Climatology of TEC Longitudinal Difference in Middle Latitudes of East Asia
Abstract
:1. Introduction
2. Data and Methods of Analysis
3. Results
4. Discussion
4.1. Comparsion with Previous Results
4.2. Wind Field Simulation by HWM-14
4.3. Possible Explanation for the Re/w in High Solar Activity Year
4.4. Discussion for the Re/w in Low Solar Activity Year
5. Conclusions
- (1)
- The east-west TEC longitudinal difference index Re/w over East Asia is negative at noon and positive at evening-night in the high solar activity year, consistent with local time variations of Re/w in previous studies.
- (2)
- The longitudinal difference in daytime TEC is most evident in summer, less in autumn and least in spring and winter, while the nighttime difference is most obvious in equinox, followed by summer and winter during the pre-midnight period. It is noteworthy that the longitudinal difference after midnight is most significant in spring, and it is weak in autumn months, indicating a semi-annual asymmetry during this period. The seasonal features are basically consistent with the previous studies of longitudinal differences in NmF2 in East Asia.
- (3)
- The TEC longitudinal difference around noon in high solar activity year is mainly caused by the zonal wind-declination mechanism proposed by previous studies. Moreover, a 4-h time delay seems to be an optimal result for the vertical drift velocity to cause the longitudinal TEC difference during pre-noon hours, consistent with the result of previous modeling studies.
- (4)
- The solar activity does not seem to affect both positive and negative Re/w simultaneously, which is consistent with previous studies for the electron density longitudinal difference in East Asian and North American mid-latitudes.
- (1)
- In addition to the vertical drift velocity difference caused by the geomagnetic configuration-neutral wind mechanism, the local electron density is also an important factor influencing the TEC longitudinal difference at high solar activity year night.
- (2)
- There was about a 3 h time delay between the TEC longitudinal variations and the uplifting electron flux at high solar activity year night. The difference in time delay for daytime (~4 h) and nighttime (~3 h) might result from the higher electron density, which could result in a stronger ion-drag effect during the daytime.
- (3)
- The western TEC is greater than the eastern TEC during most periods of the low solar activity years except in summer evening, and the positive summer evening Re/w might have a relationship with the midlatitude summer nighttime anomaly (MSNA) in the northeast region of East Asia.
- (4)
- The ionospheric nighttime enhancement seems also could modulate the Re/w, especially in the low solar activity year winter when this phenomenon occurred most frequently.
- (5)
- The Re/w in the low solar activity year nighttime could not explain only by the geomagnetic configuration-neutral wind mechanism and local electron density, and there are systematic differences in TEC diurnal variation between east and west of East Asia in winter and equinox.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
