A Quantifying Approach to Soil Salinity Based on a Radar Feature Space Model Using ALOS PALSAR-2 Data
Abstract
:1. Introduction
- (1)
- Construction of a two-dimensional radar feature space based on optimal radar polarization feature components.
- (2)
- Construction of a radar-based quantitative inversion model for soil salinity in a two- dimensional radar feature space.
2. Study Site and Data
2.1. Study Site
2.2. Data
2.2.1. Remote Sensing Data
2.2.2. Field Data
3. Methodology
3.1. Polarimetric Decomposition
3.2. Feature Selection from ALOS-2 Polarimetric Imagery
3.3. Data Normalization
3.4. Feature Space
4. Results
4.1. Polarimetric Decomposition of PolSAR Data
4.2. Salinization Monitoring Models Based on Feature Spaces
4.2.1. Feature Space Construction
4.2.2. Remote Sensing-Based Salinization Monitoring Model
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.G.; Huang, B. Prediction of soil salinity with soil-reflected spectra: A comparison of two regression methods. Sci. Rep. 2019, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Tang, Y.J.; Xing, X.R.; Liu, Z.H.; Xing, L.T. Formation and Evolution of Soil Salinization in Shouguang City Based on PMS and OLI/TM Sensors. Water 2019, 11, 15. [Google Scholar] [CrossRef] [Green Version]
- Libutti, A.; Cammerino, A.R.B.; Monteleone, M. Risk Assessment of Soil Salinization Due to Tomato Cultivation in Mediterranean Climate Conditions. Water 2018, 10, 19. [Google Scholar] [CrossRef] [Green Version]
- Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 2006, 57, 1017–1023. [Google Scholar] [CrossRef] [Green Version]
- Singh, A. Soil salinization management for sustainable development: A review. J. Environ. Manag. 2021, 277, 111383. [Google Scholar] [CrossRef]
- Pennock, D.; McKenzie, N.; Montanarella, L. Status of the World’s Soil Resources; Technical Summary; FAO: Rome, Italy, 2015. [Google Scholar]
- Nachshon, U. Cropland soil salinization and associated hydrology: Trends, processes and examples. Water 2018, 10, 1030. [Google Scholar]
- Jamil, A.; Riaz, S.; Ashraf, M.; Foolad, M. Gene expression profiling of plants under salt stress. Crit. Rev. Plant. Sci. 2011, 30, 435–458. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, J.; Shan, Q.; Chen, G.; Wang, Y.; Shen, L.; Pan, C.; Wu, H.; Abarquez, A. Soil salinization and ecological remediation by planting trees in China. In Proceedings of the 2010 International Conference on Mechanic Automation and Control Engineering, Wuhan, China, 26–28 June 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1349–1352. [Google Scholar]
- Ivushkin, K.; Bartholomeus, H.; Bregt, A.K.; Pulatov, A.; Kempen, B.; de Sousa, L. Global mapping of soil salinity change. Remote Sens. Environ. 2019, 231, 12. [Google Scholar] [CrossRef]
- Ding, J.; Yang, S.; Shi, Q.; Wei, Y.; Wang, F. Using Apparent Electrical Conductivity as Indicator for Investigating Potential Spatial Variation of Soil Salinity across Seven Oases along Tarim River in Southern Xinjiang, China. Remote Sens. 2020, 12, 2601. [Google Scholar] [CrossRef]
- Tian, C.; Mai, W.; Zhao, Z. Study on key technologies of ecological management of saline alkali land in arid area of Xinjiang. Acta Ecol. Sin. 2016, 3636, 7064–7068. [Google Scholar]
- Guo, B.; Zang, W.Q.; Zhang, R. Soil Salizanation Information in the Yellow River Delta Based on Feature Surface Models Using Landsat 8 OLI Data. IEEE Access 2020, 8, 94394–94403. [Google Scholar] [CrossRef]
