Enabling Deep-Neural-Network-Integrated Optical and SAR Data to Estimate the Maize Leaf Area Index and Biomass with Limited In Situ Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Satellite Data
2.2.2. In Situ Data
3. Methods
3.1. From Mixup to Mixup
3.2. Deep Neural Network for LAI and Biomass Estimation: GSDNN
3.2.1. Fusion Layer
3.2.2. Regression Layer
3.2.3. Timestamp Embedding
3.2.4. Objective Function
3.2.5. Accuracy Assessment
3.3. GSDNN Workflow
- Preprocessing optical and SAR data with the methods described in Section 2.2.
- Normalizing the input data obtained in the previous step using the standard preprocessing method of deep learning to avoid the optimization difficulties caused by excessive differences among different dimensions in the data. In detail, given input data , the specific method of data normalization is as follows:
- Initializing the model parameters using He’s initialization method [45].
- Computing the prediction loss using Equation (13) and judging the convergence of the model using the validation set. If the prediction loss on the validation set keep decreasing, which indicates that the model has not converged, then it goes to the next step. Otherwise, the training process is ended.
- Using the stochastic gradient descent method to update the parameters of the GSDNN. Go to Step 4.
3.4. Experimental Data Preparation
3.5. Settings and Training Details for the GSDNN
- Fusion layer: The hidden layer sizes of both the gate control layer and FCL were set to 300, the output dimension was 300, and the internal parameter sizes of the three fusion layers were consistent.
- Regression layer: This layer took as input the concatenation of the outputs of the SAR and optical channels. In the present case, the size of the input layer for the regression layer was set to 600, the hidden layer sizes of the LAI, Biomass_wet, and Biomass_dry predictors were set to 300, and the final outputs were three scalars.
- The timestamp embedding dimension n was set to 10.
4. Results
4.1. Comparison of the GSDNN with Other Machine Learning Models
4.2. Comparison of Multiple Machine Learning Models before and after Use of Mixup
4.3. Results of Maize LAI and Biomass Estimation Based on the GSDNN with Mixup
5. Discussion
5.1. GSDNN Compared with Other Machine Learning Methods
5.2. Effects of Combining Mixup with Different Machine Learning Models
5.3. Effects of Integrating Optical and SAR Data on LAI and Biomass Estimates
5.4. Effects of the Amount of Synthetic Data from Mixup on LAI and Biomass Estimates
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Bänziger, M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 2011, 3, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Nuss, E.T.; Tanumihardjo, S.A. Maize: A paramount staple crop in the context of global nutrition. Compr. Rev. Food Sci. Food Saf. 2010, 9, 417–436. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Miao, Y.; Wu, D.; Shao, H.; Khosla, R.; Mi, G. Active optical sensing of spring maize for in-season diagnosis of nitrogen status based on nitrogen nutrition index. Remote Sens. 2016, 8, 605. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring plant diseases and pests through remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- Bi, W.; Wang, M.; Weng, B.; Yan, D.; Yang, Y.; Wang, J. Effects of drought–flood abrupt alternation on the growth of summer maize. Atmosphere 2019, 11, 21. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Gong, P.; Fu, R.; Zhang, M.; Chen, J.; Liang, S.; Xu, B.; Shi, J.; Dickinson, R. The role of satellite remote sensing in climate change studies. Nat. Clim. Chang. 2013, 3, 875–883. [Google Scholar] [CrossRef]
- Che, Y.; Wang, Q.; Zhou, L.; Wang, X.; Li, B.; Ma, Y. The effect of growth stage and plant counting accuracy of maize inbred lines on LAI and biomass prediction. Precis. Agric. 2022, 1–27. [Google Scholar] [CrossRef]
