Spatiotemporal Evolution of the Carbon Fluxes from Bamboo Forests and their Response to Climate Change Based on a BEPS Model in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Flux Measurement Sites
2.3. Data Acquisition and Processing
2.3.1. MODIS Data and Preprocessing
2.3.2. Bamboo Forest Distribution Data of China
2.3.3. MODIS LAI Data
2.3.4. Soil Data
2.3.5. Meteorological Data
2.3.6. Biological Parameters
2.4. BEPS Model Simulation and Evaluation
2.4.1. BEPS Model Description
2.4.2. Evaluation of Simulation Results
2.5. Spatiotemporal Evolution Analysis of Carbon Fluxes
2.5.1. Variation Coefficient of Carbon Fluxes
2.5.2. Trend Slope of Carbon Fluxes
2.6. Analysis of Spatiotemporal Responses of Carbon Fluxes to Climate Change
2.6.1. Partial Correlation Analysis of Carbon Fluxes to Climate Change
2.6.2. Path Analysis of Climate Change to Carbon Fluxes
3. Results
3.1. BEPS Model Validation
3.2. Spatiotemporal Evolution of Carbon Fluxes from Bamboo Forests in China
3.2.1. Temporal Evolution Trend
3.2.2. Spatial Distribution Characteristics
3.2.3. Analysis of the Fluctuation in Carbon Fluxes
3.2.4. Analysis of the Trend Slope of Carbon Fluxes
3.3. Analysis of Climate Drivers of Carbon Fluxes of Spatiotemporal Evolution
3.3.1. Partial Correlation between Carbon Fluxes and Climate Factors
3.3.2. The Impact of Climate Factors on Carbon Fluxes on a Monthly Scale
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, G.D.; Zhang, J.H.; Chen, C.; Tian, H.F.; Zhao, L.P. Research progress on carbon storage and flux in different terrestrial ecosystem in China under global climate change. Ecol. Environ. Sci. 2013, 22, 873–878. [Google Scholar]
- Yu, G.R.; Zhu, X.J.; Fu, Y.L.; He, H.L.; Wang, Q.F.; Wen, X.F.; Li, X.R.; Zhang, L.M.; Zhang, L.; Su, W.; et al. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Glob. Chang. Biol. 2013, 19, 798–810. [Google Scholar] [CrossRef] [PubMed]
- Payne, N.J.; Cameron, D.A.; Leblanc, J.-D.; Morrison, I.K. Carbon storage and net primary productivity in canadian boreal mixedwood stands. J. For. Res. 2019, 30, 1667–1678. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Du, H.; Mao, F.; Zhou, G.; Han, N.; Xu, X.; Liu, Y.; Zhu, D.; Zheng, J.; Dong, L.; et al. Assimilating spatiotemporal MODIS LAI data with a particle filter algorithm for improving carbon cycle simulations for bamboo forest ecosystems. Sci. Total Environ. 2019, 694, 133803. [Google Scholar] [CrossRef] [PubMed]
- Litton, C.M.; Raich, J.W.; Ryan, M.G. Carbon allocation in forest ecosystems. Glob. Chang. Biol. 2007, 13, 2089–2109. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Zan, M.; Wang, J. Studies on temporal and spatial variations of ecosystem productivity in poyang lake basin based on modis data. Ecol. Environ. Sci. 2018, 27, 1933–1942. [Google Scholar]
- Fang, J.Y.; Ke, J.H.; Tang, Z.Y.; Chen, A.P. Implications and estimations of four terrestrial productivity papameters. Acta Phytoecol. Sin. 2001, 25, 414–419. [Google Scholar]
- Chen, S.; Zhang, Y.; Wua, Q.; Liua, S.; Songb, C.; Xiao, J.; Bandh, L.E.; Vose, J.M. Vegetation structural change and co2 fertilization more than offset gross primary production decline caused by reduced solar radiation in China. Agric. For. Meteorol. 2021, 296, 108207. [Google Scholar] [CrossRef]