- Guo, B.; Zang, W.Q.; Luo, W.; Wen, Y.; Yang, F.; Han, B.M.; Fan, Y.W.; Chen, X.; Qi, Z.; Wang, Z.; et al. Detection model of soil salinization information in the Yellow River Delta based on feature space models with typical surface parameters derived from Landsat8 OLI image. Geomat. Nat. Hazards Risk 2020, 11, 288–300. [Google Scholar] [CrossRef]
- Ren, D.Y.; Wei, B.Y.; Xu, X.; Engel, B.; Li, G.Y.; Huang, Q.Z.; Xiong, Y.W.; Huang, G.H. Analyzing spatiotemporal characteristics of soil salinity in arid irrigated agro-ecosystems using integrated approaches. Geoderma 2019, 356, 12. [Google Scholar] [CrossRef]
- Zeng, Y.; Xiang, N.; Feng, Z. Albedo-NDVI space and remote sensing synthesis index models for desertification monitoring. Sci. Geogr. Sin. 2006, 26, 75. [Google Scholar] [CrossRef]
- Xie, Q.; Meng, Q.; Zhang, L.; Wang, C.; Sun, Y.; Sun, Z. A Soil Moisture Retrieval Method Based on Typical Polarization Decomposition Techniques for a Maize Field from Full-Polarization Radarsat-2 Data. Remote Sens. 2017, 9, 168. [Google Scholar] [CrossRef] [Green Version]
- Ma, G.; Ding, J.; Han, L.; Zhang, Z.; Ran, S. Digital mapping of soil salinization based on Sentinel-1 and Sentinel-2 data combined with machine learning algorithms. Reg. Sustain. 2021, 2, 177–188. [Google Scholar] [CrossRef]
- Metternicht, G.I.; Zinck, J.A. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L. Soil Salinity Mapping and Monitoring in Arid and Semi-Arid Regions Using Remote Sensing Technology: A Review. Adv. Remote Sens. 2013, 2, 373–385. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.Q.; Peng, J.; Li, H.Y.; Yin, C.Y.; Liu, W.Y.; Wang, T.W.; Zhang, H.P. Soil Salinity Mapping Using Machine Learning Algorithms with the Sentinel-2 MSI in Arid Areas, China. Remote Sens. 2021, 13, 14. [Google Scholar] [CrossRef]
- Qi, Z.X.; Yeh, A.G.O.; Li, X.; Lin, Z. A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data. Remote Sens. Environ. 2012, 118, 21–39. [Google Scholar] [CrossRef]
- Periasamy, S.; Ravi, K.P. A novel approach to quantify soil salinity by simulating the dielectric loss of SAR in three-dimensional density space. Remote Sens. Environ. 2020, 251, 17. [Google Scholar] [CrossRef]
- Rhoades, J.D.; Chanduvi, F.; Lesch, S. Soil Salinity Assessment: Methods and Interpretation of Electrical Conductivity Measurements; The Governments of Europe: Rome, Italy, 1999; Volume 57.
- Bell, D.; Menges, C.; Ahmad, W.; van Zyl, J.J. The application of dielectric retrieval algorithms for mapping soil salinity in a tropical coastal environment using airborne polarimetric SAR. Remote Sens. Environ. 2001, 75, 375–384. [Google Scholar] [CrossRef]
- Lasne, Y.; Paillou, P.; Freeman, A.; Farr, T.; McDonald, K.C.; Ruffie, G.; Malezieux, J.-M.; Chapman, B.; Demontoux, F. Effect of salinity on the dielectric properties of geological materials: Implication for soil moisture detection by means of radar remote sensing. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1674–1688. [Google Scholar] [CrossRef]
- Grissa, M.; Abdelfattah, R.; Mercier, G.; Zribi, M.; Chahbi, A.; Lili-Chabaane, Z. Empirical model for soil salinity mapping from SAR data. In Proceedings of the Geoscience & Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011. [Google Scholar]
- Taghadosi, M.M.; Hasanlou, M.; Eftekhari, K. Soil salinity mapping using dual-polarized SAR Sentinel-1 imagery. Int. J. Remote Sens. 2019, 40, 237–252. [Google Scholar] [CrossRef]
