Quantification of Underwater Sargassum Aggregations Based on a Semi-Analytical Approach Applied to Sentinel-3/OLCI (Copernicus) Data in the Tropical Atlantic Ocean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Data
2.3. Methodology
2.3.1. Atmospheric Correction Procedure over Sargassum Dominated Waters
2.3.2. Sargassum Radiative Transfer (SRT) Model
2.3.3. Inversion of the SRT Model to Retrieve the Sargassum Depth and Fractional Coverage
2.3.4. Maximum Chlorophyll Index (MCI) and Fractional Coverage (FC)
3. Results
3.1. Performances of the SRT Inversion Retrieval Process Using Synthetic Data
3.2. Retrieval of the Bio-Optical Parameters from OLCI Derived Surface Reflectances Using the SRT Inversion Method
4. Neural Network Implementation to Speed-Up Satellite Data Processing
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Louime, C.; Fortune, J.; Gervais, G. Sargassum Invasion of Coastal Environments: A Growing Concern. Am. J. Environ. Sci. 2017, 13, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Gower, J.; Young, E.; King, S. Satellite Images Suggest a New Sargassum Source Region in 2011. Remote Sens. Lett. 2013, 4, 764–773. [Google Scholar] [CrossRef]
- Jouanno, J.; Moquet, J.-S.; Berline, L.; Radenac, M.-H.; Santini, W.; Changeux, T.; Thibaut, T.; Podlejski, W.; Ménard, F.; Martinez, J.-M.; et al. Evolution of the Riverine Nutrient Export to the Tropical Atlantic over the Last 15 Years: Is There a Link with Sargassum Proliferation? Environ. Res. Lett. 2021, 16, 034042. [Google Scholar] [CrossRef]
- Milledge, J.J.; Harvey, P.J. Golden Tides: Problem or Golden Opportunity? The Valorisation of Sargassum from Beach Inundations. J. Mar. Sci. Eng. 2016, 4, 60. [Google Scholar] [CrossRef] [Green Version]
- Duncan, R.S.; Wilson, E.O. Southern Wonder: Alabama’s Surprising Biodiversity; University of Alabama Press: Tuscaloosa, AL, USA, 2013. [Google Scholar]
- Djakouré, S.; Araujo, M.; Hounsou-Gbo, A.; Noriega, C.; Bourlès, B. On the Potential Causes of the Recent Pelagic Sargassum Blooms Events in the Tropical North Atlantic Ocean. Biogeosci. Discuss. 2017, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Marx, U.C.; Roles, J.; Hankamer, B. Sargassum Blooms in the Atlantic Ocean—From a Burden to an Asset. Algal Res. 2021, 54, 102188. [Google Scholar] [CrossRef]
- Gower, J.; King, S.; Yan, W.; Borstad, G.; Brown, L. Use of the 709 Nm Band of MERIS to Detect Intense Plankton Blooms and Other Conditions in Coastal Waters. In Proceedings of the MERIS User Workshop, Frascati, Italy, 10–13 November 2003; pp. 10–13. [Google Scholar]
- Gower, J.; Hu, C.; Borstad, G.; King, S. Ocean Color Satellites Show Extensive Lines of Floating Sargassum in the Gulf of Mexico. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3619–3625. [Google Scholar] [CrossRef]
- Hu, C.; Feng, L.; Hardy, R.F.; Hochberg, E.J. Spectral and Spatial Requirements of Remote Measurements of Pelagic Sargassum Macroalgae. Remote Sens. Environ. 2015, 167, 229–246. [Google Scholar] [CrossRef]
- Gower, J.; King, S. The Distribution of Pelagic Sargassum Observed with OLCI. Int. J. Remote Sens. 2020, 41, 5669–5679. [Google Scholar] [CrossRef]
- Hu, C. A Novel Ocean Color Index to Detect Floating Algae in the Global Oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Wang, M.; Hu, C. Mapping and Quantifying Sargassum Distribution and Coverage in the Central West Atlantic Using MODIS Observations. Remote Sens. Environ. 2016, 183, 350–367. [Google Scholar] [CrossRef]
- Gower, J.; King, S. Intense Plankton Blooms and Sargassum Detected by MERIS. In Proceedings of the MERIS (A) ATSR Workshop 2005, Frascati, Italy, 26–30 September 2005; Volume 597. [Google Scholar]
- Wang, M.; Hu, C.; Cannizzaro, J.; English, D.; Han, X.; Naar, D.; Lapointe, B.; Brewton, R.; Hernandez, F. Remote Sensing of Sargassum Biomass, Nutrients, and Pigments. Geophys. Res. Lett. 2018, 45, 12–359. [Google Scholar] [CrossRef]
- Wang, M.; Hu, C. Satellite Remote Sensing of Pelagic Sargassum Macroalgae: The Power of High Resolution and Deep Learning. Remote Sens. Environ. 2021, 264, 112631. [Google Scholar] [CrossRef]
