.; Bergh, S.I. Using citizen science data to monitor the Sustainable Development Goals: A bottom-up analysis. Sustain. Sci. 2021, 16, 1945–1962. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Dong, J.; Hamm, N.A.S.; Li, Z.; Wang, J.; Xing, H.; Fu, P. Integrating remote sensing and geospatial big data for urban land use mapping: A review. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102514. [Google Scholar] [CrossRef]
- Estoque, R.C. A Review of the Sustainability Concept and the State of SDG Monitoring Using Remote Sensing. Remote Sens. 2020, 12, 1770. [Google Scholar] [CrossRef]
- Jia, Y.; Ge, Y.; Ling, F.; Guo, X.; Wang, J.; Wang, L.; Chen, Y.; Li, X. Urban Land Use Mapping by Combining Remote Sensing Imagery and Mobile Phone Positioning Data. Remote Sens. 2018, 10, 446. [Google Scholar] [CrossRef] [Green Version]
- Mariathasan, V.; Bezuidenhoudt, E.; Olympio, K.R. Evaluation of earth observation solutions for Namibia’s SDG monitoring system. Remote Sens. 2019, 11, 1612. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.; Ryan, B.; Sonntag, W.; Kavvada, A.; Friedl, L. Earth observation in service of the 2030 Agenda for Sustainable Development. Geo Spat. Inf. Sci. 2017, 20, 77–96. [Google Scholar] [CrossRef]
- Kavvada, A.; Metternicht, G.; Kerblat, F.; Mudau, N.; Haldorson, M.; Laldaparsad, S.; Friedl, L.; Held, A.; Chuvieco, E. Towards delivering on the Sustainable Development Goals using Earth observations. Remote Sens. Environ. 2020, 247, 111930. [Google Scholar] [CrossRef]
- Molina-Azorín, J.F.; Font, X. Mixed methods in sustainable tourism research: An analysis of prevalence, designs and application in JOST (2005–2014). J. Sustain. Tour. 2016, 24, 549–573. [Google Scholar] [CrossRef]
- Lu, L.; Guo, H.; Corbane, C.; Li, Q. Urban sprawl in provincial capital cities in China: Evidence from multi-temporal urban land products using Landsat data. Sci. Bull. 2019, 64, 955–957. [Google Scholar] [CrossRef]
- Pesaresi, M.; Huadong, G.; Blaes, X.; Ehrlich, D.; Ferri, S.; Gueguen, L.; Halkia, M.; Kauffmann, M.; Kemper, T.; Lu, L. A global human settlement layer from optical HR/VHR RS data: Concept and first results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2102–2131. [Google Scholar] [CrossRef]
- Esch, T.; Heldens, W.; Hirner, A.; Keil, M.; Marconcini, M.; Roth, A.; Zeidler, J.; Dech, S.; Strano, E. Breaking new ground in mapping human settlements from space–The Global Urban Footprint. ISPRS J. Photogramm. Remote Sens. 2017, 134, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Marconcini, M.; Metz-Marconcini, A.; Üreyen, S.; Palacios-Lopez, D.; Hanke, W.; Bachofer, F.; Zeidler, J.; Esch, T.; Gorelick, N.; Kakarla, A. Outlining where humans live, the World Settlement Footprint 2015. Sci. Data 2020, 7, 242. [Google Scholar] [CrossRef]
- Ghazaryan, G.; Rienow, A.; Oldenburg, C.; Thonfeld, F.; Trampnau, B.; Sticksel, S.; Jürgens, C. Monitoring of urban sprawl and densification processes in western Germany in the light of SDG indicator 11.3.1 based on an automated retrospective classification approach. Remote Sens. 2021, 13, 1694. [Google Scholar] [CrossRef]
- Xiao, D.; Lu, L.; Wang, X.; Nitivattananon, V.; Guo, H.; Hui, W. An urbanization monitoring dataset for world cultural heritage in the Belt and Road region. Big Earth Data 2022, 6, 127–140. [Google Scholar] [CrossRef]