- Gong, H.Z.; Shao, Y.; Brisco, B.; Hu, Q.R.; Tian, W. Modeling the dielectric behavior of saline soil at microwave frequencies. Can. J. Remote Sens. 2013, 39, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Meena, G.K.; Kumar, S.; Gaurav, K. Evaluation of the Penetration Depth of L-and S-Band (NISAR mission) Microwave SAR Signals into Ground. In Proceedings of the 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), New Delhi, India, 9–15 March 2019; IEEE: Piscataway, NJ, USA, 2019; p. 1. [Google Scholar]
- Jakob Van Zyl, Y.K. Synthetic Aperture Radar Polarimetry; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 2. [Google Scholar]
- Nurmemet, I.; Sagan, V.; Ding, J.L.; Halik, U.; Abliz, A.; Yakup, Z. A WFS-SVM Model for Soil Salinity Mapping in Keriya Oasis, Northwestern China Using Polarimetric Decomposition and Fully PolSAR Data. Remote Sens. 2018, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Boerner, W.M. Recent advances in extra-wide-band polarimetry, interferometry and polarimetric interferometry in synthetic aperture remote sensing and its applications. IEEE Proc. Radar Sonar Navig. 2003, 150, 113–124. [Google Scholar] [CrossRef]
- Yang, J.; Yamaguchi, Y.; Lee, J.S.; Touzi, R.; Boerner, W.M. Applications of Polarimetric SAR. J. Sens. 2015, 2015, 316391. [Google Scholar] [CrossRef]
- Xu, M. Extraction and Geometrical Structure Retrieval of Man-made Target in POLSAR Imagery. Ph.D. Thesis, Engineering-National University of Defense Technology, Changsha, China, 2008. [Google Scholar]
- Trudel, M.; Magagi, R.; Granberg, H.B. Application of Target Decomposition Theorems Over Snow-Covered Forested Areas. IEEE Trans. Geosci. Remote Sens. 2009, 47, 508–512. [Google Scholar] [CrossRef]
- Touzi, R. Target scattering decomposition in terms of roll-invariant target parameters. IEEE Trans. Geosci. Remote Sens. 2007, 45, 73–84. [Google Scholar] [CrossRef]
- Hoekman, D.H.; Quinones, M.J. Land cover type and biomass classification using AirSAR data for evaluation of monitoring scenarios in the Colombian Amazon. IEEE Trans. Geosci. Remote Sens. 2000, 38, 685–696. [Google Scholar] [CrossRef]
- Schuler, D.L.; Lee, J.S. Mapping ocean surface features using biogenic slick-fields and SAR polarimetric decomposition techniques. IEEE Proc. Radar Sonar Navig. 2006, 153, 260–270. [Google Scholar] [CrossRef]
- Gama, F.F.; Santos, J.D.; Mura, J.C. Eucalyptus Biomass and Volume Estimation Using Interferometric and Polarimetric SAR Data. Remote Sens. 2010, 2, 939–956. [Google Scholar] [CrossRef] [Green Version]
- Souyris, J.C.; Henry, C.; Adragna, F. On the use of complex SAR image spectral analysis for target detection: Assessment of polarimetry. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2725–2734. [Google Scholar] [CrossRef]
- Li, J.; Huang, P.; Wang, X.; Pan, X. Image edge detection based on beamlet transform. J. Syst. Eng. Electron. 2009, 20, 1–5. [Google Scholar] [CrossRef]
- Cui, Y.; Yang, J.; Zhang, X.Z. New CFAR target detector for SAR images based on kernel density estimation and mean square error distance. J. Syst. Eng. Electron. 2012, 23, 40–46. [Google Scholar] [CrossRef]
- Lee, J.S.; Grunes, M.R.; Ainsworth, T.L.; Du, L.J.; Schuler, D.L.; Cloude, S.R. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier. IEEE Trans. Geosci. Remote Sens. 2002, 37, 2249–2258. [Google Scholar] [CrossRef]
- Ersahin, K.; Cumming, I.G.; Ward, R.K. Segmentation and Classification of Polarimetric SAR Data Using Spectral Graph Partitioning. IEEE Trans. Geosci. Remote Sens. 2010, 48, 164–174. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Xia, G.; Sun, H. SAR images classification method based on Dempster-Shafer theory and kernel estimate. J. Syst. Eng. Electron. 2007, 18, 210–216. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Weilei, D. The Research on Target Recognition Methods based on Polarization Radar. Master’s Thesis, Harbin Engineering University, Harbin, China, 2013. [Google Scholar]
