Tectonism of Late Noachian Mars: Surface Signatures from the Southern Highlands
Abstract
:1. Introduction
2. Geology of the Study Area
3. Methodology
4. Results
4.1. Morpho-Structural Features
4.2. Mineralogy
4.3. Geochemistry
5. Discussion
6. Possible Scenario
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schubert, G.; Turcotte, D.L.; Olson, P. Mantle Convection in the Earth and Planets; Cambridge University Press: Cambridge, UK, 2001; ISBN 9780521353670. [Google Scholar]
- Moore, W.B.; Simon, J.I.; Webb, A.A.G. Heat-Pipe Planets. Earth Planet. Sci. Lett. 2017, 474, 13–19. [Google Scholar] [CrossRef]
- Parro, L.M.; Jiménez-Díaz, A.; Mansilla, F.; Ruiz, J. Present-Day Heat Flow Model of Mars. Sci. Rep. 2017, 7, 45629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruyama, S. Plume Tectonics. J. Geol. Soc. Jpn. 1994, 100, 24–49. [Google Scholar] [CrossRef]
- Baker, V.R.; Maruyama, S.; Dohm, J.M. Tharsis Superplume and the Geological Evolution of Early Mars. In Superplumes: Beyond Plate Tectonics; Springer: Dordrecht, The Netherlands, 2007; pp. 507–522. [Google Scholar] [CrossRef]
- Moore, W.B.; Webb, A.A.G. Heat-Pipe Earth. Nature 2013, 501, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Acuña, M.H.; Connerney, J.E.P.; Ness, N.F.; Lin, R.P.; Mitchell, D.; Carlson, C.W.; McFadden, J.; Anderson, K.A.; Rème, H.; Mazelle, C.; et al. Global Distribution of Crustal Magnetization Discovered by the Mars Global Surveyor MAG/ER Experiment. Science 1999, 284, 790–793. [Google Scholar] [CrossRef] [Green Version]
- Connerney, J.E.P.P.; Acuna, M.H.; Ness, N.F.; Kletetschka, G.; Mitchell, D.L.; Lin, R.P.; Reme, H. Tectonic Implications of Mars Crustal Magnetism. Proc. Natl. Acad. Sci. USA 2005, 102, 14970–14975. [Google Scholar] [CrossRef] [Green Version]
- Mittelholz, A.; Johnson, C.L.; Feinberg, J.M.; Langlais, B.; Phillips, R.J. Timing of the Martian Dynamo: New Constraints for a Core Field 4.5 and 3.7 Ga Ago. Sci. Adv. 2020, 6, eaba0513. [Google Scholar] [CrossRef]
- Nimmo, F.; Stevenson, D.J. Influence of Early Plate Tectonics on the Thermal Evolution and Magnetic Field of Mars. J. Geophys. Res. Planets 2000, 105, 11969–11979. [Google Scholar] [CrossRef]
- Sleep, N.H. Martian Plate Tectonics. J. Geophys. Res. 1994, 99, 5639. [Google Scholar] [CrossRef]
- Hauber, E.; Kronberg, P. Tempe Fossae, Mars: A Planetary Analogon to a Terrestrial Continental Rift? J. Geophys. Res. E Planets 2001, 106, 20587–20602. [Google Scholar] [CrossRef]
- Yin, A. An Episodic Slab-Rollback Model for the Origin of the Tharsis Rise on Mars: Implications for Initiation of Local Plate Subduction and Final Unification of a Kinematically Linked Global Plate-Tectonic Network on Earth. Lithosphere 2012, 4, 553–593. [Google Scholar] [CrossRef] [Green Version]
- Yin, A. Structural Analysis of the Valles Marineris Fault Zone: Possible Evidence for Large-Scale Strike-Slip Faulting on Mars. Lithosphere 2012, 4, 286–330. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.L.; Robbins, S.J.; Fortezzo, C.M.; Skinner, J.A.; Hare, T.M. The Digital Global Geologic Map of Mars: Chronostratigraphic Ages, Topographic and Crater Morphologic Characteristics, and Updated Resurfacing History. Planet. Space Sci. 2014, 95, 11–24. [Google Scholar] [CrossRef]
