Glacier Motion Monitoring Using a Novel Deep Matching Network with SAR Intensity Images
Abstract
:1. Introduction
- We exploit the application potential of deep learning in glacier surface motion monitoring, and we take advantage of deep features to achieve glacier motion estimation with high precision, providing method support for large-scale and long-term glacier dynamic monitoring.
- We propose a deep matching network (DMN) to extract deep features from multi-temporal glacier SAR intensity images and measure the features. The DMN directly learns the relationship between SAR image patches and their corresponding matching labels in an end-to-end manner.
- A self-sample learning method is introduced to solve the problem of the lack of training samples with matching labels, which makes the DMN training more robust with strong generalization ability.
- The proposed method uses the DMN to obtain accurate pixel-level matching, and it takes advantage of a peak centroid-based subpixel matching method and outlier removal approach to acquire subpixel displacement. The experiment results show that the proposed method can acquire precise estimation and is less affected by SAR noise.
2. Methodology
2.1. Self-Sample Learning for Model Training
2.2. Deep Matching Network
2.3. Subpixel Displacement Estimation and Post-Processing
3. Results
3.1. Training Data and Experimental Settings
3.2. Experiment Results Using Simulated SAR Images
3.2.1. Simulated SAR Data
3.2.2. Experiment Results
3.3. Experiment Results Using Real SAR Data
3.3.1. Real SAR Data
3.3.2. Experiment Results
4. Discussion
- As shown in Table 2, the proposed method takes a number of times to conduct model training and testing, because the deep learning method uses a large amount of training samples to acquire prior information for image matching.
- A deep learning network requires a mass of parameters to be trained and adjusted, which is prone to over-fitting and under-fitting.
- The proposed method shows better results than other traditional methods for images with complex textures, since the training data in this paper are high-resolution remote sensing images with rich texture. Therefore, the selection of training data affects the results of the proposed method. Increasing the diversity of training data can improve the performance of the deep learning model.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shugar, D.; Jacquemart, M.; Shean, D.; Bhushan, S.; Westoby, M. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 2021, 373, 300–306. [Google Scholar] [CrossRef]
- Rees, P.P.G. Remote Sensing of Glaciers: Techniques for Topographic, Spatial and Thematic Mapping of Glaciers. J. Glaciol. 2009, 56, 927. [Google Scholar] [CrossRef]
- Schubert, A.; Faes, A.; Kääb, A.; Meier, E. Glacier surface velocity estimation using repeat TerraSAR-X images: Wavelet- vs. correlation-based image matching. ISPRS J. Photogramm. Remote Sens. 2013, 82, 49–62. [Google Scholar] [CrossRef]
- Li, S.; Benson, C.; Gens, R.; Lingle, C. Motion patterns of Nabesna Glacier (Alaska) revealed by interferometric SAR techniques. Remote Sens. Environ. 2008, 112, 3628–3638. [Google Scholar] [CrossRef]
- Samsonov, S. Three-dimensional deformation time series of glacier motion from multiple-aperture DlnSAR observation. J. Geodesy 2019, 93, 2651–2660. [Google Scholar] [CrossRef] [Green Version]
- Bechor, N.B.D.; Zebker, H.A. Measuring two-dimensional movements using a single InSAR pair. Geophys. Res. Lett. 2006, 33, 275–303. [Google Scholar] [CrossRef] [Green Version]
- Strozzi, T.; Luckman, A.; Murray, T. Glacier Motion Estimation Using SAR Offset-Tracking Producers. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2384–2391. [Google Scholar] [CrossRef] [Green Version]
