Estimation of Water Balance for Anticipated Land Use in the Potohar Plateau of the Indus Basin Using SWAT
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Methodological Framework
2.4. Cellular Automata Markov Chain Model (CA-MCM)
2.5. SWAT Model
2.6. Evaluation of Historical Land Use/Land Cover
2.7. Land Use/Land Cover Projection
2.8. Setup, Sensitivity Analysis, Calibration and Validation of SWAT
3. Results
3.1. Spatio-temporal Changes in Historical LU/LC
3.2. Accuracy Assessment of Supervised Classified LU/LC Maps
3.3. LU/LC Projections
3.4. Hydrological Model Calibration and Validation
3.5. Plausible Impacts of LU/LC Changes on Hydrological Regime
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Idrissou, M.; Diekkrüger, B.; Tischbein, B.; de Hipt, F.O.; Näschen, K.; Poméon, T.; Yira, Y.; Ibrahim, B. Modeling the Impact of Climate and Land Use/Land Cover Change on Water Availability in an Inland Valley Catchment in Burkina Faso. Hydrology 2022, 9, 12. [Google Scholar] [CrossRef]
- Ha, L.T.; Bastiaanssen, W.G.M.; Van Griensven, A.; Van Dijk, A.I.J.M.; Senay, G.B. Calibration of Spatially Distributed Hydrological Processes and Model Parameters in SWAT Using Remote Sensing Data and an Auto-Calibration Procedure: A Case Study in a Vietnamese River Basin. Water 2018, 10, 212. [Google Scholar] [CrossRef] [Green Version]
- Clerici, N.; Cote-Navarro, F.; Escobedo, F.J.; Rubiano, K.; Villegas, J.C. Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the Colombian Andes. Sci. Total Environ. 2019, 685, 1181–1192. [Google Scholar] [CrossRef]
- Anand, J.; Gosain, A.; Khosa, R. Prediction of land use changes based on Land Change Modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model. Sci. Total Environ. 2018, 644, 503–519. [Google Scholar] [CrossRef]
- Ellis, E.C.; Beusen, A.H.; Goldewijk, K.K. Anthropogenic Biomes: 10,000 BCE to 2015 CE. Land 2020, 9, 129. [Google Scholar] [CrossRef]
- Verburg, P.H.; Neumann, K.; Nol, L. Challenges in using land use and land cover data for global change studies. Glob. Chang. Biol. 2011, 17, 974–989. [Google Scholar] [CrossRef] [Green Version]
- Kiprotich, P.; Wei, X.; Zhang, Z.; Ngigi, T.; Qiu, F.; Wang, L. Assessing the Impact of Land Use and Climate Change on Surface Runoff Response Using Gridded Observations and SWAT+. Hydrology 2021, 8, 48. [Google Scholar] [CrossRef]
- Kim, J.; Choi, J.; Choi, C.; Park, S. Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea. Sci. Total Environ. 2013, 452–453, 181–195. [Google Scholar] [CrossRef]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W. Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Sci. Total Environ. 2018, 619–620, 1394–1408. [Google Scholar] [CrossRef] [PubMed]
- Baker, T.J.; Miller, S.N. Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. J. Hydrol. 2013, 486, 100–111. [Google Scholar] [CrossRef]
- Neupane, R.P.; Kumar, S. Estimating the effects of potential climate and land use changes on hydrologic processes of a large agriculture dominated watershed. J. Hydrol. 2015, 529, 418–429. [Google Scholar] [CrossRef]
- Chanapathi, T.; Thatikonda, S. Investigating the impact of climate and land-use land cover changes on hydrological predictions over the Krishna river basin under present and future scenarios. Sci. Total Environ. 2020, 721, 137736. [Google Scholar] [CrossRef]
- Guo, Y.; Fang, G.; Xu, Y.-P.; Tian, X.; Xie, J. Identifying how future climate and land use/cover changes impact streamflow in Xinanjiang Basin, East China. Sci. Total Environ. 2019, 710, 136275. [Google Scholar] [CrossRef]