- Breuer, D.; Spohn, T. Early Plate Tectonics versus Single-Plate Tectonics on Mars: Evidence from Magnetic Field History and Crust Evolution. J. Geophys. Res. 2003, 108, 5072. [Google Scholar] [CrossRef] [Green Version]
- Buczkowski, D.L.; Seelos, K.D.; Cooke, M.L. Giant Polygons and Circular Graben in Western Utopia Basin, Mars: Exploring Possible Formation Mechanisms. J. Geophys. Res. Planets 2012, 117. [Google Scholar] [CrossRef]
- Rogers, A.D.; Nazarian, A.H. Evidence for Noachian Flood Volcanism in Noachis Terra, Mars, and the Possible Role of Hellas Impact Basin Tectonics. J. Geophys. Res. E Planets 2013, 118, 1094–1113. [Google Scholar] [CrossRef]
- Williams, D.A.; Greeley, R.; Manfredi, L.; Raitala, J.; Neukum, G. The Circum-Hellas Volcanic Province, Mars: Assessment of Wrinkle-Ridged Plains. Earth Planet. Sci. Lett. 2010, 294, 492–505. [Google Scholar] [CrossRef]
- Luzzi, E.; Rossi, A.P.; Carli, C.; Altieri, F. Tectono-Magmatic, Sedimentary, and Hydrothermal History of Arsinoes and Pyrrhae Chaos, Mars. J. Geophys. Res. Planets 2020, 125, e2019JE006341. [Google Scholar] [CrossRef]
- De, K.; Ruj, T.; Kundu, A.; Dasgupta, N.; Kawai, K. Evolution of Pyrrhae Fossae, Mars: An Explication from the Age Estimation Using the Buffered Crater Counting Technique. Curr. Sci. 2021, 121, 906. [Google Scholar] [CrossRef]
- Andrews-Hanna, J.C. The Formation of Valles Marineris: 2. Stress Focusing along the Buried Dichotomy Boundary. J. Geophys. Res. Planets 2012, 117. [Google Scholar] [CrossRef]
- Wichman, R.W.; Schultz, P.H. Sequence and Mechanisms of Deformation around the Hellas and Isidis Impact Basins on Mars. J. Geophys. Res. 1989, 94, 17333. [Google Scholar] [CrossRef]
- Williams, D.A.; Greeley, R.; Fergason, R.L.; Kuzmin, R.; McCord, T.B.; Combe, J.-P.; Head, J.W.; Xiao, L.; Manfredi, L.; Poulet, F.; et al. The Circum-Hellas Volcanic Province, Mars: Overview. Planet. Space Sci. 2009, 57, 895–916. [Google Scholar] [CrossRef]
- Ruj, T.; Komatsu, G.; Dohm, J.M.; Miyamoto, H.; Salese, F. Generic Identification and Classification of Morphostructures in the Noachis-Sabaea Region, Southern Highlands of Mars. J. Maps 2017, 13, 755–766. [Google Scholar] [CrossRef]
- Golombek, M.P.; Phillips, R.J. Mars Tectonics. In Planetary Tectonics; Cambridge University Press: Cambridge, UK, 2009; pp. 183–232. [Google Scholar]
- Allemand, P.; Thomas, P. Small-Scale Models of Multiring Basins. J. Geophys. Res. Planets 1999, 104, 16501–16514. [Google Scholar] [CrossRef]
- Ruj, T.; Komatsu, G.; Pasckert, J.H.; Dohm, J.M. Timings of Early Crustal Activity in Southern Highlands of Mars: Periods of Crustal Stretching and Shortening. Geosci. Front. 2019, 10, 1029–1037. [Google Scholar] [CrossRef]
- Malin, M.C.; Bell, J.F.; Cantor, B.A.; Caplinger, M.A.; Calvin, W.M.; Clancy, R.T.; Edgett, K.S.; Edwards, L.; Haberle, R.M.; James, P.B.; et al. Context Camera Investigation on Board the Mars Reconnaissance Orbiter. J. Geophys. Res. 2007, 112, E05S04. [Google Scholar] [CrossRef] [Green Version]
