Multisensor Assessment of Leaf Area Index across Ecoregions of Ardabil Province, Northwestern Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Area
2.2. Methodology
2.2.1. Field Data Collection (LP 100 Device)
2.2.2. Image Selection and Image Preprocessing
2.2.3. Statistical Analysis and Validation
3. Results
4. Discussion
5. Uncertainties, Limitations, and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Breda, N.J.J. Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. J. Exp. Bot. 2003, 54, 2403–2417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darvishzadeh, R.; Atzberger, C.; Skidmore, A.; Schlerf, M. Mapping grassland leaf area index with airborne hyperspectral imagery: A comparison study of statistical approaches and inversion of radiative transfer models. ISPRS J. Photogramm. Remote Sens. 2011, 66, 894–906. [Google Scholar] [CrossRef]
- Dietz, J.; Hölscher, D.; Leuschner, C.; Hendrayanto, H. Rainfall partitioning in relation to forest structure in differently managed Montane Forest stands in Central Sulawesi, Indonesia. For. Ecol. Manag. 2006, 237, 170–178. [Google Scholar] [CrossRef]
- Jonckheere, I.; Fleck, S.; Nackaerts, K.; Muysa, B.; Coppin, P.; Weiss, M.; Baret, F. Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography. J. Agric. For. Meteorol. 2004, 121, 19–35. [Google Scholar] [CrossRef]
- Yan, G.; Hu, R.; Luo, J.; Weiss, M.; Jiang, H.; Mu, X.; Xie, D.; Zhang, W. Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives. J. Agric. For. Meteorol. 2019, 265, 390–411. [Google Scholar] [CrossRef]
- Cimtay, Y.; Özbay, B.; Yilmaz, G.; Bozdemir, E. A new vegetation index in short-wave infrared region of electromagnetic spectrum. IEEE Access 2021, 9, 148535–148545. [Google Scholar] [CrossRef]
- Kumar, S.; Arya, S.; Jain, K. A SWIR-based vegetation index for change detection in land cover using multi-temporal Landsat satellite dataset. Int. J. Inf. Technol. 2022, 14, 2035–2048. [Google Scholar] [CrossRef]
- Qi, J.; Kerr, Y.H.; Moran, M.S.; Weltz, M.; Huete, A.R.; Sorooshian, S.; Bryant, R. Leaf area index estimates using remotely sensed data and BRDF models in a semiarid region. Remote Sens. Environ. 2000, 73, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Moskal, L.M. Retrieving leaf area index (LAI) using remote sensing: Theories, methods and sensors. Sensors 2009, 9, 2719–2745. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.S.; Cohen, W.; Kennedy, R.; Maiersperger, T.; Gower, S. Hyperspectral versus multispectral data for estimating leaf area index in four different biomes. Remote Sens. Environ. 2004, 91, 508–520. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T.A. Defining leaf area index for non-flat leaves. Plant Cell Environ. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.; Gitelson, A.; Peng, Y.; Viña, A.; Arkebauer, T.; Rundquist, D. Green leaf area index estimation in Maize and Soybean: Combining vegetation indices to achieve maximal sensitivity. Agron. J. 2012, 104, 1336–1347. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, B.; Yang, W.; Chen, J.; Yuyichi, O.; Guoyu, Q. Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: A case study in high-density cypress forest. Sensors 2007, 7, 2636–2651. [Google Scholar] [CrossRef] [Green Version]
- Andalibi, L.; Ghorbani, A.; Moameri, M.; Hazbavi, Z.; Nothdurft, A.; Jafari, R.; Dadjou, F. Leaf area index variations in ecoregions of Ardabil province, Iran. Remote Sens. 2021, 13, 2879. [Google Scholar] [CrossRef]
- Chen, X.; Vierling, L.; Deering, D.; Conley, A. Monitoring boreal forest leaf area index across a Siberian burn chronosequence: A MODIS validation study. Int. J. Remote Sens. 2005, 26, 5433–5451. [Google Scholar] [CrossRef] [Green Version]