- Kamaraj, M.; Rangarajan, S. Predicting the future land use and land cover changes for Bhavani basin, Tamil Nadu, India, using QGIS MOLUSCE plugin. Environ. Sci. Pollut. Res. 2022, 2022, 1–12. [Google Scholar] [CrossRef]
- Abhishek; Kinouchi, T.; Abolafia-Rosenzweig, R.; Ito, M. Water Budget Closure in the Upper Chao Phraya River Basin, Thailand Using Multisource Data. Remote Sens. 2021, 14, 173. [Google Scholar] [CrossRef]
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Kinouchi, T. Synergetic application of GRACE gravity data, global hydrological model, and in-situ observations to quantify water storage dynamics over Peninsular India during 2002–2017. J. Hydrol. 2021, 596, 126069. [Google Scholar] [CrossRef]
- Pan, M.; Sahoo, A.K.; Troy, T.J.; Vinukollu, R.K.; Sheffield, J.; Wood, A.E.F. Multisource Estimation of Long-Term Terrestrial Water Budget for Major Global River Basins. J. Clim. 2012, 25, 3191–3206. [Google Scholar] [CrossRef]
- Abolafia-Rosenzweig, R.; Pan, M.; Zeng, J.; Livneh, B. Remotely sensed ensembles of the terrestrial water budget over major global river basins: An assessment of three closure techniques. Remote Sens. Environ. 2020, 252, 112191. [Google Scholar] [CrossRef]
- Wang, Q.; Guan, Q.; Lin, J.; Luo, H.; Tan, Z.; Ma, Y. Simulating land use/land cover change in an arid region with the coupling models. Ecol. Indic. 2020, 122, 107231. [Google Scholar] [CrossRef]
- Haleem, K.; Khan, A.U.; Ahmad, S.; Khan, M.; Khan, F.A.; Khan, W.; Khan, J. Hydrological impacts of climate and land-use change on flow regime variations in upper Indus basin. J. Water Clim. Chang. 2021, 13, 758–770. [Google Scholar] [CrossRef]
- Leta, M.; Demissie, T.; Tränckner, J. Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia. Sustainability 2021, 13, 3740. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H. An integrated approach of logistic-MCE-CA-Markov to predict the land use structure and their micro-spatial characteristics analysis in Wuhan metropolitan area, Central China. Environ. Sci. Pollut. Res. 2022, 29, 30030–30053. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhou, Y.; Qian, M.; Zeng, Z. Land Use Transition and Driving Forces in Chinese Loess Plateau: A Case Study from Pu County, Shanxi Province. Land 2021, 10, 67. [Google Scholar] [CrossRef]
- Tariq, A.; Shu, H. CA-Markov Chain Analysis of Seasonal Land Surface Temperature and Land Use Landcover Change Using Optical Multi-Temporal Satellite Data of Faisalabad, Pakistan. Remote Sens. 2020, 12, 3402. [Google Scholar] [CrossRef]
- Zhao, M.; He, Z.; Du, J.; Chen, L.; Lin, P.; Fang, S. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 2018, 98, 29–38. [Google Scholar] [CrossRef]
- Rahman, K.U.; Shang, S.; Shahid, M.; Wen, Y. Hydrological evaluation of merged satellite precipitation datasets for streamflow simulation using SWAT: A case study of Potohar Plateau, Pakistan. J. Hydrol. 2020, 587, 125040. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Singh, L.; Saravanan, S. Simulation of monthly streamflow using the SWAT model of the Ib River watershed, India. J. Hydro-Environ. Res. 2020, 3, 95–105. [Google Scholar] [CrossRef]
- Narsimlu, B.; Gosain, A.K.; Chahar, B.R. Assessment of Future Climate Change Impacts on Water Resources of Upper Sind River Basin, India Using SWAT Model. Water Resour. Manag. 2013, 27, 3647–3662. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, S.K.; Singh, V.G.; Dzwairo, B. Investigation of impacts of land use/land cover change on water availability of Tons River Basin, Madhya Pradesh, India. Model. Earth Syst. Environ. 2018, 4, 295–310. [Google Scholar] [CrossRef]