- Neukum, G.; Jaumann, R. HRSC: The High Resolution Stereo Camera of Mars Express. Eur. Sp. Agency Special Publ. ESA SP 2004, 1240, 17–35. [Google Scholar]
- Jaumann, R.; Neukum, G.; Behnke, T.; Duxbury, T.C.; Eichentopf, K.; Flohrer, J.; Gasselt, S.; Giese, B.; Gwinner, K.; Hauber, E.; et al. The High-Resolution Stereo Camera (HRSC) Experiment on Mars Express: Instrument Aspects and Experiment Conduct from Interplanetary Cruise through the Nominal Mission. Planet. Space Sci. 2007, 55, 928–952. [Google Scholar] [CrossRef]
- Murchie, S.L.; Arvidson, R.; Bedini, P.; Beisser, K.; Bibring, J.-P.; Bishop, J.; Boldt, J.; Cavender, P.; Choo, T.; Clancy, R.T.; et al. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res. 2007, 112, E05S03. [Google Scholar] [CrossRef]
- Boynton, W.V.; Feldman, W.C.; Mitrofanov, I.G.; Evans, L.G.; Reedy, R.C.; Squyres, S.W.; Starr, R.; Trombka, J.I.; d’Uston, C.; Arnold, J.R.; et al. The Mars Odyssey Gamma-Ray Spectrometer Instrument Suite. Space Sci. Rev. 2004, 110, 37–83. [Google Scholar] [CrossRef]
- Rodriguez, J.A.P.; Dobrea, E.N.; Kargel, J.S.; Baker, V.R.; Crown, D.A.; Webster, K.D.; Berman, D.C.; Wilhelm, M.B.; Buckner, D. The Oldest Highlands of Mars May Be Massive Dust Fallout Deposits. Sci. Rep. 2020, 10, 10347. [Google Scholar] [CrossRef] [PubMed]
- Platz, T.; Michael, G.; Tanaka, K.L.; Skinner, J.A.; Fortezzo, C.M. Crater-Based Dating of Geological Units on Mars: Methods and Application for the New Global Geological Map. Icarus 2013, 225, 806–827. [Google Scholar] [CrossRef]
- Head, J.W.; Wilson, L.; Dickson, J.; Neukum, G. The Huygens-Hellas Giant Dike System on Mars: Implications for Late Noachian-Early Hesperian Volcanic Resurfacing and Climatic Evolution. Geology 2006, 34, 285–288. [Google Scholar] [CrossRef] [Green Version]
- Ruj, T.; Komatsu, G.; Pondrelli, M.; Di Pietro, I.; Pozzobon, R. Morphometric Analysis of a Hesperian Aged Martian Lobate Scarp Using High-Resolution Data. J. Struct. Geol. 2018, 113, 1–9. [Google Scholar] [CrossRef]
- Mangold, N.; Allemand, P.; Thomas, P.G.; Vidal, G. Chronology of Compressional Deformation on Mars: Evidence for a Single and Global Origin. Planet. Space Sci. 2000, 48, 1201–1211. [Google Scholar] [CrossRef]
- Ruj, T.; Kawai, K. A Global Investigation of Wrinkle Ridge Formation Events; Implications towards the Thermal Evolution of Mars. Icarus 2021, 369, 114625. [Google Scholar] [CrossRef]
- Andrews-Hanna, J.C.; Zuber, M.T.; Hauck, S.A. Strike-Slip Faults on Mars: Observations and Implications for Global Tectonics and Geodynamics. J. Geophys. Res. 2008, 113, E08002. [Google Scholar] [CrossRef] [Green Version]
- Irwin, R.P.; Wray, J.J.; Mest, S.C.; Maxwell, T.A. Wind-Eroded Crater Floors and Intercrater Plains, Terra Sabaea, Mars. J. Geophys. Res. Planets 2018, 123, 445–467. [Google Scholar] [CrossRef]
- Bandfield, J.L.; Amador, E.S.; Thomas, N.H. Extensive Hydrated Silica Materials in Western Hellas Basin, Mars. Icarus 2013, 226, 1489–1498. [Google Scholar] [CrossRef]
- Carter, J.; Poulet, F.; Bibring, J.P.; Mangold, N.; Murchie, S. Hydrous Minerals on Mars as Seen by the CRISM and OMEGA Imaging Spectrometers: Updated Global View. J. Geophys. Res. Planets 2013, 118, 831–858. [Google Scholar] [CrossRef]