- Busetto, L.; Casteleyn, S.; Granell, C.; Pepe, M.; Barbieri, M.; Campos-Taberner, M.; Casa, R.; Collivignarelli, F.; Confalonieri, R.; Crema, A.; et al. Downstream services for rice crop monitoring in Europe: From regional to local scale. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5423–5441. [Google Scholar] [CrossRef] [Green Version]
- Barasa, P.M.; Botai, C.M.; Botai, J.O.; Mabhaudhi, T. A Review of climate-smart agriculture research and applications in Africa. Agronomy 2021, 11, 1255. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G.R.; et al. Global products of vegetation leaf area and fraction absorbed par from year one of MODIS data. Remote Sens. Environ. 2001, 83, 214–231. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Shabanov, N.; Huang, D.; Wang, W.; Dickinson, R.E.; Nemani, R.R.; Knyazikhin, Y.; Myneni, R.B. Analysis of leaf area index products from combination of MODIS Terra and Aqua data. Remote Sens. Environ. 2006, 104, 297–312. [Google Scholar] [CrossRef]
- Korhonen, L.; Hadi; Packalen, P.; Rautiainen, M. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sens. Environ. 2017, 195, 259–274. [Google Scholar] [CrossRef]
- Claverie, M.; Matthews, J.L.; Vermote, E.F.; Justice, C.O. A 30+ Year AVHRR LAI and FAPAR climate data record: Algorithm description and validation. Remote Sens. 2016, 8, 263. [Google Scholar] [CrossRef] [Green Version]
- Weiss, M.; Baret, F. S2ToolBox Level 2 products: LAI, FAPAR, FCOVER. Agric. For. Meteorol. 2016, 121, 37–53. Available online: http://step.esa.int/docs/extra/ATBD_S2ToolBox_L2B_V1.1.pdf (accessed on 1 April 2021). [CrossRef]
- Chen, J.M.; Pavlic, G.; Brown, L.; Cihlar, J.; Leblanc, S.G.; White, H.P.; Hall, R.J.; Peddle, D.R.; King, D.J.; Trofymow, J.A.; et al. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements. Remote Sens. Environ. 2002, 80, 165–184. [Google Scholar] [CrossRef]
- Liu, Y.; Ju, W.; Chen, J.; Zhu, G.; Xing, B.; Zhu, J.; He, M. Spatial and temporal variations of forest LAI in China during 2000–2010. Chin. Sci. Bull. 2012, 57, 2846–2856. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.A.; Ogutu, B.O.; Dash, J. Estimating forest leaf area index and canopy chlorophyll content with Sentinel-2: An evaluation of two hybrid retrieval algorithms. Int. J. Remote Sens. 2019, 11, 1752. [Google Scholar] [CrossRef] [Green Version]
- Chrysafis, I.; Korakis, G.; Kyriazopoulos, A.P.; Mallinis, G. Retrieval of leaf area index using Sentinel-2 imagery in a mixed mediterranean forest area. ISPRS Int. J. Geo-Inf. 2020, 9, 622. [Google Scholar] [CrossRef]
- Ovakoglou, G.; Alexandridis, T.H.; Clevers, J.G.P.W.; Gitas, I. Downscaling of MODIS Leaf Area Index Using Landsat Vegetation Index. Geocarto Int. 2020, 37, 2466–2489. [Google Scholar] [CrossRef]
- Kakehmami, A.; Ghorbani, A.; Kayvan Behjoo, F.; Mirzaei Mosivand, A. Comparison of visual and digital interpretation methods of land use/cover mapping in Ardabil province. J. Remote Sens. GIS Nat. Resour. 2017, 8, 121–134. Available online: https://www.magiran.com/paper/1768618?lang=en (accessed on 10 December 2021).
- Aslami, F.; Ghorbani, A.; Sobhani, B.; Esmali, A. Comprehensive comparison of daily IMERG and GSMaP satellite precipitation. products in Ardabil province, Iran. Int. J. Remote Sens. 2018, 40, 3139–3153. [Google Scholar] [CrossRef]
- Ghafari, S.; Ghorbani, A.; Moameri, M.; Mostafazadeh, R.; Bidarlord, M. Composition and structure of species along altitude gradient in Moghan-Sabalan rangelands, Iran. J. Mt. Sci. 2018, 15, 1209–1228. [Google Scholar] [CrossRef]
- Mostafazadeh, R.; Mehri, S. Trends in variability of flood coefficient in river gauge stations of Ardabil province, Iran. J. Watershed Manag. Res. 2018, 9, 82–95. [Google Scholar] [CrossRef]
- Ghorbani, A.; Amir, M.M.; Esmali Ouri, A. Utility of the NDVI for land/canopy cover mapping in Khalkhal County (Iran). Ann. Biol. Res. 2012, 3, 5494–5503. Available online: https://www.researchgate.net/publication/284777424 (accessed on 10 December 2021).