- Tanksali, A.; Soraganvi, V.S. Assessment of impacts of land use/land cover changes upstream of a dam in a semi-arid watershed using QSWAT. Model. Earth Syst. Environ. 2020, 7, 2391–2406. [Google Scholar] [CrossRef]
- Tamm, O.; Maasikamäe, S.; Padari, A.; Tamm, T. Modelling the effects of land use and climate change on the water resources in the eastern Baltic Sea region using the SWAT model. CATENA 2018, 167, 78–89. [Google Scholar] [CrossRef]
- Getachew, B.; Manjunatha, B.; Bhat, H.G. Modeling projected impacts of climate and land use/land cover changes on hydrological responses in the Lake Tana Basin, upper Blue Nile River Basin, Ethiopia. J. Hydrol. 2021, 595, 125974. [Google Scholar] [CrossRef]
- Nauman, S.; Zulkafli, Z.; Bin Ghazali, A.H.; Yusuf, B. Impact Assessment of Future Climate Change on Streamflows Upstream of Khanpur Dam, Pakistan using Soil and Water Assessment Tool. Water 2019, 11, 1090. [Google Scholar] [CrossRef] [Green Version]
- Usman, M.; Ndehedehe, C.; Manzanas, R.; Ahmad, B.; Adeyeri, O. Impacts of Climate Change on the Hydrometeorological Characteristics of the Soan River Basin, Pakistan. Atmosphere 2021, 12, 792. [Google Scholar] [CrossRef]
- Butt, A.; Shabbir, R.; Ahmad, S.S.; Aziz, N. Land use change mapping and analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. Egypt. J. Remote Sens. Space Sci. 2015, 18, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Tariq, A.; Riaz, I.; Ahmad, Z.; Yang, B.; Amin, M.; Kausar, R.; Andleeb, S.; Farooqi, M.A.; Rafiq, M. Land surface temperature relation with normalized satellite indices for the estimation of spatio-temporal trends in temperature among various land use land cover classes of an arid Potohar region using Landsat data. Environ. Earth Sci. 2019, 79, 40. [Google Scholar] [CrossRef]
- Waseem Ghani, M.; Arshad, M.; Shabbir, A.; Shakoor, A.; Mehmood, N.; Ahmad, I. Investigation of Potential Water Harvesting Sites at Potohar Using Modeling Approach. Pakistan J. Agric. Sci. 2013, 50, 723–729. [Google Scholar]
- Khan, M.T.; Shoaib, M.; Hammad, M.; Salahudin, H.; Ahmad, F.; Ahmad, S. Application of Machine Learning Techniques in Rainfall–Runoff Modelling of the Soan River Basin, Pakistan. Water 2021, 13, 3528. [Google Scholar] [CrossRef]
- Hussain, F.; Nabi, G.; Wu, R.-S. Spatiotemporal Rainfall Distribution of Soan River Basin, Pothwar Region, Pakistan. Adv. Meteorol. 2021, 2021, 6656732. [Google Scholar] [CrossRef]
- Nusrat, A.; Gabriel, H.F.; e Habiba, U.; Rehman, H.U.; Haider, S.; Ahmad, S.; Shahid, M.; Jamal, S.A.; Ali, J. Plausible Precipitation Trends over the Large River Basins of Pakistan in Twenty First Century. Atmosphere 2022, 13, 190. [Google Scholar] [CrossRef]
- Final Results (Census-2017)|Pakistan Bureau of Statistics. Available online: https://www.pbs.gov.pk/content/final-results-census-2017 (accessed on 2 August 2022).
- ALOS PALSAR—ASF. Available online: https://asf.alaska.edu/data-sets/sar-data-sets/alos-palsar/ (accessed on 13 August 2022).
- USGS.Gov|Science for a Changing World. Available online: https://www.usgs.gov/ (accessed on 13 August 2022).
- FAO/UNESCO Soil Map of the World|FAO SOILS PORTAL|Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/ (accessed on 13 August 2022).
- Muhammad, W.K.; Shakil, A.; Zakir, H.D.; Zain, S.; Khalil Ahmad, F.K.M.A. Development of High Resolution Daily Gridded Precipitation and Temperature Dataset for Potohar Plateau of Indus Basin. Remote Sens. 2022, in press. [Google Scholar]
- Water & Power Development Authority. Available online: http://www.wapda.gov.pk/ (accessed on 31 August 2022).