- Neumann, B.; Ott, K.; Kenchington, R. Strong sustainability in coastal areas: A conceptual interpretation of SDG 14. Sustain. Sci. 2017, 12, 1019–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamasaki, K.; Yamada, T. A framework to assess the local implementation of Sustainable Development Goal 11. Sustain. Cities Soc. 2022, 84, 104002. [Google Scholar] [CrossRef]
- Biggeri, M.; Clark, D.A.; Ferrannini, A.; Mauro, V. Tracking the SDGs in an ‘integrated’ manner: A proposal for a new index to capture synergies and trade-offs between and within goals. World Dev. 2019, 122, 628–647. [Google Scholar] [CrossRef]
- Xu, Z.; Chau, S.N.; Chen, X.; Zhang, J.; Li, Y.; Dietz, T.; Wang, J.; Winkler, J.A.; Fan, F.; Huang, B.; et al. Assessing progress towards sustainable development over space and time. Nature 2020, 577, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Moro, L.D.; Maculan, L.S.; Pivoto, D.; Cardoso, G.T.; Pinto, D.; Adelodun, B.; Bodah, B.W.; Santosh, M.; Bortoluzzi, M.G.; Branco, E.; et al. Geospatial Analysis with Landsat Series and Sentinel-3B OLCI Satellites to Assess Changes in Land Use and Water Quality over Time in Brazil. Sustainability 2022, 14, 9733. [Google Scholar] [CrossRef]
- Zhou, M.; Lu, L.; Guo, H.; Weng, Q.; Cao, S.; Zhang, S.; Li, Q. Urban Sprawl and Changes in Land-Use Efficiency in the Beijing–Tianjin–Hebei Region, China from 2000 to 2020: A Spatiotemporal Analysis Using Earth Observation Data. Remote Sens. 2021, 13, 2850. [Google Scholar] [CrossRef]
- Melchiorri, M.; Pesaresi, M.; Florczyk, A.J.; Corbane, C.; Kemper, T. Principles and applications of the global human settlement layer as baseline for the land use efficiency indicator—SDG 11.3.1. ISPRS Int. J. Geo-Inf. 2019, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Estoque, R.C.; Ooba, M.; Togawa, T.; Hijioka, Y.; Murayama, Y. Monitoring global land-use efficiency in the context of the UN 2030 Agenda for Sustainable Development. Habitat Int. 2021, 115, 102403. [Google Scholar] [CrossRef]
- Mudau, N.; Mwaniki, D.; Tsoeleng, L.; Mashalane, M.; Beguy, D.; Ndugwa, R. Assessment of SDG indicator 11.3. 1 and urban growth trends of major and small cities in South Africa. Sustainability 2020, 12, 7063. [Google Scholar] [CrossRef]
- Prakash, M.; Ramage, S.; Kavvada, A.; Goodman, S. Open Earth observations for sustainable urban development. Remote Sens. 2020, 12, 1646. [Google Scholar] [CrossRef]
- Verde, N.; Patias, P.; Mallinis, G. A Cloud-Based Mapping Approach Using Deep Learning and Very-High Spatial Resolution Earth Observation Data to Facilitate the SDG 11.7.1 Indicator Computation. Remote Sens. 2022, 14, 1011. [Google Scholar] [CrossRef]
- Aguilar, R.; Kuffer, M. Cloud computation using high-resolution images for improving the SDG indicator on open spaces. Remote Sens. 2020, 12, 1144. [Google Scholar] [CrossRef] [Green Version]
- Kearney, S.P.; Coops, N.C.; Sethi, S.; Stenhouse, G.B. Maintaining accurate, current, rural road network data: An extraction and updating routine using RapidEye, participatory GIS and deep learning. Int. J. Appl. Earth Obs. Geoinf. 2020, 87, 102031. [Google Scholar] [CrossRef]