- Luo, C.; Feng, X.; Liu, C.; Zhang, Y.; Nilot, E.; Zhang, M.; Dong, Z.; Zhou, H. Full-polarimetric GPR for detecting ice fractures. In Proceedings of the 2018 17th International Conference on Ground Penetrating Radar (GPR), Rapperswil, Switzerland, 18–21 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar]
- Isak, G.; Nurmemet, I.; Duan, S.S. The Extraction of Saline Soil Information in Typical Oasis of Arid Area Using Fully Polarimetric Radarsat-2 data. China Rural Water Hydropower 2018, 12, 13–19. [Google Scholar]
- Seydehmet, J.; Lv, G.H.; Nurmemet, I.; Aishan, T.; Abliz, A.; Sawut, M.; Abliz, A.; Eziz, M. Model prediction of secondary soil salinization in the Keriya Oasis, Northwest China. Sustainability 2018, 10, 656. [Google Scholar] [CrossRef] [Green Version]
- Mamat, Z.; Yimit, H.; Lv, Y. Spatial Distributing Pattern of Salinized Soils and their Salinity in Typical Area of Yutian Oasis. Chin. J. Soil Sci. 2013, 44, 1314–1320. [Google Scholar]
- Yakup, Z.; Sawut, M.; Abdujappar, A.; Zhang, D. Soil salinity inversion in Yutian Oasis based on PALSAR radar data. Resour. Sci. 2018, 40, 2110–2117. [Google Scholar]
- Yang, X. The oases along the Keriya River in the Taklamakan Desert, China, and their evolution since the end of the last glaciation. Environ. Geol. 2001, 41, 314–320. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, W.; Wang, H.; Zhang, Z. Analysis of variation of soil salt with new electric conductivity index. Acta Pedol. Sin. 2011, 48, 869–873. [Google Scholar]
- McNeill, J.D. Rapid, accurate mapping of soil salinity by electromagnetic ground conductivity meters. Adv. Meas. Soil Phys. Prop. Bring. Theory Pract. 1992, 30, 209–229. [Google Scholar]
- Rhoades, J. Electrical conductivity methods for measuring and mapping soil salinity. Adv. Agron. 1993, 49, 201–251. [Google Scholar]
- Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma 2014, 230, 1–8. [Google Scholar] [CrossRef]
- U.S. Salinity Laboratory Staff. Determination of the Properties of Saline and Alkali Soils; United State Department of Agriculture: Washington, DC, USA, 1954; pp. 7–33.
- Abuelgasim, A.; Ammad, R. Mapping soil salinity in arid and semi-arid regions using Landsat 8 OLI satellite data. Remote Sens. Appl. Soc. Environ. 2019, 13, 415–425. [Google Scholar] [CrossRef]
- Huynen, J.R. Phenomenological Theory of Radar Targets. Ph.D. Thesis, Technical University, Delft, The Netherlands, 1970. [Google Scholar]
- An, W.; Yi, C.; Jian, Y. Three-Component Model-Based Decomposition for Polarimetric SAR Data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2732–2739. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Cloude, S.R. Group Theory and Polarisation Algebra. Optik 1986, 75, 26–36. [Google Scholar]
- Haldar, D.; Das, A.; Mohan, S.; Pal, O.; Hooda, R.S.; Chakraborty, M. Assessment of L-Band SAR Data at Different Polarization Combinations for Crop and Other Landuse Classification. Prog. Electromagn. Res. B 2012, 36, 303–321. [Google Scholar] [CrossRef] [Green Version]
- Cloude, S.R. Target decomposition theorems in radar scattering. Electron. Lett. 2007, 21, 22–24. [Google Scholar] [CrossRef]
- Freeman, A. Fitting a Two-Component Scattering Model to Polarimetric SAR Data from Forests. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2583–2592. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Vanzyl, J.J. Application of Cloude’s target decomposition theorem to polarimetric imaging radar data. In Radar Polarimetry; Proceedings of the SPIE’92, San Diego, CA, USA, 1992; SPIE: Washington, DC, USA, 1993; pp. 184–191. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. Tech. Rep. Ieice Sane 2005, 104, 1699–1706. [Google Scholar] [CrossRef]