- Musavi, T.; Migliavacca, M.; Reichstein, M.; Kattge, J.; Wirth, C.; Black, T.A.; Janssens, I.; Knohl, A.; Loustau, D.; Roupsard, O. Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity. Nat. Ecol. Evol. 2017, 1, 48. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.Z.; Li, X.H.; Jiao, L.F.; Wang, J.Q.; Gu, K.K. Spatial-temporal variation of vegetation net primary productivity in huainan coal mine area from 2000 to 2012. Ecol. Environ. Sci. 2017, 26, 196–203. [Google Scholar]
- Chi, D.; Wang, H.; Li, X.; Liu, H.; Li, X. Assessing the effects of grazing on variations of vegetation npp in the xilingol grassland, china, using a grazing pressure index. Ecol. Indic. 2018, 88, 372–383. [Google Scholar] [CrossRef]
- Mao, F.J.; Du, H.Q.; Li, X.J.; Ge, H.L.; Zhou, G.M. Spatiotemporal dynamics of bamboo forest net primary productivity with climate variations in southeast China. Ecol. Indic. 2020, 116, 106505. [Google Scholar] [CrossRef]
- Liu, T.; Mao, F.; Li, X.; Xing, L.; Dong, L.; Zheng, J.; Zhang, M.; Du, H. Spatiotemporal dynamic simulation on aboveground carbon storage of bamboo forest and its influence factors in Zhejiang province, China. Chin. J. Appl. Ecol. 2019, 30, 1743–1753. [Google Scholar]
- Hinko-Najera, N.; Isaac, P.; Livesley, S.J.; Beringer, J.; Isaac, P.; Arndt, S.K. Net ecosystem carbon exchange of a dry temperate eucalypt forest. Biogeosci. Discuss. 2017, 2016, 3781–3800. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.; Lu, J.; Yang, J.; Jiang, J.; Wang, D.; He, X.; Fang, W. Carbon flux variation characteristics and its influencing factors in coniferous and broad-leaved mixed forest in fengyang mountain. J. Northeast For. Univ. 2019, 47, 51–57. [Google Scholar]
- Xie, X.Y.; Li, A.N.; Jin, H.A. The simulation models of the forest carbon cycle on a large scale: A review. Acta Ecol. Sin. 2018, 38, 41–54. [Google Scholar]
- Yuan, Q.; Wu, S.; Zhao, D.; Dai, E.; Chen, L.; Zhang, L. Modeling net primary productivity of the terrestrial ecosystem in China from 1961 to 2005. J. Geogr. Sci. 2014, 24, 3–17. [Google Scholar] [CrossRef]
- Zhao, G.S.; Wang, J.B.; Fan, W.Y.; Ying, T.Y. Vegetation net primary productivity in northeast China in 2000–2008: Simulation and seasonal change. Chin. J. Appl. Ecol. 2011, 22, 621. [Google Scholar]
- Cao, M.; Yu, G.R.; Liu, J.Y.; LI, K.R. Multi-scale observation and cross-scale mechanistic modeling on terrestrial ecosystem carbon cycle. Sci. China Ser. D Earth Sci. 2005, 48, 17–32. [Google Scholar]
- Cui, X.; Feng, Q.S.; Liang, T.G. Research progress on remote sensing based net primary productivity of terrestrial vegetation. Pratacult. Sci. 2007, 10, 36–42. [Google Scholar]
- Koju, U.A.; Zhang, J.; Maharjan, S.; Bai, Y.; Zhang, S.; Yao, F. Analysis of spatiotemporal dynamics of forest net primary productivity of nepal during 2000–2015. Int. J. Remote Sens. 2020, 41, 4336–4364. [Google Scholar] [CrossRef]
- Zhang, M.; Zeng, Y.N. Net primary production estimation by using fusion remote sensing data with highspatial and temporal resolution. J. Remote Sens. 2018, 22, 143–152. [Google Scholar]
- Mao, F.; Li, P.; Zhou, G.; Du, H.; Xu, X.; Shi, Y.; Mo, L.; Zhou, Y.; Tu, G. Development of the biome-bgc model for the simulation of managed moso bamboo forest ecosystems. J. Environ. Manag. 2016, 172, 29–39. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, J.M.; Chen, J.; Gough, C.M.; Martin, T.A.; Dragoni, D. Evaluating spatial and temporal patterns of modis gpp over the conterminous U.S. Against flux measurements and a process model. Remote Sens. Environ. 2012, 124, 717–729. [Google Scholar] [CrossRef]