- Yoo, J.C.; Han, T. Fast Normalized Cross-Correlation. Circuits Syst. Signal Process. 2009, 28, 819–843. [Google Scholar] [CrossRef]
- Michel, R. Flow of Glaciar Moreno, Argentina, from repeat-pass Shuttle Imaging Radar images: Comparison of the phase correlation method with radar interferometry. J. Glaciol. 1999, 45, 93–100. [Google Scholar] [CrossRef]
- Fang, L.; Xu, Y.; Yao, W.; Stilla, U. Estimation of glacier surface motion by robust phase correlation and point like features of SAR intensity images. ISPRS J. Photogramm. Remote Sens. 2016, 121, 92–112. [Google Scholar] [CrossRef]
- Muhuri, A.; Natsuaki, R.; Bhattacharya, A.; Hirose, A. Glacier surface velocity estimation using stokes vector correlation. In Proceedings of the IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 1–4 September 2015. [Google Scholar] [CrossRef]
- Lucchitta, B.K.; Ferguson, H.M. Antarctica: Measuring Glacier Velocity from Satellite Images. Science 1986, 234, 1105–1108. [Google Scholar] [CrossRef] [PubMed]
- Korosov, A.A.; Rampal, P. A Combination of Feature Tracking and Pattern Matching with Optimal Parametrization for Sea Ice Drift Retrieval from SAR Data. Remote Sens. 2017, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Gray, A.L.; Short, N.; Mattar, K.E.; Jezek, K.C. Velocities and Flux of the Filchner Ice Shelf and its Tributaries Determined from Speckle Tracking Interferometry. Can. J. Remote Sens. 2001, 27, 193–206. [Google Scholar] [CrossRef]
- Short, N.H.; Gray, A.L. Glacier dynamics in the Canadian High Arctic from RADARSAT-1 speckle tracking. Can. J. Remote Sens. 2014, 31, 225–239. [Google Scholar] [CrossRef]
- Hu, X.; Wang, T.; Liao, M. Measuring Coseismic Displacements with Point-Like Targets Offset Tracking. IEEE Geosci. Remote Sens. 2013, 11, 283–287. [Google Scholar] [CrossRef]
- Johnson, K.; Cole-Rhodes, A.; Zavorin, I.; Moigne, J.L. Mutual information as a similarity measure for remote sensing image registration. Proc. SPIE—Int. Soc. Opt. Eng. 2001, 4383, 51–61. [Google Scholar] [CrossRef]
- Chen, H.M.; Varshney, P.K.; Arora, M.K. Performance of mutual information similarity measure for registration of multitemporal remote sensing images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2445–2454. [Google Scholar] [CrossRef]
- Moigne, J.L.; Campbell, W.J.; Cromp, R.F. An automated parallel image registration technique based on the correlation of wavelet features. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1849–1864. [Google Scholar] [CrossRef]
- Li, Z.; Mahapatra, D.; Tielbeek, J.A.; Stoker, J.; van Vliet, L.J.; Vos, F.M. Image Registration Based on Autocorrelation of Local Structure. IEEE Trans. Med. Imaging 2016, 35, 63–75. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Schwind, P.; Suri, S.; Reinartz, P.; Siebert, A. Applicability of the SIFT operator to geometric SAR image registration. Int. J. Remote Sens. 2010, 31, 1959–1980. [Google Scholar] [CrossRef]
- Ma, W.; Wen, Z.; Wu, Y.; Jiao, L.; Gong, M.; Zheng, Y.; Liu, L. Remote Sensing Image Registration With Modified SIFT and Enhanced Feature Matching. IEEE Geosci. Remote Sens. 2016, 14, 3–7. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Shi, C.; Fang, L.; Lv, Z.; Zhao, M. Explainable Scale Distillation for Hyperspectral Image Classification. Pattern Recogn. 2022, 122, 108316–108329. [Google Scholar] [CrossRef]
- Shi, C.; Dang, Y.; Fang, L.; Lv, Z.; Shen, H. Attention-Guided Multispectral and Panchromatic Image Classification. Remote Sens. 2021, 13, 4823. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Zagoruyko, S.; Komodakis, N. Learning to Compare Image Patches via Convolutional Neural Networks. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 4353–4361. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Leung, T.; Jia, Y.; Sukthankar, R.; Berg, A. Matchnet: Unifying feature and metric learning for patch-based matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3279–3286. [Google Scholar] [CrossRef]