- Arellano-Verdejo, J.; Lazcano-Hernandez, H.E.; Cabanillas-Terán, N. ERISNet: Deep Neural Network for Sargassum Detection along the Coastline of the Mexican Caribbean. PeerJ 2019, 7, e6842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodcock, A.H. Winds Subsurface Pelagic Sargassum and Langmuir Circulations. J. Exp. Mar. Biol. Ecol. 1993, 170, 117–125. [Google Scholar] [CrossRef]
- Ody, A.; Thibaut, T.; Berline, L.; Changeux, T.; André, J.-M.; Chevalier, C.; Blanfuné, A.; Blanchot, J.; Ruitton, S.; Stiger-Pouvreau, V.; et al. From In Situ to Satellite Observations of Pelagic Sargassum Distribution and Aggregation in the Tropical North Atlantic Ocean. PLoS ONE 2019, 14, e0222584. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral Remote Sensing for Shallow Waters. I. A Semianalytical Model. Appl. Opt. 1998, 37, 6329–6338. [Google Scholar] [CrossRef]
- Descloitres, J.; Minghelli, A.; Steinmetz, F.; Chevalier, C.; Chami, M.; Berline, L. Revisited Estimation of Moderate Resolution Sargassum Fractional Coverage Using Decametric Satellite Data (S2-MSI). Remote Sens. 2021, 13, 5106. [Google Scholar] [CrossRef]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.-H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 Mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Copernicus Open Access Hub Website. Available online: https://scihub.copernicus.eu/ (accessed on 5 October 2021).
- Qi, L.; Hu, C.; Mikelsons, K.; Wang, M.; Lance, V.; Sun, S.; Barnes, B.B.; Zhao, J.; Van der Zande, D. In Search of Floating Algae and Other Organisms in Global Oceans and Lakes. Remote Sens. Environ. 2020, 239, 111659. [Google Scholar] [CrossRef]
- Steinmetz, F. Étude de La Correction de La Diffusion Atmosphérique et Du Rayonnement Solaire Réfléchi Par La Surface Agitée de La Mer Pour l’observation de La Couleur de l’océan Depuis l’espace. Ph.D. Thesis, Lille 1, Lille, France, 2008. [Google Scholar]
- Steinmetz, F.; Deschamps, P.-Y.; Ramon, D. Atmospheric Correction in Presence of Sun Glint: Application to MERIS. Opt. Express 2011, 19, 9783–9800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinmetz, F.; Ramon, D. Sentinel-2 MSI and Sentinel-3 OLCI Consistent Ocean Colour Products Using POLYMER. In Proceedings of the Remote Sensing of the Open and Coastal Ocean and Inland Waters, Honolulu, HI, USA, 24–25 September 2018; Volume 10778, p. 107780E. [Google Scholar]
- Cox, C.; Munk, W. Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter. Josa 1954, 44, 838–850. [Google Scholar] [CrossRef]
- Schamberger, L.; Minghelli, A.; Chami, M.; Steinmetz, F. Improvement of Atmospheric Correction of Satellite Sentinel-3/OLCI Data for Oceanic Waters in Presence of Sargassum. Remote Sens. 2022, 14, 386. [Google Scholar] [CrossRef]
- Winge, Ø. The Sargasso Sea, Its Boundaries and Vegetation; A.F. Høst & søn: Copenhagen, Denmark, 1923. [Google Scholar]
- Johnson, D.L.; Richardson, P.L. On the Wind-Induced Sinking of Sargassum. J. Exp. Mar. Biol. Ecol. 1977, 28, 255–267. [Google Scholar] [CrossRef]
- Butler, J.N.; Morris, B.F.; Cadwallader, J.; Stoner, A.W. Studies of Sargassum and the Sargassum Community; Bermuda Biological Station: Ferry Reach, Bermuda, 1983. [Google Scholar]
- Xu, Y.; Wang, R.; Liu, S.; Yang, S.; Yan, B. Atmospheric Correction of Hyperspectral Data Using MODTRAN Model. In Proceedings of the SPIE, the International Society for Optical Engineering, Volume 7123, Remote Sensing of the Environment: 16th National Symposium on Remote Sensing of China, Beijing, China, 7–10 September 2007; p. 712306. [Google Scholar] [CrossRef]
- Dekker, A.G.; Phinn, S.R.; Anstee, J.; Bissett, P.; Brando, V.E.; Casey, B.; Fearns, P.; Hedley, J.; Klonowski, W.; Lee, Z.P.; et al. Intercomparison of Shallow Water Bathymetry, Hydro-Optics, and Benthos Mapping Techniques in Australian and Caribbean Coastal Environments. Limnol. Oceanogr. Methods 2011, 9, 396–425. [Google Scholar] [CrossRef] [Green Version]
- Wekeo Website Mass Concentration of Chlorophyll a in Sea Water. Available online: Https://www.Wekeo.Eu/Data/ (accessed on 7 May 2022).