- Kakehmami, A.; Moameri, M.; Ghorbani, A.; Ghafari, S. Analysis of land use/cover changes in Ardabil province using landscape metrics. J. Remote Sens. GIS Nat. Resour. 2020, 11, 68–86. (In Persian). Available online: https://www.researchgate.net/publication/344202073 (accessed on 12 December 2021).
- Photon Systems Instruments. LaiPen LP 100, Manual and User Guide; PSI (Photon Systems Instruments): Drásov, Czech Republic, 2015; p. 45. [Google Scholar]
- Hirose, T. Development of the Monsi-Saeki theory on canopy structure and function. Ann. Bot. 2005, 95, 483–494. [Google Scholar] [CrossRef] [Green Version]
- Chander, G.; Markham, B.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Laine, B. Satellite Remote Sensing for Estimating Leaf Area Index, FPAR and Primary Production A Literature Review (SKB-R–04-24); Sweden. 2004. Available online: https://skb.se/upload/publications/pdf/R-04-24.pdf (accessed on 10 April 2021).
- Alikas, K.; Ansko, I.; Vabson, V.; Ansper, A.; Kangro, K.; Uudeberg, K.; Ligi, M. Consistency of radiometric satellite data over lakes and coastal waters with local field measurements. Remote Sens. 2020, 12, 616. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Wang, W.; Lu, Y. Analysis of the mean absolute error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model. IOP Conf. Ser. Mater. Sci. Eng. 2018, 324, 012049. [Google Scholar] [CrossRef]
- Richter, K.; Hank, T.B.; Vuolo, F.; Mauser, W.; D’Urso, G. Optimal exploitation of the Sentinel-2 spectral capabilities for crop leaf area index mapping. Remote Sens. 2012, 4, 561–582. [Google Scholar] [CrossRef] [Green Version]
- Moazami, S.; Golian, S.; Kavianpour, M.R.; Hong, Y. Comparison of PERSIANN and V7 TRMM Multi-Satellite Precipitation Analysis (TMPA) Products with Rain Gauge Data over Iran. Int. J. Remote Sens. 2013, 34, 8156–8171. [Google Scholar] [CrossRef]
- Ghorbani, A.; Dadjou, F.; Moameri, M.; Biswas, A. Estimating aboveground net primary production (ANPP) using Landsat 8-based indices: A case study from Hir-Neur rangelands, Iran. Rangel. Ecol. Manag. 2020, 73, 649–657. [Google Scholar] [CrossRef]
- Zhu, W.; Xiang, W.; Pan, Q.; Zeng, Y.; Ouyang, S.; Lei, P.; Deng, X.; Fang, X.; Peng, C. Spatial and seasonal variations of leaf area index (LAI) in subtropical secondary forests related to floristic composition and stand characters. Biogeosciences 2016, 13, 3819–3831. [Google Scholar] [CrossRef] [Green Version]
- Meyer, L.H.; Heurich, M.; Beudert, B.; Premier, J.; Pflugmacher, D. Comparison of Landsat-8 and Sentinel-2 Data for Estimation of Leaf Area Index in Temperate Forests. Remote Sens 2019, 11, 1160. [Google Scholar] [CrossRef]
- Habashi, K.; Karimzadeh, H.; Pourmanafi, S. Assessment soil salinity in east Isfahan based on OLI sensor data and topographic feature analysis. J. Remote Sens. GIS Nat. Resour. 2017, 8, 36–51. [Google Scholar]
- Sajadi, P.; Sang, Y.F.; Gholamnia, M.; Bonafoni, S.; Brocca, L.; Pradhan, B.; Singh, A. Performance evaluation of long NDVI timeseries from AVHRR, MODIS and landsat sensors over landslide-prone locations in Qinghai-Tibetan Plateau. Remote Sens. 2021, 13, 3172. [Google Scholar] [CrossRef]