- Firozjaei, M.K.; Sedighi, A.; Argany, M.; Jelokhani-Niaraki, M.; Arsanjani, J.J. A geographical direction-based approach for capturing the local variation of urban expansion in the application of CA-Markov model. Cities 2019, 93, 120–135. [Google Scholar] [CrossRef]
- Tadese, S.; Soromessa, T.; Bekele, T. Analysis of the Current and Future Prediction of Land Use/Land Cover Change Using Remote Sensing and the CA-Markov Model in Majang Forest Biosphere Reserves of Gambella, Southwestern Ethiopia. Sci. World J. 2021, 2021, 6685045. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Cai, Y.; Li, C.; Wang, X.; Liu, Q. Hydrological Responses to Climate and Land Use Changes in a Watershed of the Loess Plateau, China. Sustainability 2019, 11, 1443. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Shahid, M.; Rahman, K.U.; Haider, S.; Gabriel, H.F.; Khan, A.J.; Pham, Q.B.; Pande, C.B.; Linh, N.T.T.; Anh, D.T. Quantitative assessment of regional land use and climate change impact on runoff across Gilgit watershed. Environ. Earth Sci. 2021, 80, 743. [Google Scholar] [CrossRef]
- Abbas, T.; Nabi, G.; Boota, M.W.; Hussain, F.; Faisal, M.; Ahsan, H.; Lahore, T.; Lahore, T. Impacts of Landuse Changes on Runoff Generation in Simly. Sci. Int. 2015, 27, 4083–4089. [Google Scholar]
- Dibaba, W.T.; Demissie, T.A.; Miegel, K. Watershed Hydrological Response to Combined Land Use/Land Cover and Climate Change in Highland Ethiopia: Finchaa Catchment. Water 2020, 12, 1801. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, P.; Xia, J.; Wang, W.; Cai, W.; Chen, N.; Hu, S.; Luo, X.; Li, J.; Zhan, C. Land use/land cover prediction and analysis of the middle reaches of the Yangtze River under different scenarios. Sci. Total Environ. 2022, 833, 155238. [Google Scholar] [CrossRef] [PubMed]
- Hakim, A.M.Y.; Baja, S.; Rampisela, A.D.; Arif, S. Spatial dynamic prediction of landuse/landcover change (case study: Tamalanrea sub-district, makassar city). IOP Conf. Ser. Earth Environ. Sci. 2019, 280, 012023. [Google Scholar] [CrossRef] [Green Version]
- Anand, J.; Gosain, A.; Khosa, R.; Srinivasan, R. Regional scale hydrologic modeling for prediction of water balance, analysis of trends in streamflow and variations in streamflow: The case study of the Ganga River basin. J. Hydrol. Reg. Stud. 2018, 16, 32–53. [Google Scholar] [CrossRef]
- Desai, S.; Singh, D.; Islam, A.; Sarangi, A. Multi-site calibration of hydrological model and assessment of water balance in a semi-arid river basin of India. Quat. Int. 2020, 571, 136–149. [Google Scholar] [CrossRef]
- Nusrat, A.; Gabriel, H.; Haider, S.; Ahmad, S.; Shahid, M.; Jamal, S.A. Application of Machine Learning Techniques to Delineate Homogeneous Climate Zones in River Basins of Pakistan for Hydro-Climatic Change Impact Studies. Appl. Sci. 2020, 10, 6878. [Google Scholar] [CrossRef]
- Abbaspour, K.C. Swat-Cup 2012. In SWAT Calibration Uncertain. Program—A User Man; Swiss Federal Institute of Aquatic Science and Technology: Dübendorf, Switzerland, 2012; p. 106. [Google Scholar]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Shrestha, M.K.; Recknagel, F.; Frizenschaf, J.; Meyer, W. Assessing SWAT models based on single and multi-site calibration for the simulation of flow and nutrient loads in the semi-arid Onkaparinga catchment in South Australia. Agric. Water Manag. 2016, 175, 61–71. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, B.; Liu, D.L.; Zhang, M.; Leslie, L.M.; Yu, Q. Using an improved SWAT model to simulate hydrological responses to land use change: A case study of a catchment in tropical Australia. J. Hydrol. 2020, 585, 124822. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef] [Green Version]