- Fang, H.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An overview of global leaf area index (LAI): Methods, products, validation, and applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
- Jinsong, C.; Yu, H.; Xinping, D. Monitoring rice growth in Southern China using TerraSAR-X dual polarization data. In Proceedings of the 2017 6th International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 7–10 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–4. [Google Scholar]
- Chen, P.F.; Nicolas, T.; Wang, J.H.; Philippe, V.; Huang, W.J.; Li, B.G. New index for crop canopy fresh biomass estimation. Spectrosc. Spectr. Anal. 2010, 30, 512–517. [Google Scholar]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Price, J.C. Estimating leaf area index from satellite data. IEEE Trans. Geosci. Remote Sens. 1993, 31, 727–734. [Google Scholar] [CrossRef]
- Fei, Y.; Jiulin, S.; Hongliang, F.; Zuofang, Y.; Jiahua, Z.; Yunqiang, Z.; Kaishan, S.; Zongming, W.; Maogui, H. Comparison of different methods for corn LAI estimation over northeastern China. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 462–471. [Google Scholar] [CrossRef]
- Mandal, D.; Hosseini, M.; McNairn, H.; Kumar, V.; Bhattacharya, A.; Rao, Y.; Mitchell, S.; Robertson, L.D.; Davidson, A.; Dabrowska-Zielinska, K. An investigation of inversion methodologies to retrieve the leaf area index of corn from C-band SAR data. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101893. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Atzberger, C.; Skidmore, A.; Schlerf, M. Mapping grassland leaf area index with airborne hyperspectral imagery: A comparison study of statistical approaches and inversion of radiative transfer models. ISPRS J. Photogramm. Remote Sens. 2011, 66, 894–906. [Google Scholar] [CrossRef]
- Luo, P.; Liao, J.; Shen, G. Combining spectral and texture features for estimating leaf area index and biomass of maize using Sentinel-1/2, and Landsat-8 data. IEEE Access 2020, 8, 53614–53626. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Bajgain, R.; Starks, P.; Steiner, J.; Doughty, R.B.; Chang, Q. Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images. ISPRS J. Photogramm. Remote Sens. 2019, 154, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Shafique, A.; Cao, G.; Khan, Z.; Asad, M.; Aslam, M. Deep learning-based change detection in remote sensing images: A review. Remote Sens. 2022, 14, 871. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Rem. Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Osco, L.P.; Junior, J.M.; Ramos, A.P.M.; de Castro Jorge, L.A.; Fatholahi, S.N.; de Andrade Silva, J.; Matsubara, E.T.; Pistori, H.; Gonçalves, W.N.; Li, J. A review on deep learning in UAV remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102456. [Google Scholar] [CrossRef]
- Wang, D.; Cao, W.; Zhang, F.; Li, Z.; Xu, S.; Wu, X. A review of deep learning in multiscale agricultural sensing. Remote Sens. 2022, 14, 559. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.; Zhang, J.; Chen, Y.; Anandhan, P.; Manickam, A. A novel approach for scene classification from remote sensing images using deep learning methods. Eur. J. Remote Sens. 2021, 54, 383–395. [Google Scholar] [CrossRef]
- Zheng, L.; Xu, W. An improved adaptive spatial preprocessing method for remote sensing images. Sensors 2021, 21, 5684. [Google Scholar] [CrossRef]