LT | NmF2 in 60°E, 47.5°N | Vz in 60°E, 47.5°N | Uplifting Electron Flux Per Second in 60°E, 47.5°N | NmF2 in 135°E, 47.5°N | Vz in 135°E, 47.5°N | Uplifting Electron Flux per Second in 135°E, 47.5°N | Uplifting Electron Flux Difference Per Second | Re/w in LT + 3 | |
---|---|---|---|---|---|---|---|---|---|
Unit | Hour | 1010 el/m3 | m/s | 1010 el/m2 | 1010 el/m3 | m/s | 1010 el/m2 | 1010 el/m2 | |
18.00 | 30.48 | −26.12 | −796.09 | 36.79 | −11.26 | −414.34 | 381.75 | 0.06 | |
19.00 | 25.44 | −21.29 | −541.60 | 27.37 | −3.44 | −94.27 | 447.33 | 0.03 | |
20.00 | 14.42 | −16.76 | −241.61 | 22.21 | 2.96 | 65.80 | 307.40 | −0.02 | |
winter | 21.00 | 15.82 | −13.30 | −210.41 | 14.99 | 6.69 | 100.29 | 310.70 | −0.07 |
22.00 | 11.37 | −10.73 | −121.97 | 11.30 | 7.94 | 89.73 | 211.70 | −0.09 | |
23.00 | 19.37 | −8.09 | −156.61 | 17.68 | 8.23 | 145.57 | 302.18 | −0.11 | |
24.00 | 19.00 | −4.30 | −81.65 | 16.78 | 9.47 | 158.87 | 240.52 | −0.07 | |
18.00 | 56.32 | 0.30 | 16.94 | 55.00 | 11.46 | 630.06 | 613.13 | 0.08 | |
19.00 | 62.05 | −0.08 | −4.78 | 58.72 | 13.62 | 799.67 | 804.44 | 0.09 | |
20.00 | 58.69 | 0.27 | 15.85 | 64.47 | 13.95 | 899.09 | 883.24 | 0.09 | |
summer | 21.00 | 56.14 | 3.11 | 174.49 | 64.71 | 14.37 | 929.70 | 755.20 | 0.07 |
22.00 | 55.62 | 9.16 | 509.69 | 69.26 | 16.83 | 1165.89 | 656.20 | 0.04 | |
23.00 | 40.88 | 17.74 | 725.14 | 53.88 | 22.28 | 1200.52 | 475.37 | 0.02 | |
24.00 | 44.15 | 27.01 | 1192.46 | 53.13 | 30.07 | 1597.46 | 404.99 | 0.02 | |
18.00 | 75.25 | −12.17 | −915.90 | 71.27 | 2.94 | 209.52 | 1125.42 | 0.15 | |
19.00 | 69.21 | −8.70 | −602.06 | 77.69 | 10.19 | 791.73 | 1393.80 | 0.17 | |
20.00 | 57.32 | −5.59 | −320.67 | 71.28 | 15.02 | 1070.94 | 1391.61 | 0.15 | |
equinox | 21.00 | 49.91 | −3.04 | −151.78 | 60.54 | 17.12 | 1036.67 | 1188.45 | 0.12 |
22.00 | 35.09 | −0.66 | −23.16 | 52.83 | 17.70 | 935.25 | 958.41 | 0.08 | |
23.00 | 28.12 | 2.18 | 61.24 | 34.40 | 18.77 | 645.54 | 584.30 | 0.06 | |
24.00 | 28.63 | 5.85 | 167.42 | 43.62 | 21.83 | 952.33 | 784.91 | 0.05 |
LT | NmF2 in 60°E | Vz in 60°E, 47.5°N | Uplifting Electron Flux Per Second in 60°E, 47.5°N | NmF2 in 135°E | Vz in 135°E, 47.5°N | Uplifting Electron Flux Difference Per Second | Uplifting Electron Flux Difference Per Second | Re/w in LT + 3 | |
---|---|---|---|---|---|---|---|---|---|
Unit | Hour | 1010 el/m3 | m/s | 1010 el/m2 | 1010 el/m3 | m/s | 1010 el/m2 | 1010 el/m2 | |
21.00 | 58.07 | −1.63 | −94.77 | 63.35 | 15.40 | 975.35 | 1070.11 | 0.13 | |
spring | 22.00 | 39.40 | 1.20 | 47.28 | 83.17 | 15.73 | 1308.29 | 1261.01 | 0.12 |
23.00 | 31.21 | 3.90 | 121.71 | 37.79 | 15.03 | 567.88 | 446.17 | 0.11 | |
24.00 | 30.55 | 7.44 | 227.20 | 55.20 | 15.49 | 855.04 | 627.84 | 0.12 | |
21.00 | 36.34 | 2.79 | 101.37 | 52.06 | 16.01 | 833.58 | 732.21 | 0.05 | |
autumn | 22.00 | 23.21 | 7.48 | 173.59 | 31.02 | 18.07 | 560.64 | 387.06 | 0.00 |
23.00 | 25.63 | 13.93 | 356.85 | 21.23 | 21.68 | 460.36 | 103.50 | −0.03 | |
24.00 | 18.43 | 21.41 | 394.59 | 30.29 | 27.28 | 826.44 | 431.84 | −0.05 |
References
- Appleton, E.V. Two Anomalies in the Ionosphere. Nature 1946, 157, 691. [Google Scholar] [CrossRef]
- Moffett, R.J.; Hanson, W.B. Effect of Ionization Transport on the Equatorial F-Region. Nature 1965, 206, 705–706. [Google Scholar] [CrossRef]