- Monserud, R.A.; Leemans, R. Comparing global vegetation maps with the Kappa statistic. Ecol. Model. 1992, 62, 275–293. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syed, Z.; Ahmad, S.; Dahri, Z.H.; Azmat, M.; Shoaib, M.; Inam, A.; Qamar, M.U.; Hussain, S.Z.; Ahmad, S. Hydroclimatology of the Chitral River in the Indus Basin under Changing Climate. Atmosphere 2022, 13, 295. [Google Scholar] [CrossRef]
- Kundu, S.; Khare, D.; Mondal, A. Individual and combined impacts of future climate and land use changes on the water balance. Ecol. Eng. 2017, 105, 42–57. [Google Scholar] [CrossRef]
- Gebremicael, T.; Mohamed, Y.; Van der Zaag, P. Attributing the hydrological impact of different land use types and their long-term dynamics through combining parsimonious hydrological modelling, alteration analysis and PLSR analysis. Sci. Total Environ. 2019, 660, 1155–1167. [Google Scholar] [CrossRef]
- Spruill, C.A.; Workman, S.R.; Taraba, J.L. Simulation of daily stream discharge from small watersheds using the SWAT model. Am. Soc. Agric. Biol. Eng. 2000, 1, 1431–1439. [Google Scholar] [CrossRef]
- Son, N.T.; Le Huong, H.; Loc, N.D.; Phuong, T.T. Application of SWAT model to assess land use change and climate variability impacts on hydrology of Nam Rom Catchment in Northwestern Vietnam. Environ. Dev. Sustain. 2022, 24, 3091–3109. [Google Scholar] [CrossRef]
- Garg, V.; Aggarwal, S.P.; Gupta, P.K.; Nikam, B.R.; Thakur, P.K.; Srivastav, S.K.; Kumar, A.S. Assessment of land use land cover change impact on hydrological regime of a basin. Environ. Earth Sci. 2017, 76, 635. [Google Scholar] [CrossRef]
- Samal, D.R.; Gedam, S. Assessing the impacts of land use and land cover change on water resources in the Upper Bhima river basin, India. Environ. Chall. 2021, 5, 100251. [Google Scholar] [CrossRef]
- Dahri, Z.H.; Ludwig, F.; Moors, E.; Ahmad, S.; Ahmad, B.; Ahmad, S.; Riaz, M.; Kabat, P. Climate change and hydrological regime of the high-altitude Indus basin under extreme climate scenarios. Sci. Total Environ. 2021, 768, 144467. [Google Scholar] [CrossRef]
Data Type | Data Name | Description | Time | Resolution | Source |
---|---|---|---|---|---|
Spatial Data | DEM | ALOS PALSAR | NA | 12.5 × 12.5 m | NASA Earth-Data [44] |
LU/LC | Landsat 5, 7 | 1990, 2000, 2010 | 30 × 30 m | USGS [45] | |
Sentinel-2A | 2020 | 10 × 10 m | USGS [45] | ||
Soil Map | DSMW | NA | 30 Arc Second | FAO [46] | |
Hydro-Climatic Data | Climatic Data | Precipitation | 1991–2019 | 10 × 10 Km | Submitted and Unpublished [47] |
Temperature | 1991–2019 | 10 × 10 Km | Submitted and Unpublished [47] | ||
Hydrometric Data | Flow Data | 1991–2007 | NA | Surface Water Hydrology Project (WAPDA) [48] |
Coefficient | Formula | Performance Rating |
---|---|---|
R2: Coefficient of determination | 0 ≤ R2 ≤ 1 >0.5 Satisfactory >0.65 Good | |
NSE: Nash–Sutcliffe Efficiency | 0 ≤ NSE ≤ 1 >0.5 Satisfactory >0.65 Good | |
KGE: Kling–Gupta efficiency | 0 ≤ KGE ≤ 1 >0.5 Satisfactory >0.65 Good | |
PBIAS: Percent bias | −∞ ≤ PBIAS ≤ +∞ <±25 Satisfactory <±15 Good |
LU/LC | Classified 1990 | Classified 2000 | Classified 2010 | Classified 2020 | ||||
---|---|---|---|---|---|---|---|---|
Km2 | % | Km2 | % | Km2 | % | Km2 | % | |
Water Bodies | 252.04 | 1.08 | 316.56 | 1.36 | 324.59 | 1.40 | 338.76 | 1.46 |
Agriculture Lands | 5790.60 | 24.91 | 6631.58 | 28.58 | 11,102.87 | 47.85 | 12,655.54 | 54.43 |