- Sun, X.; Wang, P.; Wang, C.; Liu, Y.; Fu, K. PBNet: Part-based convolutional neural network for complex composite object detection in remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2021, 173, 50–65. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X.; Li, P.; Wang, L.; Zhu, M.; Zhang, H.; Zeng, Z. An improved YOLO algorithm for rotated object detection in remote sensing images. In Proceedings of the 2021 IEEE 4th Advanced Information Management, Communications, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 18–20 June 2021; IEEE: Piscataway, NJ, USA, 2021; Volume 4, pp. 840–845. [Google Scholar]
- Potnis, A.V.; Durbha, S.S.; Shinde, R.C. Semantics-driven remote sensing scene understanding framework for grounded spatio-contextual scene descriptions. ISPRS Int. J. Geo-Inf. 2021, 10, 32. [Google Scholar] [CrossRef]
- Rahnemoonfar, M.; Chowdhury, T.; Sarkar, A.; Varshney, D.; Yari, M.; Murphy, R.R. Floodnet: A high resolution aerial imagery dataset for post flood scene understanding. IEEE Access 2021, 9, 89644–89654. [Google Scholar] [CrossRef]
- Wong, S.C.; Gatt, A.; Stamatescu, V.; McDonnell, M.D. Understanding data augmentation for classification: When to warp? In Proceedings of the 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Gold Coast, Australia, 30 November–2 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. mixup: Beyond empirical risk minimization. arXiv 2017, arXiv:1710.09412. [Google Scholar]
- Viña, A.; Gitelson, A.A.; Nguy-Robertson, A.L.; Peng, Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 2011, 115, 3468–3478. [Google Scholar] [CrossRef]
- Kross, A.; McNairn, H.; Lapen, D.; Sunohara, M.; Champagne, C. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Yang, G.; Xu, X.; Yang, H.; Feng, H.; Li, Z.; Shen, J.; Zhao, C.; Lan, Y. Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data. Remote Sens. 2015, 7, 13251–13272. [Google Scholar] [CrossRef]
- Karimi, S.; Sadraddini, A.A.; Nazemi, A.H.; Xu, T.; Fard, A.F. Generalizability of gene expression programming and random forest methodologies in estimating cropland and grassland leaf area index. Comput. Electron. Agric. 2018, 144, 232–240. [Google Scholar] [CrossRef]
- Dey, R.; Salem, F.M. Gate-variants of gated recurrent unit (GRU) neural networks. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1597–1600. [Google Scholar]
- Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese neural networks for one-shot image recognition. In Proceedings of the ICML Deep Learning Workshop, Lille, France, 6–11 July 2015; Volume 2. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, H.; Wang, C.; Zhang, B.; Liu, M. Crop classification based on temporal information using Sentinel-1 SAR time-series data. Remote Sens. 2018, 11, 53. [Google Scholar] [CrossRef] [Green Version]
- Chapelle, O.; Weston, J.; Bottou, L.; Vapnik, V. Vicinal risk minimization. In Advances in Neural Information Processing Systems 13; MIT Press: London, UK, 2000. [Google Scholar]
- Ruder, S. An overview of multi-task learning in deep neural networks. arXiv 2017, arXiv:1706.05098. [Google Scholar]
- Zhang, Y.; Yang, Q. A survey on multi-task learning. IEEE Trans. Knowledge Data Eng. 2021, 34, 5586–5609. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Bahrami, H.; Homayouni, S.; Safari, A.; Mirzaei, S.; Mahdianpari, M.; Reisi-Gahrouei, O. Deep learning-based estimation of crop biophysical parameters using multi-source and multi-temporal remote sensing observations. Agronomy 2021, 11, 1363. [Google Scholar] [CrossRef]
- Bahrami, H.; Homayouni, S.; McNairn, H.; Hosseini, M.; Mahdianpari, M. Regional crop characterization using multi-temporal optical and synthetic aperture radar earth observations data. Can. J. Remote Sens. 2022, 48, 258–277. [Google Scholar] [CrossRef]
Satellite Datasets | Date of Acquisition (Month/Day) | Resolution | Source | Revisit | |
---|---|---|---|---|---|
SAR data | Sentinel-1B SLC | 07/20, 08/01, 08/18, 08/30 | ESA | 12-day | |
Sentinel-1B GRDH | 07/20, 08/01, 08/18, 08/30 | ESA | 12-day | ||
Optical data | Sentinel-2A MSI | 08/03, 08/16, 09/05 | ESA | 10-day | |