- Zhang, C.; Sargent, I.; Pan, X.; Li, H.; Gardiner, A.; Hare, J.; Atkinson, P.M. An object-based convolutional neural network (OCNN) for urban land use classification. Remote Sens. Environ. 2018, 216, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Tu, Y.; Song, Y.; Theobald, D.M.; Zhang, T.; Ren, Z.; Li, X.; Yang, J.; Wang, J.; Wang, X. Mapping essential urban land use categories with open big data: Results for five metropolitan areas in the United States of America. ISPRS J. Photogramm. Remote Sens. 2021, 178, 203–218. [Google Scholar] [CrossRef]
- Furberg, D.; Ban, Y.; Mörtberg, U. Monitoring Urban Green Infrastructure Changes and Impact on Habitat Connectivity Using High-Resolution Satellite Data. Remote Sens. 2020, 12, 3072. [Google Scholar] [CrossRef]
- Deilami, K.; Hashim, M. Very high resolution optical satellites for DEM generation: A review. Eur. J. Sci. Res. 2011, 49, 542–554. [Google Scholar]
- Fritz, S.; See, L.; Carlson, T.; Haklay, M.; Oliver, J.L.; Fraisl, D.; Mondardini, R.; Brocklehurst, M.; Shanley, L.A.; Schade, S.; et al. Citizen science and the United Nations Sustainable Development Goals. Nat. Sustain. 2019, 2, 922–930. [Google Scholar] [CrossRef] [Green Version]
- Fried, T.; Tun, T.H.; Klopp, J.M.; Welle, B. Measuring the Sustainable Development Goal (SDG) transport target and accessibility of Nairobi’s matatus. Transp. Res. Rec. 2020, 2674, 196–207. [Google Scholar] [CrossRef]
- Tiznado-Aitken, I.; Muñoz, J.C.; Hurtubia, R. The Role of Accessibility to Public Transport and Quality of Walking Environment on Urban Equity: The Case of Santiago de Chile. Transp. Res. Rec. 2018, 2672, 129–138. [Google Scholar] [CrossRef]
- Brussel, M.; Zuidgeest, M.; Pfeffer, K.; van Maarseveen, M. Access or Accessibility? A Critique of the Urban Transport SDG Indicator. ISPRS Int. J. Geo. Inf. 2019, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- El Garouani, A.; Mulla, D.J.; El Garouani, S.; Knight, J. Analysis of urban growth and sprawl from remote sensing data: Case of Fez, Morocco. Int. J. Sustain. Built. Environ. 2017, 6, 160–169. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Kolotii, A.; Skakun, S.; Rakoid, O.; Shumilo, L. A workflow for Sustainable Development Goals indicators assessment based on high-resolution satellite data. Int. J. Digit. Earth 2020, 13, 309–321. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, B.; Xu, L. Monitoring Land-Use Efficiency in China’s Yangtze River Economic Belt from 2000 to 2018. Land 2022, 11, 1009. [Google Scholar] [CrossRef]
- Lu, L.; Qureshi, S.; Li, Q.; Chen, F.; Shu, L. Monitoring and projecting sustainable transitions in urban land use using remote sensing and scenario-based modelling in a coastal megacity. Ocean. Coast. Manag. 2022, 224, 106201. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.C. Spatial–temporal dynamics of urban green space in response to rapid urbanization and greening policies. Landsc. Urban Plan. 2011, 100, 268–277. [Google Scholar] [CrossRef]
- Cetin, M. Using GIS analysis to assess urban green space in terms of accessibility: Case study in Kutahya. Int. J. Sustain. Dev. World Ecol. 2015, 22, 420–424. [Google Scholar] [CrossRef]
- Lwin, K.K.; Murayama, Y. Modelling of urban green space walkability: Eco-friendly walk score calculator. Comput. Environ. Urban Syst. 2011, 35, 408–420. [Google Scholar] [CrossRef]
- Klopp, J.M.; Petretta, D.L. The urban sustainable development goal: Indicators, complexity and the politics of measuring cities. Cities 2017, 63, 92–97. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, C.; Feng, Y.; Zhao, M.; Gu, J. Using Earth Observation for Monitoring SDG 11.3.1-Ratio of Land Consumption Rate to Population Growth Rate in Mainland China. Remote Sens. 2020, 12, 357. [Google Scholar] [CrossRef] [Green Version]
