Frequency-Wavenumber Domain Elastic Full Waveform Inversion with a Multistage Phase Correction
Abstract
:1. Introduction
2. Window-Based Frequency-Wavenumber Domain Phase Correction
3. Review of Elastic Full Waveform Inversion
4. Frequency-Wavenumber Domain Phase Correction-Based EFWI
5. Numerical Test
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baysal, E.; Kosloff, D.D.; Sherwood, J.W.C. Reverse-Time Migration. Geophysics 1983, 48, 1514–1524. [Google Scholar] [CrossRef] [Green Version]
- Yao, D.; Zhou, X. One-Way Elastic Wave Reverse-Time Migration. Geophys. J. Int. 1993, 112, 381–384. [Google Scholar] [CrossRef] [Green Version]
- Gu, Z.; Wu, R.-S. Internal Multiple Removal and Illumination Correction for Seismic Imaging. IEEE Trans. Geosci. Remote Sens. 2021, 1–11. [Google Scholar] [CrossRef]
- Fang, J.; Shi, Y.; Zhou, H.; Chen, H.; Zhang, Q.; Wang, N. A High-Precision Elastic Reverse-Time Migration for Complex Geologic Structure Imaging in Applied Geophysics. Remote Sens. 2022, 14, 3542. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, T.; Fu, L.-Y.; Wu, R.-S.; Xu, Y.; Han, L.; Huang, X. A 2-D Local Correlative Misfit for Least-Squares Reverse Time Migration with Sparsity Promotion. IEEE Trans. Geosci. Rem. Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Lailly, P.; Bednar, J. The seismic inverse problems as a sequence of before stack migration. In Conference on Inverse Scattering Theory and Application, Society of Industrial and Applied Mathematics; SIAM: Philadelphia, PA, USA, 1983; pp. 206–220. [Google Scholar]
- Tarantola, A. Inversion of seismic reflection data in the acoustic approximation. Geophysics 1984, 49, 1259–1266. [Google Scholar] [CrossRef]
- Pratt, R.G.; Shin, C.; Hicks, G.J. Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion. Geophys. J. Int. 1998, 133, 341–362. [Google Scholar] [CrossRef]
- Plessix, R.E. A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophys. J. Int. 2006, 167, 495–503. [Google Scholar] [CrossRef]
- Fichtner, A.; Trampert, J. Resolution analysis in full waveform inversion. Geophys. J. Int. 2011, 187, 1604–1624. [Google Scholar] [CrossRef] [Green Version]
- Mora, P. Nonlinear two-dimensional elastic inversion of multioffset seismic data. Geophysics 1987, 52, 1211–1228. [Google Scholar] [CrossRef]
- Shin, C.; Cha, Y.H. Waveform inversion in the Laplace domain. Geophys. J. Int. 2008, 173, 922–931. [Google Scholar] [CrossRef] [Green Version]
- Virieux, J.; Operto, S. An overview of full-waveform inversion in exploration geophysics. Geophysics 2009, 74, WCC127–WCC152. [Google Scholar] [CrossRef]
- Van Leeuwen, T.; Mulder, W.A. A correlation-based misfit criterion for wave-equation traveltime tomography. Geophys. J. Int. 2010, 182, 1383–1394. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Teng, J.; Xu, T.; Wang, Y.; Liu, Q.; Badal, J. Robust time-domain full waveform inversion with normalized zero-lag cross-correlation objective function. Geophys. J. Int. 2016, 209, 106–122. [Google Scholar] [CrossRef] [Green Version]
- Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E.; Virieux, J. Measuring the misfit between seismograms using an optimal transport distance: Application to full waveform inversion. Geophys. J. Int. 2017, 205, 332–364. [Google Scholar] [CrossRef]
- Geng, Y.; Pan, W.; Innanen, K.A. Frequency-domain full-waveform inversion with non-linear descent directions. Geophys. J. Int. 2018, 213, 739–756. [Google Scholar] [CrossRef]
- Chi, B.X.; Dong, L.G.; Liu, Y.Z. Full waveform inversion method using envelope objective function without low frequency data. J. App. Geophy. 2014, 109, 36–46. [Google Scholar] [CrossRef]
- Wu, R.S.; Luo, J.R.; Wu, B.Y. Seismic envelope inversion and modulation signal model. Geophysics 2014, 79, WA13–WA24. [Google Scholar] [CrossRef]
- Bharadwaj, P.; Mulder, W.; Drijkoningen, G. Full waveform inversion with an auxiliary bump functional. Geophys. J. Int. 2016, 206, 1076–1092. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.; Chen, G. New Fréchet derivative for envelope data and multi-scale envelope inversion. In Proceedings of the 79th EAGE Conference and Exhibition, Paris, France, 12–15 June 2017. [Google Scholar]
- Hu, Y.; Han, L.; Xu, Z.; Zhang, F.; Zeng, J. Adaptive multi-step full waveform inversion based on waveform mode decomposition. J. App. Geophys. 2017, 139, 195–210. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, R.S.; Huang, X.; Long, Y.; Xu, Y.; Han, L.G. Phase-amplitude-based polarized direct envelope inversion in the time-frequency domain. Geophysics 2022, 87, R245–R260. [Google Scholar] [CrossRef]
- Huang, X.; Eikrem, K.S.; Jakobsen, M.; Nævdal, G. Bayesian full-waveform inversion in anisotropic elastic media using the iterated extended Kalman filter. Geophysics 2020, 85, C125–C139. [Google Scholar] [CrossRef]