- Huang, Y.-N.; Cheng, K. Solar cycle variations of the equatorial ionospheric anomaly in total electron content in the Asian region. J. Geophys. Res. Space Res. 1996, 101, 24513–24520. [Google Scholar] [CrossRef]
- Zhao, B.; Wan, W.; Liu, L.; Ren, Z. Characteristics of the ionospheric total electron content of the equatorial ionization anomaly in the Asian-Australian region during 1996–2004. Ann. Geophys. 2009, 27, 3861–3873. [Google Scholar] [CrossRef] [Green Version]
- Balan, N.; Liu, L.; Le, H. A brief review of equatorial ionization anomaly and ionospheric irregularities. Earth. Planet. Phys. 2018, 2, 257–275. [Google Scholar] [CrossRef]
- Muldrew, D.B. F-layer ionization troughs deduced from Alouette data. J. Geophys. Res. 1965, 70, 2635–2650. [Google Scholar] [CrossRef]
- Sharp, G.W. Midlatitude trough in the night ionosphere. J. Geophys. Res. 1966, 71, 1345–1356. [Google Scholar] [CrossRef]
- Rodger, A. The Mid-Latitude Trough—Revisited. In Washington DC American Geophysical Union Geophysical Monograph Series; AGU: Washington, DC, USA, 2008; Volume 181, pp. 25–33. [Google Scholar]
- Zou, S.; Moldwin, M.B.; Coster, A.; Lyons, L.R.; Nicolls, M.J. GPS TEC observations of dynamics of the mid-latitude trough during substorms. Geophys. Res. Lett. 2011, 38, L14109. [Google Scholar] [CrossRef] [Green Version]
- He, S.C.; Zhang, D.H.; Hao, Y.Q.; Xiao, Z. Statistical study on the occurrence of the ionospheric mid-latitude trough and the variation of trough minimum location over northern hemisphere. Chinese J. Geophys. 2020, 63, 31–64. [Google Scholar]
- Sagawa, E.; Immel, T.J.; Frey, H.U.; Mende, S.B. Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV. J. Geophys. Res. 2005, 110, A11302. [Google Scholar]
- England, S.L.; Immel, T.J.; Sagawa, E.; Henderson, S.B.; Hagan, M.E.; Mende, S.B.; Frey, H.U.; Swenson, C.M.; Paxton, L.J. Effect of atmospheric tides on the morphology of the quiet time, postsunset equatorial ionospheric anomaly. J. Geophys. Res. 2006, 111, A10S19. [Google Scholar] [CrossRef]
- Lin, C.H.; Hsiao, C.C.; Liu, J.Y.; Liu, C.H. Longitudinal structure of the equatorial ionosphere: Time evolution of the four-peaked EIA structure. J. Geophys. Res. Space Res. 2007, 112, A12305. [Google Scholar] [CrossRef]
- Wan, W.; Liu, L.; Pi, X.; Zhang, M.L.; Ning, B.; Xiong, J.; Ding, F. Wavenumber-4 patterns of the total electron content over the low latitude ionosphere. Geophys. Res. Lett. 2008, 35, L12104. [Google Scholar] [CrossRef]
- Immel, T.J.; Sagawa, E.; England, S.L.; Henderson, S.B.; Hagan, M.E.; Mende, S.B.; Frey, H.U.; Swenson, C.M.; Paxton, L.J. Control of equatorial ionospheric morphology by atmospheric tides. Geophys. Res. Lett. 2006, 33, L15108. [Google Scholar] [CrossRef]
- England, S.L.; Maus, S.; Immel, T.J.; Mende, S.B. Longitudinal variation of the E-region electric fields caused by atmospheric tides. Geophys. Res. Lett. 2006, 33, L21105. [Google Scholar] [CrossRef] [Green Version]
- Hagan, M.E.; Maute, A.; Roble, R.G.; Richmond, A.D.; Immel, T.J.; England, S.L. Connections between deep tropical clouds and the Earth’s ionosphere. Geophys. Res. Lett. 2007, 34, L20109. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Wan, W.; Xiong, J.; Liu, L. Simulated wave number 4 structure in equatorial F-region vertical plasma drifts. J. Geophys. Res. Atmos. 2010, 115, A05301. [Google Scholar] [CrossRef]