- Salese, F.; Di Achille, G.; Neesemann, A.; Ori, G.G.; Hauber, E. Hydrological and Sedimentary Analyses of Well-Preserved Paleofluvial-Paleolacustrine Systems at Moa Valles, Mars. J. Geophys. Res. Planets 2016, 121, 194–232. [Google Scholar] [CrossRef]
- Rogers, A.D.; Hamilton, V.E. Compositional Provinces of Mars from Statistical Analyses of TES, GRS, OMEGA and CRISM Data. J. Geophys. Res. Planets 2015, 120, 62–91. [Google Scholar] [CrossRef]
- Korteniemi, J.; Kukkonen, S. Volcanic Structures Within Niger and Dao Valles, Mars, and Implications for Outflow Channel Evolution and Hellas Basin Rim Development. Geophys. Res. Lett. 2018, 45, 2934–2944. [Google Scholar] [CrossRef] [Green Version]
- Fergason, R.L.; Hare, T.M.; Laura, J. HRSC and MOLA Blended Digital Elevation Model at 200 M. In Proceedings of the Astrogeology PDS Annex; US Geological Survey: Flagstaff, AZ, USA, 2018. [Google Scholar]
- Bishop, J. Reflectance Spectroscopy of Ferric Sulfate-Bearing Montmorillonites as Mars Soil Analog Materials. Icarus 1995, 117, 101–119. [Google Scholar] [CrossRef]
- Flahaut, J.; Carter, J.; Poulet, F.; Bibring, J.P.; van Westrenen, W.; Davies, G.R.; Murchie, S.L. Embedded Clays and Sulfates in Meridiani Planum, Mars. Icarus 2015, 248, 269–288. [Google Scholar] [CrossRef]
- Schmidt, G.; Luzzi, E.; Rossi, A.P.; Pondrelli, M.; Apuzzo, A.; Salvini, F. Protracted Hydrogeological Activity in Arabia Terra, Mars: Evidence from the Structure and Mineralogy of the Layered Deposits of Becquerel Crater. J. Geophys. Res. Planets 2022, 127, e2022JE007320. [Google Scholar] [CrossRef]
- Viviano-Beck, C.E.; Seelos, F.P.; Murchie, S.L.; Kahn, E.G.; Seelos, K.D.; Taylor, H.W.; Taylor, K.; Ehlmann, B.L.; Wisemann, S.M.; Mustard, J.F.; et al. Revised CRISM Spectral Parameters and Summary Products Based on the Currently Detected Mineral Diversity on Mars. J. Geophys. Res. E Planets 2014, 119, 1403–1431. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A.; Vergo, N. High Spectral Resolution Reflectance Spectroscopy of Minerals. J. Geophys. Res. 1990, 95, 12653. [Google Scholar] [CrossRef] [Green Version]
- Pelkey, S.M.; Mustard, J.F.; Murchie, S.; Clancy, R.T.; Wolff, M.; Smith, M.; Milliken, R.E.; Bibring, J.P.; Gendrin, A.; Poulet, F.; et al. CRISM Multispectral Summary Products: Parameterizing Mineral Diversity on Mars from Reflectance. J. Geophys. Res. Planets 2007, 112, 8–14. [Google Scholar] [CrossRef]
- Rani, A.; Basu Sarbadhikari, A.; Hood, D.R.; Gasnault, O.; Nambiar, S.; Karunatillake, S. Consolidated Chemical Provinces on Mars: Implications for Geologic Interpretations. Geophys. Res. Lett. 2022, 49, e2022GL099235. [Google Scholar] [CrossRef]
- Ojha, L.; Karunatillake, S.; Karimi, S.; Buffo, J. Amagmatic Hydrothermal Systems on Mars from Radiogenic Heat. Nat. Commun. 2021, 12, 1754. [Google Scholar] [CrossRef] [PubMed]
- Fossen, H.; Rotevatn, A. Fault Linkage and Relay Structures in Extensional Settings—A Review. Earth-Science Rev. 2016, 154, 14–28. [Google Scholar] [CrossRef]
- Acocella, V.; Morvillo, P.; Funiciello, R. What Controls Relay Ramps and Transfer Faults within Rift Zones? Insights from Analogue Models. J. Struct. Geol. 2005, 27, 397–408. [Google Scholar] [CrossRef]