- Charrier, L.; Godet, P.; Rambour, C.; Weissgerber, F.; Koeniguer, E.C. Analysis of dense coregistration methods applied to optical and SAR time-series for ice flow estimations. In Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2022. [Google Scholar]
- Wang, S.; Quan, D.; Liang, X.; Ning, M.; Guo, Y.; Jiao, L. A deep learning framework for remote sensing image registration. Isprs J. Photogramm. Remote Sens. 2018, 145, 148–164. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Laurens, V.e. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar] [CrossRef] [Green Version]
- Hadsell, R.; Chopra, S.; Lecun, Y. Dimensionality Reduction by Learning an Invariant Mapping. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Schmitt, M.; Stilla, U. Adaptive Multilooking of Airborne Single-Pass Multi-Baseline InSAR Stacks. IEEE Trans. Geosci. Remote Sens. 2014, 52, 305–312. [Google Scholar] [CrossRef]
- Ye, Z.; Xu, Y.; Chen, H.; Zhu, J.; Tong, X.; Stilla, U. Area-Based Dense Image Matching with Subpixel Accuracy for Remote Sensing Applications: Practical Analysis and Comparative Study. Remote Sens. 2020, 12, 696. [Google Scholar] [CrossRef] [Green Version]
- Messerli, A.; Grinsted, A. Image GeoRectification and Feature Tracking toolbox: ImGRAFT. Geosci. Instrum. Methods Data Syst. Discuss. 2014, 4, 491–513. [Google Scholar] [CrossRef] [Green Version]
- Fitch, A.J.; Kadyrov, A.; Christmas, W.J.; Kittler, J. Orientation correlation. In Proceedings of the Proceedings of the British Machine Vision Conference 2002, BMVC 2002, Cardiff, UK, 2–5 September 2002; pp. 133–142. [Google Scholar] [CrossRef]
- Leprince, S.; Barbot, S.; Ayoub, F.; Avouac, J.P. Automatic and Precise Orthorectification, Coregistration, and Subpixel Correlation of Satellite Images, Application to Ground Deformation Measurements. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1529–1558. [Google Scholar] [CrossRef] [Green Version]
- Nagashima, S.; Aoki, T.; Higuchi, T.; Kobayashi, K. A Subpixel Image Matching Technique Using Phase-Only Correlation. In Proceedings of the IEEE International Symposium on Intelligent Signal Processing and Communications, Yonago, Japan, 12–15 December 2006; pp. 701–704. [Google Scholar] [CrossRef]
- Guizar-Sicairos, M.; Thurman, S.; Fienup, J.R. Efficient subpixel image registration algorithms. Opt. Lett. 2008, 33, 156–158. [Google Scholar] [CrossRef] [PubMed]
Layers | Output Size | Feature Extraction Network |
---|---|---|
Conv | ||
Pooling | ||
DCB | ||
Transition | ||
DCB | ||
Transition | ||
Model | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 |
---|---|---|---|---|---|
Training time(s) | 253 | 303 | 252 | 253 | 301 |
Average testing time(s) | 456.8586 | 457.5443 | 457.2783 | 458.8103 | 457.9857 |
Running platform | Tensorflow 2.3 Intel(R) Xeon(R) Gold 6254 CPU @3.10 GHz NVIDIA Quadro RTX 6000 24 G GPU, 196 G RAM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, H.; Zhou, S.; Fang, L.; Yang, J. Glacier Motion Monitoring Using a Novel Deep Matching Network with SAR Intensity Images. Remote Sens. 2022, 14, 5128. https://doi.org/10.3390/rs14205128
Shen H, Zhou S, Fang L, Yang J. Glacier Motion Monitoring Using a Novel Deep Matching Network with SAR Intensity Images. Remote Sensing. 2022; 14(20):5128. https://doi.org/10.3390/rs14205128
Chicago/Turabian StyleShen, Huifang, Shudong Zhou, Li Fang, and Jian Yang. 2022. "Glacier Motion Monitoring Using a Novel Deep Matching Network with SAR Intensity Images" Remote Sensing 14, no. 20: 5128. https://doi.org/10.3390/rs14205128
APA StyleShen, H., Zhou, S., Fang, L., & Yang, J. (2022). Glacier Motion Monitoring Using a Novel Deep Matching Network with SAR Intensity Images. Remote Sensing, 14(20), 5128. https://doi.org/10.3390/rs14205128