- Zou, L.; Rishbeth, H.; Müller-Wodarg, I.; Aylward, A.D.; Millward, G.H.; Fuller-Rowell, T.J.; Idenden, D.W.; Moffett, R.J. Annual and semiannual variations in the ionospheric F2-layer: I. Modelling. Ann. Geophys. 2000, 18, 927–944. [Google Scholar] [CrossRef]
- Rishbeth, H.; Müller-Wodarg, I.; Zou, L.; Fuller-Rowell, T.J.; Aylward, A.D. Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion. Ann. Geophys. 2000, 18, 945–956. [Google Scholar] [CrossRef]
- Liu, H.; Thampi, S.V.; Yamamoto, M. Phase reversal of the diurnal cycle in the midlatitude ionosphere. J. Geophys. Res. Space Res. 2010, 115, A01305. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Le, H.; Chen, Y.; He, M.; Wan, W.; Yue, X. Features of the middle- and low-latitude ionosphere during solar minimum as revealed from COSMIC radio occultation measurements. J. Geophys. Res. Space Res. 2011, 116, A09307. [Google Scholar] [CrossRef]
- Zhang, S.-R.; Foster, J.C.; Coster, A.J.; Erickson, P.J. East-West Coast differences in total electron content over the continental US. Geophys. Res. Lett. 2011, 38, 542–553. [Google Scholar] [CrossRef]
- Zhang, S.-R.; Foster, J.C.; Holt, J.M.; Erickson, P.J.; Coster, A.J. Magnetic declination and zonal wind effects on longitudinal differences of ionospheric electron density at midlatitudes. J. Geophys. Res. Space Res. 2012, 117, A08329. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Coster, A.J.; Holt, J.M.; Foster, J.C.; Erickson, P. Ionospheric longitudinal variations at midlatitudes: Incoherent scatter radar observation at Millstone Hill. Sci. China Technol. Sci. 2012, 55, 1153–1160. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.-R.; Chen, Z.; Coster, A.J.; Erickson, P.J.; Foster, J.C. Ionospheric symmetry caused by geomagnetic declination over North America. Geophys. Res. Lett. 2013, 40, 5350–5354. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Wang, M.; Wang, Y.; Ren, Z.; Yue, X.; Zhu, J.; Wan, W.; Ning, B.; Liu, J.; Xiong, B. East-west differences in F-region electron density at midlatitude: Evidence from the Far East region. J. Geophys. Res. Space Res. 2013, 118, 542–553. [Google Scholar] [CrossRef]
- Xu, J.S.; Li, X.J.; Liu, Y.W.; Jing, M. TEC differences for the mid-latitude ionosphere in both sides of the longitudes with zero declination. Adv. Space Res. 2014, 54, 883–895. [Google Scholar] [CrossRef]
- Wang, H.; Liu, D. Tidal spectrum analysis of electron density and plasma vertical velocity at mid-latitudes. Chin. Sci. Bull. 2015, 60, 3239–3250. [Google Scholar]
- Wang, H.; Ridley, A.J.; Zhu, J. Theoretical study of zonal differences of electron density at midlatitudes with GITM simulation. J. Geophys. Res. Space Res. 2015, 120, 2951–2966. [Google Scholar] [CrossRef]
- Wang, H.; Liu, D.; Zhang, J. Vertical structure of longitudinal differences in electron densities at mid-latitudes. Sci. Bull. 2016, 61, 252–262. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, K. Longitudinal structure in electron density at mid-latitudes: Upward-propagating tidal effects. Earth Planet Space 2017, 69, 11. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Zhao, B.; Wan, W.; Liu, L.; Li, X.; Yu, T. Simulated east-west differences in F-region peak electron density at Far East mid-latitude region. Earth Planet Space 2020, 72, 50. [Google Scholar] [CrossRef] [Green Version]