- Pagli, C.; Yun, S.-H.; Ebinger, C.; Keir, D.; Wang, H. Strike-Slip Tectonics during Rift Linkage. Geology 2019, 47, 31–34. [Google Scholar] [CrossRef] [Green Version]
- Skok, J.R.; Mustard, J.F.; Tornabene, L.L.; Pan, C.; Rogers, D.; Murchie, S.L. A Spectroscopic Analysis of Martian Crater Central Peaks: Formation of the Ancient Crust. J. Geophys. Res. E Planets 2012, 117. [Google Scholar] [CrossRef]
- Viviano, C.E.; Murchie, S.L.; Daubar, I.J.; Morgan, M.F.; Seelos, F.P.; Plescia, J.B. Composition of Amazonian Volcanic Materials in Tharsis and Elysium, Mars, from MRO/CRISM Reflectance Spectra. Icarus 2019, 328, 274–286. [Google Scholar] [CrossRef]
- Karunatillake, S.; Squyres, S.W.; Gasnault, O.; Keller, J.M.; Janes, D.M.; Boynton, W.V.; Finch, M.J. Recipes for Spatial Statistics with Global Datasets: A Martian Case Study. J. Sci. Comput. 2011, 46, 439–451. [Google Scholar] [CrossRef]
- Susko, D.; Karunatillake, S.; Kodikara, G.; Skok, J.R.; Wray, J.; Heldmann, J.; Cousin, A.; Judice, T. A Record of Igneous Evolution in Elysium, a Major Martian Volcanic Province. Sci. Rep. 2017, 7, 43177. [Google Scholar] [CrossRef] [Green Version]
- Abbott, D.H.; Isley, A.E. Extraterrestrial Influences on Mantle Plume Activity. Earth Planet. Sci. Lett. 2002, 205, 53–62. [Google Scholar] [CrossRef]
- Reese, C.C.; Solomatov, V.S.; Baumgardner, J.R.; Stegman, D.R.; Vezolainen, A.V. Magmatic Evolution of Impact-Induced Martian Mantle Plumes and the Origin of Tharsis. J. Geophys. Res. E Planets 2004, 109, E08009. [Google Scholar] [CrossRef]
- Roberts, J.H.; Barnouin, O.S. The Effect of the Caloris Impact on the Mantle Dynamics and Volcanism of Mercury. J. Geophys. Res. E Planets 2012, 117, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Zuber, M.T.; Solomon, S.C.; Phillips, R.J.; Smith, D.E.; Tyler, G.L.; Aharonson, O.; Balmino, G.; Banerdt, W.B.; Head, J.W.; Johnson, C.L.; et al. Internal Structure and Early Thermal Evolution of Mars from Mars Global Surveyor Topography and Gravity. Science 2000, 287, 1788–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genova, A.; Goossens, S.; Lemoine, F.G.; Mazarico, E.; Neumann, G.A.; Smith, D.E.; Zuber, M.T. Seasonal and Static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science. Icarus 2016, 272, 228–245. [Google Scholar] [CrossRef] [Green Version]
- Keen, C.E.; Courtney, R.C.; Dehler, S.A.; Williamson, M.C. Decompression Melting at Rifted Margins: Comparison of Model Predictions with the Distribution of Igneous Rocks on the Eastern Canadian Margin. Earth Planet. Sci. Lett. 1994, 121, 403–416. [Google Scholar] [CrossRef]
- Chorowicz, J. The East African Rift System. J. African Earth Sci. 2005, 43, 379–410. [Google Scholar] [CrossRef]
- Philpotts, A.; Ague, J. Principles of Igneous and Metamorphic Petrology; Cambridge University Press: Cambridge, UK, 2009; ISBN 9780521880060. [Google Scholar]
- Sautter, V.; Toplis, M.J.; Wiens, R.C.; Cousin, A.; Fabre, C.; Gasnault, O.; Maurice, S.; Forni, O.; Lasue, J.; Ollila, A.; et al. In Situ Evidence for Continental Crust on Early Mars. Nat. Geosci. 2015, 8, 605–609. [Google Scholar] [CrossRef] [Green Version]