- Schiavina, M.; Melchiorri, M.; Freire, S.; Florio, P.; Ehrlich, D.; Tommasi, P.; Pesaresi, M.; Kemper, T. Land use efficiency of functional urban areas: Global pattern and evolution of development trajectories. Habitat Int. 2022, 123, 102543. [Google Scholar] [CrossRef] [PubMed]
- Calka, B.; Orych, A.; Bielecka, E.; Mozuriunaite, S. The Ratio of the Land Consumption Rate to the Population Growth Rate: A Framework for the Achievement of the Spatiotemporal Pattern in Poland and Lithuania. Remote Sens. 2022, 14, 1074. [Google Scholar] [CrossRef]
- Deng, J.; Huang, Y.; Chen, B.; Tong, C.; Liu, P.; Wang, H.; Hong, Y. A Methodology to Monitor Urban Expansion and Green Space Change Using a Time Series of Multi-Sensor SPOT and Sentinel-2A Images. Remote Sens. 2019, 11, 1230. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.; Metternicht, G.; Wiedmann, T. Initial progress in implementing the Sustainable Development Goals (SDGs): A review of evidence from countries. Sustain. Sci. 2018, 13, 1453–1467. [Google Scholar] [CrossRef]
- He, G.; Zhao, X.; Yu, M. Exploring the multiple disturbances of karst landscape in Guilin World Heritage Site, China. CATENA 2021, 203, 105349. [Google Scholar] [CrossRef]
- Gao, K.; Yang, X.; Wang, Z.; Zhang, H.; Huang, C.; Zeng, X. Spatial Sustainable Development Assessment Using Fusing Multisource Data from the Perspective of Production-Living-Ecological Space Division: A Case of Greater Bay Area, China. Remote Sens. 2022, 14, 2772. [Google Scholar] [CrossRef]
- Su, X.; Zheng, C.; Yang, Y.; Yang, Y.; Zhao, W.; Yu, Y. Spatial Structure and Development Patterns of Urban Traffic Flow Network in Less Developed Areas: A Sustainable Development Perspective. Sustainability 2022, 14, 8095. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B. The Spatial Disparities of Land-Use Efficiency in Mainland China from 2000 to 2015. Int. J. Environ. Res. Public Health 2022, 19, 9982. [Google Scholar] [CrossRef]
- Tirumala, R.D.; Tiwari, P. Importance of Land in SDG Policy Instruments: A Study of ASEAN Developing Countries. Land 2022, 11, 218. [Google Scholar] [CrossRef]
- Zhang, X. Incremental Production of Urban Public Green Space: A ‘Spiral Space’ Building Typology. Buildings 2022, 12, 1330. [Google Scholar] [CrossRef]
- Arslan, T.V.; Durak, S.; Aytac, D.O. Attaining SDG11: Can sustainability assessment tools be used for improved transformation of neighbourhoods in historic city centers? Nat. Resour. Forum 2016, 40, 180–202. [Google Scholar] [CrossRef]
- Elmqvist, T.; Siri, J.; Andersson, E.; Anderson, P.; Bai, X.; Das, P.K.; Gatere, T.; Gonzalez, A.; Goodness, J.; Handel, S.N. Urban tinkering. Sustain. Sci. 2018, 13, 1549–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Liang, Y.; Hashimoto, S. Integrated assessment of land-use/coverage changes and their impacts on ecosystem services in Gansu Province, northwest China: Implications for sustainable development goals. Sustain. Sci. 2020, 15, 297–314. [Google Scholar] [CrossRef]
- Leyk, S.; Gaughan, A.E.; Adamo, S.B.; de Sherbinin, A.; Balk, D.; Freire, S.; Rose, A.; Stevens, F.R.; Blankespoor, B.; Frye, C.; et al. The spatial allocation of population: A review of large-scale gridded population data products and their fitness for use. Earth Syst. Sci. Data 2019, 11, 1385–1409. [Google Scholar] [CrossRef] [Green Version]