- Sinclair, G. The Transmission and Reception of Elliptically Polarized Waves. Proc. Ire. 1950, 38, 148–151. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geo Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Pottier, E.; Ferro-Famil, L. PolSARPro V5.0: An ESA educational toolbox used for self-education in the field of POLSAR and POL-INSAR data analysis. In Proceedings of the 2012 Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; IEEE International: Piscataway, NJ, USA, 2012. [Google Scholar]
- Sun, X.; Yang, X.L.; Shang-Tan, T.U.; Huang, P.P.; Yang, W. Unsupervised Classification of PolSAR Images by Combining Feature Selection and Large Scale Spectral Clustering. J. Signal Process. 2016, 32, 684. [Google Scholar]
- Hong, C.; Na, L.; Xin Rui, W. Introduction to Digital Media Technology; Beijing University of Posts and Telecommunications Press: Beijing, China, 2015. [Google Scholar]
- Ding, J.; Yao, Y.; Wang, F. Detecting soil salinization in arid regions using spectral feature space derived from remote sensing data. Acta Ecol. Sin. 2014, 34, 4620–4631. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Yang, F.; Fan, Y.; Han, B.; Chen, S.; Yang, W. Dynamic monitoring of soil salinization in Yellow River Delta utilizing MSAVI-SI feature space models with Landsat images. Environ. Earth Sci. 2019, 78, 1–10. [Google Scholar] [CrossRef]
- Wei, H.S.; Wang, J.L.; Cheng, K.; Li, G.; Ochir, A.; Davaasuren, D.; Chonokhuu, S. Desertification Information Extraction Based on Feature Space Combinations on the Mongolian Plateau. Remote Sens. 2018, 10, 17. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Ding, J.; Wu, M. Remote sensing monitoring models of soil salinization based on NDVI-SI feature space. Trans. Chin. Soc. Agric. Eng. 2010, 26, 168–173. [Google Scholar] [CrossRef]
- Ding, J.; Qu, J.; Sun, Y.; Zhang, Y. The retrieval model of soil salinization information in arid region based on MSAVI-WI feature space:A case study of the delta oasis in Weigan-Kuqa watershed. Geogr. Res. 2013, 32, 223–232. [Google Scholar]
- Jagdhuber, T.; Hajnsek, I.; Bronstert, A.; Papathanassiou, K.P. Soil Moisture Estimation Under Low Vegetation Cover Using a Multi-Angular Polarimetric Decomposition. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2201–2215. [Google Scholar] [CrossRef]
- Bourgeau-Chavez, L.L.; Leblon, B.; Charbonneau, F.; Buckley, J.R. Evaluation of polarimetric Radarsat-2 SAR data for development of soil moisture retrieval algorithms over a chronosequence of black spruce boreal forests. Remote Sens. Environ. 2013, 132, 71–85. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, J.; Zhu, G.; Wang, Y.; Ma, X.; Wang, J.; Guo, H.; Zhang, Y. Soil salinization in the oasis areas of downstream inland rivers—Case Study: Minqin oasis. Quat. Int. 2020, 537, 69–78. [Google Scholar] [CrossRef]
- Feng, J.; Jing, J.; Wei, W. A Study of soil salinization in Weigan and Kuqa rivers oasis based on Albedo-MSAVI feature space. China Rural Water Hydropower 2018, 2, 147–152. [Google Scholar]
- Gao, Y.; Liu, X.; Hou, W.; Han, Y.; Wang, R.; Zhang, H. Characteristics of Saline Soil in Extremely Arid Regions: A Case Study Using GF-3 and ALOS-2 Quad-Pol SAR Data in Qinghai, China. Remote Sens. 2021, 13, 417. [Google Scholar] [CrossRef]
Parameter Type | Data |
