Comparison of Accelerated Versions of the Iterative Gradient Method to Ameliorate the Spatial Resolution of Microwave Radiometer Products
Abstract
:1. Introduction
2. Methodology
2.1. Tikhonov-like Acceleration Technique (ILW)
2.2. Preconditioned Acceleration Technique (LW-P)
3. Numerical Experiments
3.1. Spatial Resolution Enhancement with Gradient Methods
3.2. Comparison between Accelerated Gradient Methods
3.2.1. Metrics
- Improvement Factor (IF), defined as the ratio between the -3 dB width of the enhanced and the non-enhanced spike-like profiles, can assume values in the range . Following its definition, the larger the IF is, the higher the enhancement capability achieved by the method.
- Relative Global Error (ERR), defined as:
- Brightness Temperature Peak Error (), defined as:
- Noise Amplification (NA), defined as the RMSE evaluated over a background area of the signal, see Figure 3. It allows a quantitative analysis of the noise amplification due to the reconstruction method.
3.2.2. Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sandifer, P.A.; Scott, G.I. Coastlines, Coastal Cities, and Climate Change: A Perspective on Urgent Research Needs in the United States. Front. Mar. Sci. 2021, 8, 631986. [Google Scholar] [CrossRef]
- Wu, S.; Lembke-Jene, L.; Lamy, F.; Arz, H.W.; Nowaczyk, N.; Xiao, W.; Zhang, X.; Hass, H.C.; Titschack, J.; Zheng, X.; et al. Orbital-and millennial-scale Antarctic Circumpolar Current variability in Drake Passage over the past 140,000 years. Nat. Commun. 2021, 12, 3948. [Google Scholar] [CrossRef] [PubMed]
- Sabaghy, S.; Walker, J.P.; Renzullo, L.J.; Jackson, T.J. Spatially enhanced passive microwave derived soil moisture: Capabilities and opportunities. Remote Sens. Environ. 2018, 209, 551–580. [Google Scholar] [CrossRef]
- Santi, E. An application of the SFIM technique to enhance the spatial resolution of spaceborne microwave radiometers. Int. J. Remote Sens. 2010, 31, 2419–2428. [Google Scholar] [CrossRef]
- Lenti, F.; Nunziata, F.; Estatico, C.; Migliaccio, M. Spatial Resolution Enhancement of Earth Observation Products Using an Acceleration Technique for Iterative Methods. IEEE Geosci. Remote Sens. Lett. 2015, 12, 269–273. [Google Scholar] [CrossRef]
- Alparone, M.; Nunziata, F.; Estatico, C.; Migliaccio, M. On the Use of Preconditioners to Improve the Accuracy and Effectiveness of Iterative Methods to Enhance the Spatial Resolution of Radiometer Measurements. IEEE Geosci. Remote Sens. Lett. 2020, 18, 446–450. [Google Scholar] [CrossRef]
- Alparone, M.; Nunziata, F.; Estatico, C.; Camps, A.; Park, H.; Migliaccio, M. On the Trade-Off Between Enhancement of the Spatial Resolution and Noise Amplification in Conical-Scanning Microwave Radiometers. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Lenti, F.; Nunziata, F.; Migliaccio, M.; Rodriguez, G. Two-Dimensional TSVD to Enhance the Spatial Resolution of Radiometer Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2450–2458. [Google Scholar] [CrossRef]
- Lenti, F.; Nunziata, F.; Estatico, C.; Migliaccio, M. On the Spatial Resolution Enhancement of Microwave Radiometer Data in Banach Spaces. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1834–1842. [Google Scholar] [CrossRef]
- Long, D.G.; Hardin, P.J.; Whiting, P.T. Resolution enhancement of spaceborne scatterometer data. IEEE Trans. Geosci. Remote Sens. 1993, 31, 700–715. [Google Scholar] [CrossRef]
- Long, D.G.; Daum, D.L. Spatial resolution enhancement of SSM/I data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 407–417. [Google Scholar] [CrossRef] [Green Version]
- Migliaccio, M.; Gambardella, A. Microwave radiometer spatial resolution enhancement. IEEE Trans. Geosci. Remote Sens. 2005, 43. [Google Scholar] [CrossRef]
- Lenti, F.; Nunziata, F.; Migliaccio, M.; Rodriguez, G. 2D TSVD to enhance the resolution of radiometer data. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 6091–6094. [Google Scholar] [CrossRef]
- Gambardella, A.; Migliaccio, M. On the Superresolution of Microwave Scanning Radiometer Measurements. IEEE Geosci. Remote Sens. Lett. 2008, 5, 796–800. [Google Scholar] [CrossRef]