- Tuholske, C.; Gaughan, A.E.; Sorichetta, A.; de Sherbinin, A.; Bucherie, A.; Hultquist, C.; Stevens, F.; Kruczkiewicz, A.; Huyck, C.; Yetman, G. Implications for Tracking SDG Indicator Metrics with Gridded Population Data. Sustainability 2021, 13, 7329. [Google Scholar] [CrossRef]
SDG Indicator | Data Source | Spatial Resolution | Study Area | References |
---|---|---|---|---|
SDG11.2.1 | An underlying road network, | 100 m | Nairobi, Kenya | Fried et al. [35] |
a general transit feed specification package, | ||||
WorldPop population, | ||||
an opportunity dataset. | ||||
SDG11.2.1 | Public transport stops, | Santiago, Chile | Tiznado-Aitken et al. [36] | |
road network, | ||||
georeferenced information. | ||||
SDG11.3.1 | Built-up areas, | 30 m, 250 m, 1 km | 10,000 urban centers | Melchiorri et al. [23] |
resident population, | 250 m, 1 km | |||
settlement typologies. | 1 km | |||
SDG11.3.1 | A GIS raster dataset of built-up areas, | 1 km | Global | Estoque et al. [24] |
a statistical dataset of population. | 250 m, 1 km | |||
SDG11.3.1 | Landsat-5/8 images, | 30 m | Beijing–Tianjin–Hebei region, China | Zhou et al. [22] |
built-up area products, | 30 m | |||
WorldPop population, | 100 m | |||
ancillary datasets. | 30 m | |||
SDG11.3.1 | LULC, | 30 m | Mainland China | Wang et al. [46] |
census data, | ||||
DMSP/OLS, | 1 km | |||
administrative boundary map. | ||||
SDG11.3.1 | Landsat-5/8 images, | 30 m | Tianjin, China | Lu et al. [41] |
topographic data, | 30 m | |||
road network, | ||||
demographic data. | 100 m | |||
SDG11.3.1 | Built-up areas, | 1 km | Global | Schiavina et al. [47] |
resident population, | ||||
settlement typologies, | ||||
functional urban area. | ||||
SDG11.3.1 | Landsat 5 TM images, | 30 m | South Africa | Mudau et al. [25] |
SPOT 2/5 sensors images, | Panchromatic 10/2.5 m; multispectral 20/10 m | |||
census data. | ||||
SDG11.3.1 | Landsat 2/5/7/8 images, | 80/30 m | Southern Brazil | Moro et al. [21] |
Sentinel-3B OLCI-WFR satellite images. | 300 m | |||
SDG11.3.1 | Built-up area, | 100 m | the Yangtze River Delta, the Middle Reaches of the Yangtze River, and Chengdu–Chongqing, China | Wang et al. [40] |
population data, | 100 m | |||
boundaries maps. | ||||
SDG11.3.1 | Resident population, | 1 km | Poland and Lithuania | Calka et al. [48] |
CORINE land cover 2000/2018 | 12.5 m | |||
SDG11.7.1 | PlanetScope images, | 3.7–4.1 m | The Athens Metropolitan Area | Verde et al. [27] |
Sentinel-1 images, | ||||
ground range-detected products. | ||||
SDG11.7.1 | Sentinel-2A images, | 10 m | Hangzhou, China | Deng et al. [49] |
SPOT-2/3/5 images, | XS 20 m/PAN 10 m/XS 10&20 m | |||
reference and ancillary data. |
Data Set | Acquisition Time | Spatial Resolution | Source |
---|---|---|---|
Road network | 2020 | Autonavi electronic navigation map | |
Point of interest | 2015 2020 | Autonavi electronic navigation map | |
Gaofen-1/6 satellite images | 2013 2015 2020 | 2/8 m | Chinese Academy of Sciences |
Population grid data | 2013 2015 2020 | 1 km | LandScan |
Urban park | 2015 2020 | Autonavi electronic navigation map |
Terms | Definition | Unit |
---|---|---|
The total population served by public transport service area i. | - | |
The number of the population of population zone j (j = 1…n) that fully or partially intersect with a public transport service area i. | - | |