- Wang, B.; Li, M.; Fan, W.; Yu, Y.; Jia, W. Impacts of change in atmospheric co2 concentration on larix gmelinii forest growth in northeast China from 1950 to 2010. Forests 2019, 10, 454. [Google Scholar] [CrossRef] [Green Version]
- Du, H.Q.; Mao, F.J.; Zhou, G.M.; Li, X.; Xu, X.J.; Ge, H.L.; Cui, L.; Liu, Y.L.; Zhu, D.; Li, Y.G. Estimating and analyzing the spatiotemporal pattern of aboveground carbon in bamboo forest by combining remote sensing data and improved biome-bgc model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2282–2295. [Google Scholar] [CrossRef]
- Zhang, F.M.; Wei-Min, J.U.; Chen, J.M.; Wang, S.Q.; Gui-Rui, Y.U.; Han, S.J. Characteristics of terrestrial ecosystem primary productivity in east Asia based on remote sensing and process-based model. Chin. J. Appl. Ecol. 2012, 23, 307. [Google Scholar]
- Zheng, J.; Mao, F.; Du, H.; Li, X.; Zhou, G.; Dong, L.; Zhang, M.; Han, N.; Liu, T.; Xing, L. Spatiotemporal simulation of net ecosystem productivity and its response to climate change in subtropical forests. Forests 2019, 10, 708. [Google Scholar] [CrossRef] [Green Version]
- Running, S.W.; Coughlan, J.C. A general model of forest ecosystem processes for regional applications i. Hydrologic balance, canopy gas exchange and primary production processes. Ecol. Model. 1988, 42, 125–154. [Google Scholar] [CrossRef]
- Bunkei, M.; Yang, C.; Chen, J.; Wang, Q.; Satoshi, K.; Masayuki, T. Accurate estimation of net primary productivity of terrestrial ecosystem at a regional scale. Acta Geogr. Sin. 2004, 59, 80–87. [Google Scholar]
- Mo, X.; Chen, J.M.; Ju, W.; Black, T.A. Optimization of ecosystem model parameters through assimilating eddy covariance flux data with an ensemble kalman filter. Ecol. Model. 2008, 217, 157–173. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.M.; Chen, J.C. Net primary productivity mapped for canada at 1-km resolution. Glob. Ecol. Biogeogr. 2002, 11, 115–129. [Google Scholar] [CrossRef] [Green Version]
- Kang, Z.; Zhang, S.; Bai, Y.; Henchiri, M.; Zhang, J. Spatio-temporal changes of grassland net primary productivity (npp) in inner Mongolia and its response to drought. Acta Agrestia Sin. 2021, 29, 156–165. [Google Scholar]
- Li, X.J.; Mao, F.J.; Du, H.Q.; Zhou, G.M.; Xu, X.J.; Li, P.H.; Liu, Y.L.; Cui, L. Simulating of carbon fluxes in bamboo forest ecosystem using beps model based on the lai assimilated with dual ensemble kalman filter. Chin. J. Appl. Ecol. 2016, 27, 3797–3806. [Google Scholar]
- Liu, Y.; Zhou, Y.; Ju, W.; Wang, S.; Wu, X.; He, M.; Zhu, G. Impacts of droughts on carbon sequestration by China’s terrestrial ecosystems from 2000 to 2011. Biogeosciences 2014, 11, 2583–2599. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, B.; Tamura, M. Integrating remotely sensed data with an ecosystem model to estimate net primary productivity in east Asia. Remote Sens. Environ. 2002, 81, 58–66. [Google Scholar] [CrossRef]