- Backus, G.E.; Gilbert, J.F. Numerical Applications of a Formalism for Geophysical Inverse Problems. Geophys. J. Int. 1967, 13, 247–276. [Google Scholar] [CrossRef] [Green Version]
- Brianzi, P.; Di Benedetto, F.; Estatico, C. Improvement of Space-Invariant Image Deblurring by Preconditioned Landweber Iterations. SIAM J. Sci. Comput. 2008, 30, 1430–1458. [Google Scholar] [CrossRef]
- Lenti, F.; Nunziata, F.; Estatico, C.; Migliaccio, M. Analysis of Reconstructions Obtained Solving lp-Penalized Minimization Problems. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4876–4886. [Google Scholar] [CrossRef] [Green Version]
- Estatico, C. A Class of Filtering Superoptimal Preconditioners for Highly Ill-Conditioned Linear Systems. BIT Numer. Math. 2002, 42, 753–778. [Google Scholar] [CrossRef]
- Estatico, C. A classification scheme for regularizing preconditioners, with application to Toeplitz systems. Linear Algebra Appl. 2005, 397, 107–131. [Google Scholar] [CrossRef] [Green Version]
- Hollinger, J.P.; Peirce, J.L.; Poe, G.A. SSM/I instrument evaluation. IEEE Trans. Geosci. Remote Sens. 1990, 28, 781–790. [Google Scholar] [CrossRef]
- Brodzik, M.J.; Billingsley, B.; Haran, T.; Raup, B.; Savoie, M.H. EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets. ISPRS Int. J. Geo-Inf. 2012, 1, 32–45, Correction: ISPRS Int. J. Geo-Inf. 2014, 3, 1154–1156. [Google Scholar] [CrossRef] [Green Version]
- Long, D.G.; Brodzik, M.J.; Hardman, M.A. Enhanced-Resolution SMAP Brightness Temperature Image Products. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4151–4163. [Google Scholar] [CrossRef]
- Nunziata, F.; Alparone, M.; Camps, A.; Park, H.; Zurita, A.M.; Estatico, C.; Migliaccio, M. An Enhanced Resolution Brightness Temperature Product for Future Conical Scanning Microwave Radiometers. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
LW | ILW | LW-P | |
---|---|---|---|
IF | 1.29 | 1.29 | 1.57 |
ET | LW | ILW | LW-P | ||||||
Iter # | RMSE | Iter # | RMSE | Iter # | RMSE | ||||
ET1 | 41 | 0.32 | 185.34 | 22 | 0.32 | 190.60 | 31 | 0.32 | 190.13 |
ET2 | 85 | 0.47 | 131.10 | 52 | 0.45 | 140.85 | 52 | 0.47 | 144.71 |
ET3 | 585 | 0.91 | 43.72 | 528 | 0.92 | 43.80 | 169 | 1.02 | 53.13 |
1000 | 1.14 | 29 | 1000 | 1.17 | 28 | 1000 | 3.66 | −2 | |
ET | LW | ILW | LW-P | ||||||
Iter # | RMSE | Iter # | RMSE | Iter # | RMSE | ||||
ET1 | 42 | 0.69 | 185.06 | 23 | 0.89 | 190.01 | 32 | 0.84 | 189.07 |
ET2 | 88 | 1.17 | 131.14 | 55 | 1.22 | 139.76 | 54 | 1.27 | 143.46 |
ET3 | 641 | 2.52 | 45.24 | 584 | 2.53 | 45.29 | 182 | 2.73 | 52.48 |
1000 | 2.98 | 34 | 1000 | 3.05 | 32 | 1000 | 7.29 | −2 |
ET | LW | ILW | LW-P | ||||||
---|---|---|---|---|---|---|---|---|---|
Iter # | RMSE | Iter # | RMSE | Iter # | RMSE | ||||
ET1 | 13 | 0.18 | 202.92 | 13 | 0.57 | 187.99 | 14 | 0.27 | 0.27 |
ET2 | 19 | 0.26 | 166.57 | 18 | 0.60 | 160.47 | 20 | 0.37 | 0.37 |
ET3 | 29 | 0.38 | 119.32 | 28 | 0.67 | 115.74 | 31 | 0.54 | 0.54 |
1000 | 1.65 | −23 | 1000 | 1.66 | −24 | 1000 | 3.53 | −25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alparone, M.; Nunziata, F.; Estatico, C.; Migliaccio, M. Comparison of Accelerated Versions of the Iterative Gradient Method to Ameliorate the Spatial Resolution of Microwave Radiometer Products. Remote Sens. 2022, 14, 5246. https://doi.org/10.3390/rs14205246
Alparone M, Nunziata F, Estatico C, Migliaccio M. Comparison of Accelerated Versions of the Iterative Gradient Method to Ameliorate the Spatial Resolution of Microwave Radiometer Products. Remote Sensing. 2022; 14(20):5246. https://doi.org/10.3390/rs14205246
Chicago/Turabian StyleAlparone, Matteo, Ferdinando Nunziata, Claudio Estatico, and Maurizio Migliaccio. 2022. "Comparison of Accelerated Versions of the Iterative Gradient Method to Ameliorate the Spatial Resolution of Microwave Radiometer Products" Remote Sensing 14, no. 20: 5246. https://doi.org/10.3390/rs14205246
APA StyleAlparone, M., Nunziata, F., Estatico, C., & Migliaccio, M. (2022). Comparison of Accelerated Versions of the Iterative Gradient Method to Ameliorate the Spatial Resolution of Microwave Radiometer Products. Remote Sensing, 14(20), 5246. https://doi.org/10.3390/rs14205246