LCR | Land consumption rate. | - |
The total area covered by the urban built-up area in the initial year t. | km2 | |
The total area covered by the urban built-up area in the final year t+n. | km2 | |
LCRPGR | The ratio of land consumption rate to population growth rate. | - |
PGR | Population growth rate. | - |
The land consumption per capita at time t1. | km2 | |
The total built up area within the urban boundaries at time t1. | km2 | |
The total population within the urban boundaries at time t1. | - | |
Change in | The percentage change in land consumption per capita between t1 and t2. | % |
Change in Urban Infill | The percentage change rate of urban density. | % |
Total area occupied by streets in all locales. | km2 | |
Total area of all locales. | km2 | |
The total area occupied by open public spaces. | km2 | |
The share of city land occupied by streets. | % | |
The share of urban areas that is allocated to open public spaces. | % | |
The average share of built-up area of cities that is open public space and streets. | % | |
Subscripts | ||
i | The service area | |
j | The population zone | |
t | The initial year | |
n | The number of years between the initial year and the final year | |
t1 | The initial year | |
t2 | The final year | |
Streets | Urban streets | |
City | Urban area | |
OPS | Open public spaces | |
POPS | Built-up area of cities that is open public space and streets | |
Symbols | ||
Σ | The summation symbol | |
% | Percentage means the percentage of one number that is the other number, expressed by “%” | |
ln | The natural logarithm symbol is the logarithm with constant e as the base, which is recorded as lnN (N > 0) |
Time Span | LCR | PGR | Change in LCPC | Change in Urban Infill | LCRPGR |
---|---|---|---|---|---|
2013–2015 | 0.0525 | 0.0179 | 7.16% | 4.77% | 2.9343 |
2015–2020 | 0.0320 | −0.0007 | 17.78% | 23.30% | −45.7867 |
2013 | 2015 | 2020 | |
---|---|---|---|
Population with access to public open space | 817,366 | 731,600 | 664,953 |
Total population | 1,117,265 | 1,142,848 | 1,121,568 |
Proportion (%) | 73.16 | 64.02 | 59.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Lu, L.; Lu, J.; Liu, X.; Zhang, S.; Luo, K.; He, D.; Wang, P.; Guo, H.; Li, Q. Assessing Spatiotemporal Changes of SDG Indicators at the Neighborhood Level in Guilin, China: A Geospatial Big Data Approach. Remote Sens. 2022, 14, 4985. https://doi.org/10.3390/rs14194985
Han L, Lu L, Lu J, Liu X, Zhang S, Luo K, He D, Wang P, Guo H, Li Q. Assessing Spatiotemporal Changes of SDG Indicators at the Neighborhood Level in Guilin, China: A Geospatial Big Data Approach. Remote Sensing. 2022; 14(19):4985. https://doi.org/10.3390/rs14194985
Chicago/Turabian StyleHan, Liying, Linlin Lu, Junyu Lu, Xintong Liu, Shuangcheng Zhang, Ke Luo, Dan He, Penglong Wang, Huadong Guo, and Qingting Li. 2022. "Assessing Spatiotemporal Changes of SDG Indicators at the Neighborhood Level in Guilin, China: A Geospatial Big Data Approach" Remote Sensing 14, no. 19: 4985. https://doi.org/10.3390/rs14194985
APA StyleHan, L., Lu, L., Lu, J., Liu, X., Zhang, S., Luo, K., He, D., Wang, P., Guo, H., & Li, Q. (2022). Assessing Spatiotemporal Changes of SDG Indicators at the Neighborhood Level in Guilin, China: A Geospatial Big Data Approach. Remote Sensing, 14(19), 4985. https://doi.org/10.3390/rs14194985