Landsat-8 OLI | 07/22 | USGS | 16-day |
Growth Stage | LAI | Biomass_Wet (g/m) | Biomass_Dry (g/m) | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | |
07/20–07/23 (Jointing) | 0.38 | 2.34 | 1.23 | 193.54 | 2091.26 | 852.32 | 16.48 | 190.14 | 84.46 |
07/31–08/02 (Trumpet) | 1.37 | 4.58 | 2.88 | 949.57 | 6201.51 | 2653.85 | 93.6 | 697.78 | 307.55 |
08/15–08/17 (Heading) | 2.20 | 4.84 | 3.49 | 1989.14 | 5979.48 | 4330.61 | 242.68 | 963.31 | 628.28 |
09/03–09/05 (Filling) | 1.55 | 5.13 | 3.28 | 2657.97 | 8448.79 | 5013.90 | 497.97 | 1559.08 | 1051.33 |
Model | LAI | Biomass_Wet | Biomass_Dry | |||
---|---|---|---|---|---|---|
RMSE | RMSE (g/m) | RMSE (g/m) | ||||
MLR | 0.61 | 0.56 | 0.64 | 1153.90 | 0.58 | 202.53 |
SVR | 0.67 | 0.63 | 0.70 | 958.27 | 0.71 | 202.85 |
RFR | 0.64 | 0.63 | 0.70 | 995.39 | 0.74 | 200.03 |
MLP | 0.58 | 0.65 | 0.61 | 1043.04 | 0.57 | 246.55 |
GSDNN + mixup | 0.71 | 0.58 | 0.78 | 871.83 | 0.86 | 150.76 |
Model | LAI | Biomass_Wet | Biomass_Dry | |||
---|---|---|---|---|---|---|
RMSE | RMSE (g/m) | RMSE (g/m) | ||||
MLR | 0.61 | 0.56 | 0.64 | 1153.90 | 0.58 | 202.53 |
MLR + mixup | 0.64 | 0.64 | 0.68 | 1029.95 | 0.56 | 257.92 |
SVR | 0.67 | 0.63 | 0.70 | 958.27 | 0.71 | 202.85 |
SVR + mixup | 0.63 | 0.66 | 0.71 | 1003.86 | 0.71 | 211.23 |
RF | 0.64 | 0.63 | 0.70 | 995.39 | 0.74 | 200.03 |
RF + mixup | 0.67 | 0.61 | 0.71 | 938.54 | 0.75 | 192.11 |
MLP | 0.58 | 0.65 | 0.61 | 1043.04 | 0.57 | 246.55 |
MLP + mixup | 0.64 | 0.59 | 0.69 | 923.98 | 0.62 | 212.22 |
GSDNN | 0.58 | 0.64 | 0.64 | 1027.31 | 0.73 | 181.62 |
GSDNN + mixup | 0.71 | 0.58 | 0.78 | 871.83 | 0.86 | 150.76 |
Model | LAI | Biomass_Wet | Biomass_Dry | |||
---|---|---|---|---|---|---|
RMSE | RMSE (g/m) | RMSE (g/m) | ||||
MLP (optical) | 0.56 | 0.75 | 0.55 | 1157.71 | 0.51 | 252.65 |
MLP (SAR) | 0.26 | 0.93 | 0.28 | 1600.63 | 0.25 | 333.54 |
MLP | 0.58 | 0.65 | 0.61 | 1043.04 | 0.57 | 246.55 |
MLP + mixup | 0.64 | 0.59 | 0.69 | 923.98 | 0.62 | 212.22 |
GSDNN | 0.58 | 0.64 | 0.64 | 1027.31 | 0.73 | 181.62 |
GSDNN + mixup | 0.71 | 0.58 | 0.78 | 871.83 | 0.86 | 150.76 |
Synthetic Data | LAI | Biomass_Wet | Biomass_Dry | |||
---|---|---|---|---|---|---|
RMSE | RMSE (g/m) | RMSE (g/m) | ||||
0.0 | 0.58 | 0.64 | 0.64 | 1027.31 | 0.73 | 181.62 |
0.2 | 0.60 | 0.68 | 0.68 | 1032.45 | 0.76 | 180.75 |
0.5 | 0.64 | 0.65 | 0.71 | 1022.83 | 0.79 | 180.37 |
1.0 | 0.67 | 0.63 | 0.74 | 940.03 | 0.80 | 167.30 |
2.0 | 0.67 | 0.64 | 0.74 | 971.36 | 0.81 | 169.82 |
5.0 | 0.71 | 0.58 | 0.78 | 871.83 | 0.86 | 150.76 |
10.0 | 0.71 | 0.59 | 0.64 | 876.17 | 0.85 | 151.48. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, P.; Ye, H.; Huang, W.; Liao, J.; Jiao, Q.; Guo, A.; Qian, B. Enabling Deep-Neural-Network-Integrated Optical and SAR Data to Estimate the Maize Leaf Area Index and Biomass with Limited In Situ Data. Remote Sens. 2022, 14, 5624. https://doi.org/10.3390/rs14215624
Luo P, Ye H, Huang W, Liao J, Jiao Q, Guo A, Qian B. Enabling Deep-Neural-Network-Integrated Optical and SAR Data to Estimate the Maize Leaf Area Index and Biomass with Limited In Situ Data. Remote Sensing. 2022; 14(21):5624. https://doi.org/10.3390/rs14215624
Chicago/Turabian StyleLuo, Peilei, Huichun Ye, Wenjiang Huang, Jingjuan Liao, Quanjun Jiao, Anting Guo, and Binxiang Qian. 2022. "Enabling Deep-Neural-Network-Integrated Optical and SAR Data to Estimate the Maize Leaf Area Index and Biomass with Limited In Situ Data" Remote Sensing 14, no. 21: 5624. https://doi.org/10.3390/rs14215624
APA StyleLuo, P., Ye, H., Huang, W., Liao, J., Jiao, Q., Guo, A., & Qian, B. (2022). Enabling Deep-Neural-Network-Integrated Optical and SAR Data to Estimate the Maize Leaf Area Index and Biomass with Limited In Situ Data. Remote Sensing, 14(21), 5624. https://doi.org/10.3390/rs14215624