- Wang, S.; Lei, Z.; Chen, J.; Ju, W.; Feng, X.; Wu, W. Relationships between net primary productivity and stand age for several forest types and their influence on China’s carbon balance. J. Environ. Manag. 2011, 92, 1651–1662. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, Q.; Chen, J.M.; Wang, Y.Q.; Liu, J.; Sun, R.; Tang, S. Observation and simulation of net primary productivity in Qilian mountain, western China. J. Environ. Manag. 2007, 85, 574–584. [Google Scholar] [CrossRef]
- Du, H.Q.; Mao, F.J.; Li, X.J.; Zhou, G.M.; Zhou, Y.F. Mapping global bamboo forest distribution using multisource remote sensing data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1458–1471. [Google Scholar] [CrossRef]
- Zhou, B.; Fu, M.; Xie, J.; Yang, X.; Li, Z. Ecological functions of bamboo forest: Research and application. J. For. Res. 2005, 16, 143–147. [Google Scholar]
- Li, Y.M.; Feng, P.F. Bamboo resources in china based on the ninth national forest inventory data. World Bamboo Ratt. 2019, 17, 45–48. [Google Scholar]
- Cui, L.; Du, H.Q.; Zhou, G.M.; Li, X.J.; Mao, F.J.; Xu, X.J.; Fan, W.L.; Li, Y.G.; Zhu, D.; Liu, T.Y.; et al. Combination of decision tree and mixed pixel decomposition for extracting bamboo forest information in China. J. Remote Sens. 2019, 23, 166–176. [Google Scholar]
- Li, Y.; Li, Y.; Chang, S.X.; Yang, Y.; Fu, S.; Jiang, P.; Luo, Y.; Yang, M.; Chen, Z.; Hu, S. Biochar reduces soil heterotrophic respiration in a subtropical plantation through increasing soil organic carbon recalcitrancy and decreasing carbon-degrading microbial activity. Soil Biol. Biochem. 2018, 122, 173–185. [Google Scholar] [CrossRef]
- Zhou, G.M.; Meng, C.F.; Jiang, P.K.; Xu, Q.F. Review of carbon fixation in bamboo forests in China. Bot. Rev. 2011, 77, 262. [Google Scholar]
- Chen, S.; Jiang, H.; Cai, Z.; Zhou, X.; Peng, C. The response of the net primary production of moso bamboo forest to the on and off-year management: A case study in Anji county, Zhejiang, China. For. Ecol. Manag. 2018, 409, 1–7. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, S.; Jiang, H.; Peng, C.; Zhang, J.; Zhou, G. The impact of intensive management on net ecosystem productivity and net primary productivity of a lei bamboo forest. Ecol. Model. 2020, 435, 109248. [Google Scholar] [CrossRef]
- Li, P.H.; Zhou, G.M.; Du, H.Q.; Lu, D.S.; Mo, L.F.; Xu, X.J.; Shi, Y.J.; Zhou, Y.F. Current and potential carbon stocks in moso bamboo forests in China. J. Environ. Manag. 2015, 156, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Du, H.Q.; Sun, X.Y.; Han, N.; Mao, F.J. Rs estimation of inventory parameters and carbon storage of moso bamboo forest based on synergistic use of object-based image analysis and decision tree. Chin. J. Appl. Ecol. 2017, 28, 11. [Google Scholar]
- Li, X.; Du, H.; Mao, F.; Zhou, G.; Chen, L.; Xing, L.; Fan, W.; Xu, X.; Liu, Y.; Cui, L. Estimating bamboo forest aboveground biomass using enkf-assimilated modis lai spatiotemporal data and machine learning algorithms—Science direct. Agric. For. Meteorol. 2018, 256–257, 445–457. [Google Scholar] [CrossRef]
- Du, H.Q.; Cui, R.; Zhou, G.M.; Shi, Y.J.; Xu, X.J.; Fan, W.L.; Lü, Y.L. The responses of moso bamboo (Phyllostachys heterocycla var. Pubescens) forest aboveground biomass to landsat tm spectral reflectance and ndvi. Acta Ecol. Sin. 2010, 30, 257–263. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, G.; Liu, S.; Du, H.; Mo, L.; Shi, Y.; Jiang, H.; Zhou, Y.; Liu, E. Implications of ice storm damages on the water and carbon cycle of bamboo forests in southeastern China. Agric. For. Meteorol. 2013, 177, 35–45. [Google Scholar] [CrossRef]