- Propastin, P.; Erasmi, S. A physically based approach to model LAI from MODIS 250m data in a tropical region. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 47–59. [Google Scholar] [CrossRef]
- Yi, Y.; Yang, D.; Huang, J.; Chen, D. Evaluation of MODIS surface reflectance products for wheat leaf area index (LAI) retrieval. ISPRS J. Photogramm. Remote Sens. 2008, 63, 661–677, ISSN 0924-2716. [Google Scholar] [CrossRef]
- Chen, S.; Wei, Z.; Tenerelli, J.; Evans, R.; Halliwell, V. Impact of the AVHRR sea surface temperature on atmospheric forcing in the Japan/East Sea. Geophys. Res. Lett. 2001, 28, 4539–4542. [Google Scholar] [CrossRef] [Green Version]
- Ganguly, S.; Nemani, R.; Zhang, G.; Hashimoto, H.; Milesi, C.; Michaelis, A.; Wang, W.; Votava, P.; Samanta, A.; Melton, F.; et al. Generating global Leaf Area Index from Landsat: Algorithm formulation and demonstration. Remote Sens. Environ. 2012, 122, 185–202. [Google Scholar] [CrossRef] [Green Version]
- Fensholt, R.; Sandholt, I.; Rasmussen, M.S.; Stassen, S.; Diouf, A. Evaluation of satellite based primary production modeling in the semi-arid Sahel. Remote Sens. Environ. 2007, 105, 173–188. [Google Scholar] [CrossRef]
- Emberton, S.; Chittka, L.; Cavallaro, A.; Wang, M. Sensor capability and atmospheric correction in ocean colour remote sensing. Remote Sens. 2016, 8, 1. [Google Scholar] [CrossRef]
PFTs | Number of Samples | Ecoregion (Sub-Ecoregion) | Sampling Month in 2020 |
---|---|---|---|
Shrubs | 13 | Andabil | July |
13 | Hashtjin (Aghdagh, Berandagh) | July | |
28 | Khalkhal (Isbo, Jafarabad, Majareh, Dilmadeh, Shormineh, Chenarlagh) | July | |
26 | Kowsar (Mashkoul) | June | |
15 | Hatam Meshasi | June | |
65 | Namin Highlands | June | |
Sum | 160 samples | ||
Bushes | 48 | Neur | June |
9 | Bilesavar-Khoroslo | July | |
13 | Germi | July | |
13 | Andabil | July | |
10 | Hashtjin (Aghdagh, Berandagh) | July | |
10 | Khalkhal (Isbo, Jafarabad, Majareh, Dilmadeh, Shormineh, Chenarlagh) | July | |
5 | Hatam Meshasi | June | |
9 | Namin Highlands | June | |
Sum | 117 samples | ||
Trees | 55 | Darband Hir | June |
10 | Neur | June | |
16 | Germi | July | |
49 | Andabil | July | |
121 | Hashtjin (Aghdagh, Berandagh) | July | |
73 | Khalkhal (Isbo, Jafarabad, Majareh, Dilmadeh, Shormineh, Chenarlagh) | July | |
61 | Kowsar (Mashkoul) | June | |
70 | Hatam Meshasi | June | |
90 | Namin Highlands | June | |
Sum | 545 samples |
Satellite/Sensor | Date | Website/Products | |
---|---|---|---|
Sentinel-2B | June–July 2020 | http://scihub.copernicus.eu (accessed on 28 November 2020) | Level-1C |
Landsat 8 OLI | https://earthexplorer.usgs.gov/ (accessed on 28 November 2020) | - | |
MODIS * | Terra + Aqua-4-Day L4Global 500 m | MCD15A3H | |
AVHRR | (LAI_PAL_BU_V3) 5566 m | LAI_FAPAR/V5′ |
Months | June 2020 | July 2020 | |||||
---|---|---|---|---|---|---|---|
LAIs | Min | Mean | Max | Min | Mean | Max | |
LP 100 | 2.60 | 3.74 | 5.30 | 3.60 | 4.13 | 5.83 | |