---|---|
Data Acquisition Date | 23 April 2015 |
Polarization | HH, HV, VH, VV |
Projection method | UTM |
Incident angle | 30.4° |
Frequency | L-band (1.2 GHz) |
Observation mode | Strip map (High-sensitive Quad) |
Operation mode | SM2 |
Orbit path, frame | 158, 730 |
Nominal resolution | 5.1 × 4.3 m (Range × Azimuth) |
Swath | 40~50 km × 70 km (Range × Azimuth) |
Processing Level | Level 1.1 |
File format | CEOS SAR |
Observation and orbit direction | Right, Ascending |
Symbol | Salinization Level | Characteristics |
---|---|---|
NS | Non-saline soil | EC value 0–2 (dsm−1), no salt crusts or salt spots on the soil surface, crops can grow normally |
SS | Slightly salinized soil | EC value 2–4 (dsm−1), clear salt patches and salt crusts on the surface, the salt crust is thin (0~2 cm or so), high vegetation cover, at around 30%, groundwater level 1.4~3 m |
MS | Moderately salinized soil | EC value 4–8 (dsm−1), more salt crusts or salt spots on the soil surface, salt crust is 1~4 cm, vegetation cover of approximately 5~15%, groundwater level 1~2 m |
HS | Heavily salinized soil | EC value 4–8 (dsm−1), thick salt crust, and numerous salt patches on the soil surface, salt crust is 2~10 cm, vegetation covers less than 5%, groundwater level 0.5~1.5 m |
Pauli Matrix | Scattering Type | Physical Interpretation |
---|---|---|
Odd scattering | Planar, spherical, and angular reflectors | |
Even scattering | Two-sided angle | |
even-order scattering | Two-sided angle with an inclination of | |
Cross-polarization | No corresponding scattering mechanism exists |
Cloude | Freeman | Freeman Durden | Pauli | Sinclair | VanZyl | Yamaguchi | H/A/Alpha | |
---|---|---|---|---|---|---|---|---|
Surface_b | 356.067 | 308.391 | 252.007 | 225.301 | 203.320 | 240.865 | 268.901 | 21.0420 |
Volume_g | 28.8860 | 412.218 | 378.320 | 213.868 | 225.270 | 373.967 | 268.092 | 21.0813 |
Double_b | 72.6462 | 248.521 | 332.305 | 221.481 | 217.883 | 260.327 | 329.654 | 35.5327 |
Polarization Decomposition | Number of Parameters | Polarimetric Parameter |
---|---|---|
Cloude | 3 | Cloude_dbl_r, Cloude_vol_g, Cloude_surf_b |
Freeman | 3 | Freeman_dbl_r, Freeman_vol_g, Freeman_surf_b |
Freeman Durden | 3 | Freeman Durden_dbl_r, Freeman Durden_vol_g, Freeman Durden_surf_b |
Pauli | 3 | Pauli_r, Pauli_g, Pauli_b |
Sinclair | 3 | Sinclair_r, Sinclair_g, Sinclair_b |
VanZyl | 3 | VanZyl_dbl_r, VanZyl_vol_g, VanZyl_surf_b |
H/A/Alpha | 3 | Entropy, Anisotropy, alpha |
Yamaguchi | 4 | Yamaguchi_dbl_r, Yamaguchi_vol_g, Yamaguchi_surf_b, Yamaguchi_hlx |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhetaer, N.; Nurmemet, I.; Abulaiti, A.; Xiao, S.; Zhao, J. A Quantifying Approach to Soil Salinity Based on a Radar Feature Space Model Using ALOS PALSAR-2 Data. Remote Sens. 2022, 14, 363. https://doi.org/10.3390/rs14020363
Muhetaer N, Nurmemet I, Abulaiti A, Xiao S, Zhao J. A Quantifying Approach to Soil Salinity Based on a Radar Feature Space Model Using ALOS PALSAR-2 Data. Remote Sensing. 2022; 14(2):363. https://doi.org/10.3390/rs14020363
Chicago/Turabian StyleMuhetaer, Nuerbiye, Ilyas Nurmemet, Adilai Abulaiti, Sentian Xiao, and Jing Zhao. 2022. "A Quantifying Approach to Soil Salinity Based on a Radar Feature Space Model Using ALOS PALSAR-2 Data" Remote Sensing 14, no. 2: 363. https://doi.org/10.3390/rs14020363
APA StyleMuhetaer, N., Nurmemet, I., Abulaiti, A., Xiao, S., & Zhao, J. (2022). A Quantifying Approach to Soil Salinity Based on a Radar Feature Space Model Using ALOS PALSAR-2 Data. Remote Sensing, 14(2), 363. https://doi.org/10.3390/rs14020363