- Xiao, F.M.; Fan, S.H.; Wang, S.L.; Guan, H.Y.; YU, X.J.; Shen, Z.Q. Estimation of the carbon balance in moso bamboo and chinese fir plantation ecosystem. Sci. Silvae Sin. 2010, 46, 59–65. [Google Scholar]
- Wang, X.C.; Wang, C.K. Fundamental concepts and field measurement methods of carbon cycling in forest ecosystems: A review. Acta Ecol. Sin. 2015, 35, 4241–4256. [Google Scholar]
- Hou, H.-Y. Vegetation of china with reference to its geographical distribution. Ann. Mo. Bot. Gard. 1983, 70, 509–549. [Google Scholar] [CrossRef]
- Lu, D.; Tian, H.; Zhou, G.; Ge, H. Regional mapping of human settlements in southeastern China with multisensor remotely sensed data. Remote Sens. Environ. 2015, 112, 3668–3679. [Google Scholar] [CrossRef]
- Shang, Z.; Zhou, G.; Du, H.; Xu, X.; Shi, Y.; Lü, Y.; Zhou, Y.; Gu, C. Moso bamboo forest extraction and aboveground carbon storage estimation based on multi-source remotely sensed images. Int. J. Remote Sens. 2013, 34, 5351–5368. [Google Scholar] [CrossRef]
- Zhang, D.M.; Yuan, Q.; Wang, J.T. Discuss a method of assistant remotely sensed imagery visual interpretation on grassland—remotely sensed image and thematic map semitransparent overlap. Remote Sens. Techonol. Appl. 2006, 21, 560–564. [Google Scholar]
- Lu, D.; Moran, E.; Batistella, M. Linear mixture model applied to amazonian vegetation classification. Remote Sens. Environ. 2003, 87, 456–469. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Sun, R.; Zhang, R.; Zhang, L. Simulation of water and carbon fluxes in harvard forest area based on data assimilation method. Chin. J. Appl. Ecol. 2013, 24, 2746–2754. [Google Scholar]
- Chen, J.M.; Feng, D.; Chen, M. Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2230–2238. [Google Scholar] [CrossRef]
- Li, X.J.; Mao, F.J.; Du, H.Q.; Zhou, G.M.; Xu, X.J.; Han, N.; Sun, S.B.; Gao, G.L.; Chen, L. Assimilating leaf area index of three typical types of subtropical forest in China from modis time series data based on the integrated ensemble kalman filter and prosail model. ISPRS J. Photogramm. Remote Sens. 2017, 126, 68–78. [Google Scholar] [CrossRef]
- Feng, X.; Liu, G.; Chen, J.M.; Chen, M.; Liu, J.; Ju, W.M.; Sun, R.; Zhou, W. Net primary productivity of China’s terrestrial ecosystems from a process model driven by remote sensing. J. Environ. Manag. 2007, 85, 563–573. [Google Scholar] [CrossRef]
- Xue, M.; Chen, Y.Z.; Yan, M.; Li, Z.Y.; Wang, X.Q.; Xu, H.S.; Zhang, Z.P.; Tian, X. Simulation and spatio-temporal variation analysis of net primary productivity in northeast China. J. Fuzhou Univ. Nat. Sci. Ed. 2018, 46, 821–830. [Google Scholar]
- Ju, W.; Chen, J.M.; Black, T.A.; Barr, A.G.; Liu, J.; Chen, B. Modelling multi-year coupled carbon and water fluxes in a boreal aspen forest. Agric. For. Meteorol. 2006, 140, 136–151. [Google Scholar] [CrossRef]
- Chen, J.M.; Liu, J.; Cihlar, J.; Goulden, M.L. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol. Model. 1999, 124, 99–119. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Jiang, P. Density, storage and spatial distribution of carbon in phyllostachy pubescens forest. Sci. Silvae Sin. 2004, 40, 20–24. [Google Scholar]
- Huang, Q.M.; Yang, D.D.; Gao, A.S. A study on photosynthesis of bamboo. Sci. Silvae Sin. 1989, 25, 4. [Google Scholar]