Forest Lands | 2859.59 | 12.30 | 2786.42 | 12.01 | 2585.14 | 11.14 | 2478.51 | 10.66 |
Barren Lands | 14,086.34 | 60.59 | 13,159.87 | 56.71 | 8637.84 | 37.23 | 6190.87 | 26.63 |
Built-up Lands | 260.79 | 1.12 | 309.55 | 1.33 | 553.63 | 2.39 | 1585.67 | 6.82 |
LU/LC | Projected 2020 | Projected 2030 | Projected 2040 | Projected 2050 | ||||
---|---|---|---|---|---|---|---|---|
Km2 | % | Km2 | % | Km2 | % | Km2 | % | |
Water Bodies | 334.69 | 1.46 | 353.53 | 1.52 | 350.57 | 1.51 | 348.44 | 1.50 |
Agriculture Lands | 12,439.41 | 54.43 | 12,831.91 | 55.19 | 13,040.56 | 56.09 | 14,586.03 | 62.74 |
Forest Lands | 2335.59 | 10.66 | 2314.06 | 9.95 | 2189.18 | 9.42 | 2054.69 | 8.84 |
Barren Lands | 6289.47 | 26.63 | 5119.34 | 22.02 | 4043.06 | 17.39 | 1522.11 | 6.55 |
Built-up Lands | 1800.17 | 6.82 | 2630.50 | 11.31 | 3627.24 | 15.60 | 4738.08 | 20.38 |
River Basin | Calibration | Backward Validation | Forward Validation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | NSE | KGE | PBIAS | R2 | NSE | KGE | PBIAS | R2 | NSE | KGE | PBIAS | |
Soan | 0.81 | 0.79 | 0.77 | 9.8 | 0.78 | 0.76 | 0.75 | −12.9 | 0.78 | 0.76 | 0.76 | −17.8 |
Haro | 0.80 | 0.77 | 0.78 | 8.7 | 0.76 | 0.74 | 0.76 | 8.7 | 0.76 | 0.76 | 0.77 | 12.7 |
Kanshi | 0.77 | 0.79 | 0.73 | 19.7 | 0.77 | 0.74 | 0.74 | 14.7 | 0.75 | 0.74 | 0.73 | 10.6 |
Components (mm) | 1990 | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 |
---|---|---|---|---|---|---|---|
Precipitation | 845.80 | 845.80 | 845.80 | 845.80 | 845.80 | 845.80 | 845.80 |
Surface Runoff | 394.09 | 372.96 | 348.94 | 319.82 | 309.34 | 307.98 | 303.33 |
Evapotranspiration | 406.65 | 419.67 | 433.96 | 452.66 | 464.60 | 468.66 | 471.80 |
Percolation | 52.83 | 54.32 | 63.55 | 72.60 | 73.22 | 74.94 | 76.08 |
Groundwater Flow | 38.43 | 39.45 | 42.71 | 44.35 | 44.73 | 46.61 | 48.02 |
Return Flow | 5.14 | 6.59 | 6.94 | 7.04 | 7.15 | 7.32 | 8.61 |
Lateral Flow | 8.63 | 9.43 | 9.46 | 9.70 | 10.03 | 10.09 | 10.16 |
Water Yield | 432.87 | 419.37 | 402.11 | 378.84 | 366.61 | 366.27 | 357.95 |
Components (mm) | Baseline Scenario (1990) | Recent Scenario (2020) | Mid-Century Scenario (2050) | Baseline to Recent (%) | Recent to Mid-Century (%) |
---|---|---|---|---|---|
Surface Runoff | 394.09 | 319.82 | 303.33 | −74.28 (−18.85%) | −16.49 (−5.15%) |
Evapotranspiration | 406.65 | 452.66 | 471.80 | 46.01 (11.31%) | 19.14 (4.23%) |
Water Yield | 432.87 | 378.84 | 357.95 | −54.03 (−12.48%) | −20.90 (−5.52%) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idrees, M.; Ahmad, S.; Khan, M.W.; Dahri, Z.H.; Ahmad, K.; Azmat, M.; Rana, I.A. Estimation of Water Balance for Anticipated Land Use in the Potohar Plateau of the Indus Basin Using SWAT. Remote Sens. 2022, 14, 5421. https://doi.org/10.3390/rs14215421
Idrees M, Ahmad S, Khan MW, Dahri ZH, Ahmad K, Azmat M, Rana IA. Estimation of Water Balance for Anticipated Land Use in the Potohar Plateau of the Indus Basin Using SWAT. Remote Sensing. 2022; 14(21):5421. https://doi.org/10.3390/rs14215421
Chicago/Turabian StyleIdrees, Muhammad, Shakil Ahmad, Muhammad Wasif Khan, Zakir Hussain Dahri, Khalil Ahmad, Muhammad Azmat, and Irfan Ahmad Rana. 2022. "Estimation of Water Balance for Anticipated Land Use in the Potohar Plateau of the Indus Basin Using SWAT" Remote Sensing 14, no. 21: 5421. https://doi.org/10.3390/rs14215421
APA StyleIdrees, M., Ahmad, S., Khan, M. W., Dahri, Z. H., Ahmad, K., Azmat, M., & Rana, I. A. (2022). Estimation of Water Balance for Anticipated Land Use in the Potohar Plateau of the Indus Basin Using SWAT. Remote Sensing, 14(21), 5421. https://doi.org/10.3390/rs14215421