Sentinel-2B | 1.53 | 1.92 | 3.13 | 0.09 | 1.24 | 3.13 | |
Landsat 8 | 0.67 | 0.90 | 1.40 | 0.31 | 0.68 | 1.20 | |
MODIS | 0.76 | 1.29 | 2.71 | 0.40 | 0.60 | 1.40 | |
AVHRR | 0.92 | 2.55 | 2.80 | 0.35 | 0.71 | 1.17 |
PFTs | Shrubs | Bushes | Trees | |||||||
---|---|---|---|---|---|---|---|---|---|---|
LAIs | Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | |
LP 100 | 0.40 | 2.71 | 4.10 | 2.30 | 5.00 | 6.40 | 2.80 | 4.00 | 6.80 | |
Sentinel-2B | 0.09 | 1.11 | 3.74 | 0.21 | 2.07 | 4.40 | 0.30 | 1.70 | 4.40 | |
Landsat 8 | 0.88 | 0.35 | 1.49 | 0.27 | 0.73 | 1.44 | 1.95 | 0.82 | 0.27 | |
MODIS | 0.20 | 0.99 | 2.13 | 0.29 | 1.14 | 3.43 | 0.70 | 2.40 | 4.30 | |
AVHRR | 0.35 | 1.12 | 2.73 | 0.63 | 1.35 | 3.47 | 0.30 | 0.90 | 2.70 |
Error Statistics | Sensors | MAE | MBE | MBias | RBias | RMSE | |
---|---|---|---|---|---|---|---|
Sentinel-2B | 0.33 | −0.24 | 0.51 | −0.49 | 1.09 | ||
Sampling Month | June | Landsat 8 | 0.36 | −0.36 | 0.28 | −0.72 | 1.21 |
MODIS | 0.30 | −0.28 | 0.43 | −0.57 | 1.04 | ||
AVHRR | 0.30 | −0.28 | 0.44 | −0.56 | 1.01 | ||
Sentinel-2B | 0.48 | −0.45 | 0.29 | −0.71 | 1.34 | ||
July | Landsat 8 | 0.54 | −0.54 | 0.15 | −0.85 | 1.45 | |
MODIS | 0.54 | −0.54 | 0.15 | −0.85 | 1.45 | ||
AVHRR | 0.57 | −0.57 | 0.19 | −0.80 | 1.47 | ||
Sentinel-2B | 0.23 | −0.16 | 0.36 | −0.64 | 0.86 | ||
PFT | Shrub | Landsat 8 | 0.20 | −0.18 | 0.27 | −0.73 | 0.77 |
MODIS | 0.20 | −0.16 | 0.34 | −0.66 | 0.78 | ||
AVHRR | 0.19 | −0.14 | 0.44 | −0.56 | 0.72 | ||
Sentinel-2 | 0.44 | −0.37 | 0.43 | −0.57 | 1.37 | ||
Bush | Landsat 8 | 0.54 | −0.54 | 0.18 | −0.82 | 1.59 | |
MODIS | 0.49 | −0.48 | 0.28 | −0.72 | 1.48 | ||
AVHRR | 0.48 | −0.05 | 0.29 | −0.71 | 1.45 | ||
Sentinel-2B | 0.45 | −0.40 | 0.37 | −0.63 | 1.28 | ||
Tree | Landsat 8 | 0.50 | −0.50 | 0.21 | −0.79 | 1.39 | |
MODIS | 0.47 | −0.46 | 0.27 | −0.73 | 1.30 | ||
AVHRR | 0.45 | −0.45 | 0.30 | −0.70 | 1.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andalibi, L.; Ghorbani, A.; Darvishzadeh, R.; Moameri, M.; Hazbavi, Z.; Jafari, R.; Dadjou, F. Multisensor Assessment of Leaf Area Index across Ecoregions of Ardabil Province, Northwestern Iran. Remote Sens. 2022, 14, 5731. https://doi.org/10.3390/rs14225731
Andalibi L, Ghorbani A, Darvishzadeh R, Moameri M, Hazbavi Z, Jafari R, Dadjou F. Multisensor Assessment of Leaf Area Index across Ecoregions of Ardabil Province, Northwestern Iran. Remote Sensing. 2022; 14(22):5731. https://doi.org/10.3390/rs14225731
Chicago/Turabian StyleAndalibi, Lida, Ardavan Ghorbani, Roshanak Darvishzadeh, Mehdi Moameri, Zeinab Hazbavi, Reza Jafari, and Farid Dadjou. 2022. "Multisensor Assessment of Leaf Area Index across Ecoregions of Ardabil Province, Northwestern Iran" Remote Sensing 14, no. 22: 5731. https://doi.org/10.3390/rs14225731
APA StyleAndalibi, L., Ghorbani, A., Darvishzadeh, R., Moameri, M., Hazbavi, Z., Jafari, R., & Dadjou, F. (2022). Multisensor Assessment of Leaf Area Index across Ecoregions of Ardabil Province, Northwestern Iran. Remote Sensing, 14(22), 5731. https://doi.org/10.3390/rs14225731