- Li, D.Q.; Ju, W.M.; Zheng, G.; Liu, Y.B.; Zan, M.; Zhang, C.H.; Huang, J.L. Comparison of estimated forest biomass increment rate based on a process-based ecological model and forest inventory data. Ecol. Environ. Sci. 2013, 22, 1647–1657. [Google Scholar]
- Liu, J.; Chen, J.M.; Cihlar, J.; Park, W.M. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sens. Environ. 1997, 62, 158–175. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Liu, C.L.; Yang, X.C. Spatiotemporal variation of vegetation coverage in recent 16 years in the border region of china, laos, and myanmar based on modis-ndvi. Sci. Silvae Sin. 2019, 55, 10. [Google Scholar]
- Li, N.Q.; Xu, G.Y. Grid analysis of land use based on natural breaks (jenks) classification. Bull. Surv. Mapp. 2020, 106–110. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; Mao, F.; Zhang, M.; Zhu, D.e.; He, S.; Huang, Z.; Du, H. Spatiotemporal evolution of fractional vegetation cover and its response to climate change based on modis data in the subtropical region of China. Remote Sens. 2021, 13, 913. [Google Scholar] [CrossRef]
- Wu, S.S.; Yao, Z.J.; Jiang, L.G.; Wang, R.; Liu, Z.F. The spatial-temporal variations and hydrological effects of vegetation npp based on modis in the source region of the Yangtze river. J. Nat. Resour. 2016, 31, 39–51. [Google Scholar]
- Chen, Y.H.; Li, X.B.; Shi, P.J. Variation in ndvi driven by climate factors across China, 1983–1992. Acta Phytoecol. Sin. 2001, 25, 716–720. [Google Scholar]
- Zhang, X.L.; Xiao, W.H.; Wang, Y.C. Temporal-spatial variations of npp and its climatic driving mechanism in the three gorges reservoir area based on modified casa model. Acta Ecol. Sin. 2021, 41, 3488–3498. [Google Scholar]
- Jiang, X.D.; Li, Y.X. Path analysis on the meteorological factors impacting soil respiration rate of wheat field. J. Anhui Agric. Sci. 2009, 9, 74–769. [Google Scholar]
- Chen, S.L.; Jiang, H.; Jin, J.X.; Wang, Y. Changes in net primary production in the Tianmu mountain nature reserve, China, from 1984 to 2014. Int. J. Remote Sens. 2017, 38, 211–234. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, X.X.; Sun, W.J. Simulation by remote sensing and temporal-spatial analysis of forest ecosystem net primary productivity in Fujian province, China. J. Geo-Inf. Sci. 2010, 12, 580–586. [Google Scholar] [CrossRef]
- Bai, S.B.; Zhou, G.M.; Wang, Y.X.; Yu, S.Q.; Li, Y.H.; Fang, F.Y. Stand structure change of phyllostachys pubescens forest expansion in Tianmushan national nature reserve. J. West China For. Sci. 2012, 41, 77–82. [Google Scholar]
- Liu, G.; Sun, R.; Xiao, Z.Q.; Cui, T.X. Analysis of spatial and temporal variation of net primary productivity and climate controls in China from 2001 to 2014. Acta Ecol. Sin. 2017, 37, 4936–4945. [Google Scholar]
- Xu, Y.Q.; Xiao, F.J.; Yu, L. Review of spatio-temporal distribution of net primary productity in forest ecosystem and its responses to climate change in China. Acta Ecol. Sin. 2020, 40, 4710–4723. [Google Scholar]
- Zhang, L.; Xiao, J.; Li, J.; Wang, K.; Lei, L.; Guo, H. The 2010 spring drought reduced primary productivity in southwestern China. Environ. Res. Lett. 2012, 7, 045706. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Mu, F.Y.; Gang, C.C.; Guan, D.J.; He, J.F.; Li, J.L. Spatio-temporal dynamics of grassland net primary productivity and their relationship with climatic factors from 1982 to 2010 in China. Acta Ecol. Sin. 2017, 37, 4335–4345. [Google Scholar]