- Luan, X.; Dou, X. Seasonal dependence of the longitudinal variations of nighttime ionospheric electron density and equivalent winds at southern midlatitudes. Ann. Geophys. 2013, 31, 1699–1708. [Google Scholar] [CrossRef]
- Tsagouri, I.; Goncharenko, L.; Shim, J.S.; Belehaki, A.; Buresova, D.; Kuznetsova, M.M. Assessment of current capabilities in modeling the ionospheric climatology for space weather applications: foF2 and hmF2. Space Weather 2018, 16, 1930–1945. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Zhao, B.; Liu, L.; Wan, W. Comparison of ionospheric total electron content over North America and East Asia with EOF analysis. Chin. J. Space Sci. 2015, 35, 556–565. [Google Scholar]
- Shim, J.S.; Jee, G.; Scherliess, L. Climatology of plasmaspheric total electron content obtained from Jason 1 satellite. J. Geophys. Res. Space Phys. 2017, 122, 1611–1623. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Lei, J.; Wang, W.; Burns, A.G.; Yue, X.; Dou, X. Longitudinal variations of topside ionospheric and plasmaspheric TEC. J. Geophys. Res. Space Phys. 2017, 122, 6737–6760. [Google Scholar] [CrossRef]
- Jin, S.; van Dam, T.; Wdowinski, S. Observing and understanding the Earth system variations from space geodesy. J. Geodyn. 2013, 72, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Jin, R.; Li, D. Assessment of BeiDou differential code bias variations from multi-GNSS network observations. Ann. Geophys. 2016, 34, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Dach, R.; Brockmann, E.; Schaer, S.; Beutler, G.; Meindl, M.; Prange, L.; Bock, H.; Jäggi, A.; Ostini, L. GNSS processing at CODE: Status report. J. Geodesy. 2009, 83, 353–365. [Google Scholar] [CrossRef] [Green Version]
- Feltens, J. The International GPS Service (IGS) Ionosphere Working Group. Adv. Space Res. 2003, 31, 635–644. [Google Scholar] [CrossRef]
- Schaer, S. Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System; Geod Geophys.arb.schweiz; Institut für Geodäsie und Photogrammetrie, Eidg. Technische Hochschule Zürich: Zürich, Switzerland, 1999. [Google Scholar]
- Hernández-Pajares, M.; Juan, J.M.; Sanz, J.; Orus, R.; Garcia-Rigo, A.; Feltens, J.; Komjathy, A.; Schaer, S.C.; Krankowski, A. The IGS VTEC maps: A reliable source of ionospheric information since 1998. J. Geodesy. 2009, 83, 263–275. [Google Scholar] [CrossRef]
- Lei, J.; Syndergaard, S.; Burns, A.G.; Solomon, S.C.; Wang, W.; Zeng, Z.; Roble, R.G.; Wu, Q.; Kuo, Y.-H.; Holt, J.M.; et al. Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: Preliminary results. J. Geophys. Res. Space Phys. 2007, 112, A07308. [Google Scholar] [CrossRef]
- Kelley, M.C.; Wong, V.K.; Aponte, N.; Coker, C.; Mannucci, A.J.; Komjathy, A. Comparison of COSMIC occultation-based electron density profiles and TIP observations with Arecibo incoherent scatter radar data. Radio Sci. 2009, 44, RS4011. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, B.; Yue, X.; Mao, T. Comparison between ionospheric character parameters retrieved from FORMOSAT3 measurement and ionosonde observation over China. Chin. J. Geophys. 2014, 57, 3625–3632. [Google Scholar]