- Jackson, I. The Earth’s Mantle; Composition, Structure, and Evolution; Jackson, I., Ed.; Cambridge University Press: Cambridge, UK, 1998; ISBN 9780511573101. [Google Scholar]
- Courtillot, V.; Jaupart, C.; Manighetti, I.; Tapponnier, P.; Besse, J. On Causal Links between Flood Basalts and Continental Breakup. Earth Planet. Sci. Lett. 1999, 166, 177–195. [Google Scholar] [CrossRef]
- White, R.S.; McKenzie, D. Mantle Plumes and Flood Basalts. J. Geophys. Res. 1995, 100, 17543–17585. [Google Scholar] [CrossRef]
- Roberts, M.P.; Clemens, J.D. Origin of High-Potassium, Talc-Alkaline, I-Type Granitoids. Geology 1993, 21, 825. [Google Scholar] [CrossRef]
- Sautter, V.; Toplis, M.J.; Beck, P.; Mangold, N.; Wiens, R.; Pinet, P.; Cousin, A.; Maurice, S.; LeDeit, L.; Hewins, R.; et al. Magmatic Complexity on Early Mars as Seen through a Combination of Orbital, in-Situ and Meteorite Data. Lithos 2016, 254–255, 36–52. [Google Scholar] [CrossRef]
- Melosh, H.J.; Freed, A.M.; Johnson, B.C.; Blair, D.M.; Andrews-Hanna, J.C.; Neumann, G.A.; Phillips, R.J.; Smith, D.E.; Solomon, S.C.; Wieczorek, M.A.; et al. The Origin of Lunar Mascon Basins. Science 2013, 340, 1552–1555. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.X.; Li, X.H.; Kinny, P.D.; Wang, J.; Zhang, S.; Zhou, H. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents: Evidence for a Mantle Superplume That Broke up Rodinia. Precambrian Res. 2003, 122, 85–109. [Google Scholar] [CrossRef]
- Carr, M.H.; Head, J.W. Geologic History of Mars. Earth Planet. Sci. Lett. 2010, 294, 185–203. [Google Scholar] [CrossRef] [Green Version]
- Wünnemann, K.; Collins, G.S.; Melosh, H.J. A Strain-Based Porosity Model for Use in Hydrocode Simulations of Impacts and Implications for Transient Crater Growth in Porous Targets. Icarus 2006, 180, 514–527. [Google Scholar] [CrossRef]
- Collins, G.S.; Melosh, H.J.; Ivanov, B.A. Modeling Damage and Deformation in Impact Simulations. Meteorit. Planet. Sci. 2004, 39, 217–231. [Google Scholar] [CrossRef]
- Kameyama, M. ACuTEMan: A Multigrid-Based Mantle Convection Simulation Code and Its Optimization to the Earth Simulator. J. Earth Simulator 2005, 4, 2–10. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruj, T.; Komatsu, G.; Schmidt, G.; Karunatillake, S.; Kawai, K. Tectonism of Late Noachian Mars: Surface Signatures from the Southern Highlands. Remote Sens. 2022, 14, 5664. https://doi.org/10.3390/rs14225664
Ruj T, Komatsu G, Schmidt G, Karunatillake S, Kawai K. Tectonism of Late Noachian Mars: Surface Signatures from the Southern Highlands. Remote Sensing. 2022; 14(22):5664. https://doi.org/10.3390/rs14225664
Chicago/Turabian StyleRuj, Trishit, Goro Komatsu, Gene Schmidt, Suniti Karunatillake, and Kenji Kawai. 2022. "Tectonism of Late Noachian Mars: Surface Signatures from the Southern Highlands" Remote Sensing 14, no. 22: 5664. https://doi.org/10.3390/rs14225664
APA StyleRuj, T., Komatsu, G., Schmidt, G., Karunatillake, S., & Kawai, K. (2022). Tectonism of Late Noachian Mars: Surface Signatures from the Southern Highlands. Remote Sensing, 14(22), 5664. https://doi.org/10.3390/rs14225664