- Chen, X.F.; Jiang, H.; Niu, X.D.; Zhang, J.M.; Fang, C.Y. Effect of seasonal high temperature and drought on carbon flux of bamboo forest ecosystem in subtropical region. Chin. J. Appl. Ecol. 2016, 27, 335. [Google Scholar]
MODIS | Abbreviation | Time | Spatial Resolution | Time Resolution | To Use |
---|---|---|---|---|---|
MOD13A2 | NDVI | 2018 | 1000 m | 16 days | Extract the bamboo forest |
MOD09A1 | REF | 2018 | 500 m | 8 days | Extract the bamboo forest |
MOD15A2 | LAI | 2001–2018 | 1000 m | 8 days | Model input |
Year | Classification Accuracy Evaluation | Bamboo Forest Area (104 ha) | ||||
---|---|---|---|---|---|---|
Bamboo Forest Samples | Correctly | Incorrectly | User’s Accuracy (%) | Estimate | Inventory | |
2003 | 387 [42] | 309 | 78 | 79.84 | 486.56 | 495.32 [42] |
2008 | 414 [42] | 328 | 86 | 79.23 | 545.14 | 548.73 [42] |
2014 | 536 [42] | 435 | 101 | 81.16 | 639.22 | 610.65 [42] |
2018 | 525 | 402 | 123 | 76.54 | 669.83 | 656.08 [41,42] |
Symbol | Unit | Description | Value | Reference |
---|---|---|---|---|
Ω | - | Clumping index | 0.5 | Measurement |
Sarea | Specific leaf area | 27 | Measurement | |
Vm,25 | umol m−2s−1 | Maximum carboxylation rate at 25 °C | 50 | Iteration |
Q10,leaf | - | Q10 for leaf | 1.4 | Iteration |
Q10,stem | - | Q10 for stem | 1.3 | Iteration |
Q10,root | - | Q10 for root | 1.2 | Iteration |
Mleaf | kg C m−2 | Average carbon storage of leaf | 0.15 | [66] |
Mstem | kg C m−2 | Average carbon storage of stem | 1.76 | [66] |
Mroot | kg C m−2 | Average carbon storage of root | 1.15 | [66] |
Climate Factors | Correlation Coefficient | Direct Path Coefficient | Indirect Path Coefficient | Partial Correlation Coefficient | ||
---|---|---|---|---|---|---|
→ Temperature | → Precipitation | |||||
GPP | Temperature | 0.649 ** | 0.387 ** | - | 0.26 | 0.399 |
Precipitation | 0.659 ** | 0.415 ** | 0.24 | - | 0.423 | |
NPP | Temperature | 0.562 ** | 0.301 ** | - | 0.15 | 0.293 |
Precipitation | 0.602 ** | 0.412 ** | 0.11 | - | 0.386 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, F.; Li, X.; Du, H.; Mao, F.; Zhou, G.; Xu, Y.; Huang, Z.; Ji, J.; Wang, J. Spatiotemporal Evolution of the Carbon Fluxes from Bamboo Forests and their Response to Climate Change Based on a BEPS Model in China. Remote Sens. 2022, 14, 366. https://doi.org/10.3390/rs14020366
Kang F, Li X, Du H, Mao F, Zhou G, Xu Y, Huang Z, Ji J, Wang J. Spatiotemporal Evolution of the Carbon Fluxes from Bamboo Forests and their Response to Climate Change Based on a BEPS Model in China. Remote Sensing. 2022; 14(2):366. https://doi.org/10.3390/rs14020366
Chicago/Turabian StyleKang, Fangfang, Xuejian Li, Huaqiang Du, Fangjie Mao, Guomo Zhou, Yanxin Xu, Zihao Huang, Jiayi Ji, and Jingyi Wang. 2022. "Spatiotemporal Evolution of the Carbon Fluxes from Bamboo Forests and their Response to Climate Change Based on a BEPS Model in China" Remote Sensing 14, no. 2: 366. https://doi.org/10.3390/rs14020366
APA StyleKang, F., Li, X., Du, H., Mao, F., Zhou, G., Xu, Y., Huang, Z., Ji, J., & Wang, J. (2022). Spatiotemporal Evolution of the Carbon Fluxes from Bamboo Forests and their Response to Climate Change Based on a BEPS Model in China. Remote Sensing, 14(2), 366. https://doi.org/10.3390/rs14020366