- Hedin, A.E.; Biondi, M.A.; Burnside, R.G.; Hernandez, G.; Johnson, R.M. Revised Global Model of Thermosphere Winds Using Satellite and Ground-Based Observations. J. Geophys. Res. Space Phys. 1991, 96, 7657–7688. [Google Scholar] [CrossRef] [Green Version]
- Drob, D.P.; Emmert, J.T.; Crowley, G.; Picone, J.M.; Shepherd, G.G.; Skinner, W.; Hays, P.; Niciejewski, R.J.; Larsen, M.; She, C.Y.; et al. An empirical model of the Earth’s horizontal wind fields: HWM07. J. Geophys. Res. Space Res. 2008, 113, A12304. [Google Scholar] [CrossRef] [Green Version]
- Emmert, J.T.; Drob, D.P.; Shepherd, G.G.; Hernandez, G.; Jarvis, M.J.; Meriwether, J.W.; Niciejewski, R.J.; Sipler, D.P.; Tepley, C.A. DWM07 global empirical model of upper thermospheric storm-induced disturbance winds. J. Geophys. Res. Space Res. 2008, 113, A11319. [Google Scholar] [CrossRef]
- Drob, D.P.; Emmert, J.T.; Meriwether, J.W.; Makela, J.J.; Doornbos, E.; Conde, M.; Hernandez, G.; Noto, J.; Zawdie, K.A.; McDonald, S.E.; et al. An update to the Horizontal Wind Model (HWM): The quiet time thermosphere. Earth Space Sci. 2015, 2, 301–319. [Google Scholar] [CrossRef]
- Bellchambers, W.H.; Piggott, W.R. Ionospheric Measurements made at Halley Bay. Nature 1958, 182, 1596–1597. [Google Scholar] [CrossRef]
- Penndorf, R. The Average Ionospheric Conditions Over the Antarctic. In Geomagnetism and Aeronomy: Studies in the Ionosphere, Geomagnetism and Atmospheric Radio Noise; Waynick, A.H., Ed.; Wiley: Hoboken, NJ, USA, 1965. [Google Scholar] [CrossRef]
- Horvath, I.; Essex, E.A. The Weddell sea anomaly observed with the Topex satellite data. J. Atomos. Sol. Terr. Phys. 2003, 65, 693–706. [Google Scholar] [CrossRef]
- He, M.; Liu, L.; Wan, W.; Ning, B.; Zhao, B.; Wen, J.; Yue, X.; Le, H. A study of the Weddell Sea Anomaly observed by FORMOSAT-3/COSMIC. J. Geophys. Res. Space Res. 2009, 114, A12309. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Liu, J.Y.; Cheng, C.Z.; Chen, C.H.; Liu, C.H.; Wang, W.; Burns, A.G.; Lei, J. Three-dimensional ionospheric electron density structure of the Weddell Sea Anomaly. J. Geophys. Res. Space Res. 2009, 114, A02312. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Liu, C.H.; Liu, J.Y.; Chen, C.H.; Burns, A.G.; Wang, W. Midlatitude summer nighttime anomaly of the ionospheric electron density observed by FORMOSAT-3/COSMIC. J. Geophys. Res. Space Res. 2010, 115, A03308. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L.; Le, H.; Wan, W.; Zhang, H. The global distribution of the dusk-to-nighttime enhancement of summer NmF2 at solar minimum. J. Geophys. Res. Space Res. 2016, 121, 7914–7922. [Google Scholar] [CrossRef]
- Richards, P.G.; Meier, R.R.; Chen, S.; Dandenault, P. Investigation of the Causes of the Longitudinal and Solar Cycle Variation of the Electron Density in the Bering Sea and Weddell Sea Anomalies. J. Geophys. Res. Space Res. 2018, 123, 7825–7842. [Google Scholar] [CrossRef]
- Balan, N.; Rao, P.B. Latitudinal variations of nighttime enhancements in total electron content. J. Geophys. Res. 1987, 92, 3436–3440. [Google Scholar] [CrossRef]
- Farelo, A.F.; Herraiz, M.; Mikhailov, A.V. Global morphology of night-time NmF2 enhancements. Ann. Geophys. 2002, 20, 1795–1806. [Google Scholar] [CrossRef] [Green Version]