- Gardner, M.W.; Dorling, S. Artificial Neural Networks (the Multilayer Perceptron)—A Review of Applications in the Atmospheric Sciences. Atmos. Environ. 1998, 32, 2627–2636. [Google Scholar] [CrossRef]
- Mobley, C.D. The Optical Properties of Water. In Handbook of Optics; McGraw-Hill, Inc.: New York, NY, USA, 1995; Volume 1, Chapter 43. [Google Scholar]
- Wekeo Website, IFREMER CERSAT Global Blended Mean Wind Fields. Available online: Https://Www.Wekeo.Eu/Data?View=dataset&dataset=EO%3AMO%3ADAT%3AWIND_GLO_WIND_L4_REP_OBSERVATIONS_012_006 (accessed on 13 May 2022).
- Parr, A.E. Quantitative Observations on the Pelagic Sargassum Vegetation of the Western North Atlantic. Bull. Bingham Ocean. Coll. 1939, 6, 1–94. [Google Scholar]
Parameters | ||
---|---|---|
Chl (mg m−3) | 0.14 mg m−3 | 48.1% |
NAP (g m−3) | 0.13 g m−3 | 13.4% |
CDOM (m−1) | 0.0078 m−1 | 78.4% |
FC (%) | 1.51% | 2.9% |
z (m) | 0.74 m | 14.7% |
Parameters | Retrieval for a Sargassum Free Pixel | Retrieval for a Sargassum Contaminated Pixel |
---|---|---|
Chl (mg m−3) | 0.41 | 0.45 |
NAP (g m−3) | 0.243 | 0.26 |
CDOM (m−1) | 0.025 | 0.02 |
FC (%) | 15 | 8 |
z (m) | 5 | 0.07 |
Date | Coverage (km2) δMCI Index (Surface Waters Only) | Coverage (km2) Neural Network (Surface + Water Column) | Relative Coverage Difference (in %) between the Neural Network and δMCI | Proportion (in %) of Coverage between 2–5 m Depth (Neural Network Approach) |
---|---|---|---|---|
8 July 2017 | 933.6 | 1666.0 | 43.9% | 51% |
27 May 2018 | 1207.3 | 3880.1 | 68.8% | 39% |
14 June 2020 | 558.6 | 1055.6 | 47.1% | 44% |
14 September 2020 | 1340.2 | 3674.1 | 63.5% | 31% |
28 December 2020 | 488.0 | 932.3 | 47.6% | 30% |
2 May 2021 | 1884.3 | 1871.5 | 0.6% | 42% |
Biomass (Million Tons) | ||
---|---|---|
Date | δMCI Index (Surface Waters Only) | Neural Network (Surface + Water Column) |
8 July 2017 | 3.1 | 5.6 |
27 May 2018 | 4.0 | 13.0 |
14 June 2020 | 1.9 | 3.5 |
14 September 2020 | 4.5 | 12.3 |
28 December 2020 | 1.6 | 3.1 |
2 May 2021 | 6.3 | 6.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schamberger, L.; Minghelli, A.; Chami, M. Quantification of Underwater Sargassum Aggregations Based on a Semi-Analytical Approach Applied to Sentinel-3/OLCI (Copernicus) Data in the Tropical Atlantic Ocean. Remote Sens. 2022, 14, 5230. https://doi.org/10.3390/rs14205230
Schamberger L, Minghelli A, Chami M. Quantification of Underwater Sargassum Aggregations Based on a Semi-Analytical Approach Applied to Sentinel-3/OLCI (Copernicus) Data in the Tropical Atlantic Ocean. Remote Sensing. 2022; 14(20):5230. https://doi.org/10.3390/rs14205230
Chicago/Turabian StyleSchamberger, Léa, Audrey Minghelli, and Malik Chami. 2022. "Quantification of Underwater Sargassum Aggregations Based on a Semi-Analytical Approach Applied to Sentinel-3/OLCI (Copernicus) Data in the Tropical Atlantic Ocean" Remote Sensing 14, no. 20: 5230. https://doi.org/10.3390/rs14205230
APA StyleSchamberger, L., Minghelli, A., & Chami, M. (2022). Quantification of Underwater Sargassum Aggregations Based on a Semi-Analytical Approach Applied to Sentinel-3/OLCI (Copernicus) Data in the Tropical Atlantic Ocean. Remote Sensing, 14(20), 5230. https://doi.org/10.3390/rs14205230