- Jakowski, N.; Jungstand, A.; Lois, L.; Lazo, B. Night-time enhancements of the F2-layer ionization over Havana, Cuba. J. Atmos. Terr. Phys. 1991, 53, 1131–1138. [Google Scholar] [CrossRef]
- Jakowski, N.; Hoque, M.M.; Kriegel, M.; Patidar, V. The persistence of the NWA effect during the low solar activity period 2007–2009. J. Geophys. Res. Space Res. 2015, 120, 9148–9160. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L.; Le, H.; Wan, W.; Zhang, H. NmF2 enhancement during ionospheric F2 region nighttime: A statistical analysis based on COSMIC observations during the 2007–2009 solar minimum. J. Geophys. Res. Space Res. 2016, 120, 10083–10095. [Google Scholar] [CrossRef]
- Li, W.; Chen, Y.; Liu, L.; Le, H.; Huang, C. A Statistical Study on the Winter Ionospheric Nighttime Enhancement at Middle Latitudes in the Northern Hemisphere. J. Geophys. Res. Space Res. 2020, 125, e2020JA027950. [Google Scholar] [CrossRef]
- Bailey, G.J.; Sellek, R.; Balan, N. The effect of interhemispheric coupling on nighttime enhancements in ionospheric total electron content during winter at solar minimum. Ann. Geophys. 1991, 9, 738–747. [Google Scholar]
- Dabas, R.S.; Kersley, L. Study of mid-latitude nighttime enhancement in F-region electron density using tomographic images over the UK. Ann. Geophys. 2003, 21, 2323–2328. [Google Scholar] [CrossRef] [Green Version]
- Jakowski, N.; Förster, M. About the nature of the Night-time Winter Anomaly effect (NWA) in the F-region of the ionosphere. Planet. Space Sci. 1995, 43, 603–612. [Google Scholar] [CrossRef]
- Li, Q.; Hao, Y.; Zhang, D.; Xiao, Z. Nighttime Enhancements in the Midlatitude Ionosphere and Their Relation to the Plasmasphere. J. Geophys. Res. Space Res. 2018, 123, 7686–7696. [Google Scholar] [CrossRef]
Area | Longitude/° | Latitude/° | Declination/° | Inclination/° | |
---|---|---|---|---|---|
Grid Point 1 | 135 | 45 | −9.57 | 60.91 | |
East | Grid Point 2 | 135 | 47.5 | −10.22 | 63.37 |
Grid Point 3 | 135 | 50 | −10.85 | 65.71 | |
Grid Point 1 | 60 | 45 | 6.96 | 64.3 | |
West | Grid Point 2 | 60 | 47.5 | 8.01 | 66.52 |
Grid Point 3 | 60 | 50 | 9.16 | 68.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Zhang, Y.; Feng, J.; Wu, Z.; Xu, N.; Xu, T.; Deng, Z.; Liu, Y.; Zhang, F.; Zhou, Y.; et al. Climatology of TEC Longitudinal Difference in Middle Latitudes of East Asia. Remote Sens. 2022, 14, 5412. https://doi.org/10.3390/rs14215412
Sun X, Zhang Y, Feng J, Wu Z, Xu N, Xu T, Deng Z, Liu Y, Zhang F, Zhou Y, et al. Climatology of TEC Longitudinal Difference in Middle Latitudes of East Asia. Remote Sensing. 2022; 14(21):5412. https://doi.org/10.3390/rs14215412
Chicago/Turabian StyleSun, Xingxin, Yuqiang Zhang, Jian Feng, Zhensen Wu, Na Xu, Tong Xu, Zhongxin Deng, Yi Liu, Fubin Zhang, Yufeng Zhou, and et al. 2022. "Climatology of TEC Longitudinal Difference in Middle Latitudes of East Asia" Remote Sensing 14, no. 21: 5412. https://doi.org/10.3390/rs14215412
APA StyleSun, X., Zhang, Y., Feng, J., Wu, Z., Xu, N., Xu, T., Deng, Z., Liu, Y., Zhang, F., Zhou, Y., Zhou, C., & Zhao, Z. (2022). Climatology of TEC Longitudinal Difference in Middle Latitudes of East Asia. Remote Sensing, 14(21), 5412. https://doi.org/10.3390/rs14215412