- Fang, J.; Zhou, H.; Zhang, Q.; Chen, H.; Sun, P.; Zhang, J.; Zhang, L. The effects of elastic data on acoustic and elastic full waveform inversion. J. Appl. Geophys. 2020, 172, 103876. [Google Scholar] [CrossRef]
- Huang, X.; Greenhalgh, S.; Han, L.; Liu, X. Generalized Effective Biot Theory and Seismic Wave Propagation in Anisotropic, Poroviscoelastic Media. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023590. [Google Scholar] [CrossRef]
- Pan, W.; Ma, N.; Wang, Y. An Envelope Travel-Time Objective Function for Reducing Source–Velocity Trade-Offs in Wave-Equation Tomography. Remote Sens. 2022, 14, 5223. [Google Scholar] [CrossRef]
- Wang, N.; Shi, Y.; Zhou, H. Accurately Stable Q-Compensated Reverse-Time Migration Scheme for Heterogeneous Viscoelastic Media. Remote Sens. 2022, 14, 4782. [Google Scholar] [CrossRef]
- Wenyi, H. FWI without low frequency data-beat tone inversion. In SEG Technical Program Expanded Abstracts 2014; Society of Exploration Geophysicists: Houston, TX, USA, 2014; pp. 1116–1120. [Google Scholar]
- Shin, C.; Ha, W. A comparison between the behavior of objective functions for waveform inversion in the frequency and Laplace domains. Geophysics 2008, 73, 119–133. [Google Scholar] [CrossRef]
- Chung, W.; Shin, C.; Pyun, S. 2D Elastic Waveform Inversion in the Laplace Domain. Bull. Seismol. Soc. Am. 2010, 100, 3239–3249. [Google Scholar] [CrossRef]
- Alkhalifah, T.; Choi, Y. Taming waveform inversion nonlinearity through phase unwrapping of the model and objective functions. Geophys. J. Int. 2012, 191, 1171–1178. [Google Scholar]
- Jimenez Tejero, C.E.; Sallares, V.; Ranero, C.R. Appraisal of Instantaneous Phase-Based Functions in Adjoint Waveform Inversion. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5185–5197. [Google Scholar] [CrossRef] [Green Version]
- Bunks, C.; Saleck, F.M.; Zaleski, S.; Chavent, G. Multiscale seismic waveform inversion. Geophysics 1995, 60, 1457–1473. [Google Scholar] [CrossRef]
- Sirgue, L.; Pratt, R.G. Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies. Geophysics 2004, 69, 231–248. [Google Scholar] [CrossRef] [Green Version]
- Fichtner, A.; Trampert, J.; Cupillard, P.; Saygin, E.; Taymaz, T.; Capdeville, Y.; Villaseñor, A. Multiscale full waveform inversion. Geophys. J. Int. 2013, 194, 534–556. [Google Scholar] [CrossRef] [Green Version]
- Ying, H.; Zhang, D.; Jianzheng, Y.; Huang, S.; Di, Y.; Ling, X.; Zhang, C.; Qianqing, Q. An efficient multi-scale waveform inversion method in Laplace-Fourier domain. Pet. Explor. Dev. 2015, 42, 369–378. [Google Scholar]
- Fichtner, A.B.; Kennett, L.N.; Igel, H.; Bunge, H. Theoretical background for continental- and global-scale full-waveform inversion in the time-frequency domain. Geophys. J. Int. 2008, 175, 665–685. [Google Scholar] [CrossRef] [Green Version]
- Bozdağ, E.J.; Trampert, T.J. Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements. Geophys. J. Int. 2011, 185, 845–870. [Google Scholar] [CrossRef]
- Chen, G.; Yang, W.; Liu, Y.; Wang, H.; Huang, X. Salt Structure Elastic Full Waveform Inversion Based on the Multiscale Signed Envelope. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4508912. [Google Scholar] [CrossRef]
- Gao, Z.Q.; Pan, Z.B.; Gao, J.H.; Wu, R.S. Frequency Controllable Envelope Operator and Its Application in Multiscale Full-Waveform Inversion. IEEE Trans. Geosci. Remote Sens. 2019, 57, 683–699. [Google Scholar] [CrossRef]
- Chen, G.; Yang, W.; Liu, Y.; Luo, J.; Jing, H. Envelope-Based Sparse-Constrained Deconvolution for Velocity Model Building. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4501413. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, R.-S.; Han, L.-G.; Hu, Y. Elastic direct envelope inversion based on wave mode decomposition for multi-parameter reconstruction of strong-scattering media. Pet. Sci. 2022, 19, 2046–2063. [Google Scholar] [CrossRef]
- Hu, Y.; Fu, L.-Y.; Deng, W.; Li, Q.; Huang, X. Joint Traditional and Reflection Envelope Inversion. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8025505. [Google Scholar] [CrossRef]
- Li, Y.E.; Demanet, L. Full waveform inversion with extrapolated low frequency data. Geophysics 2016, 81, R339–R348. [Google Scholar] [CrossRef]
- Luo, S.; Sava, P. A deconvolution-based objective function for wave-equation inversion. In SEG Technical Program Expanded Abstracts 2011; Society of Exploration Geophysicists: Houston, TX, USA, 2011. [Google Scholar]
- Zhang, P.; Han, L.; Xu, Z.; Zhang, F.; Wei, Y. Sparse blind deconvolution based low-frequency seismic data reconstruction for multiscale full waveform inversion. J. Appl. Geophys. 2017, 139, 91–108. [Google Scholar] [CrossRef]
- Choi, Y.; Alkhalifah, T. Time-domain full-waveform inversion of exponentially damped wavefield using the deconvolution-based objective function. Geophysics 2018, 83, R77–R88. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Yang, W.; Wang, H.; Zhou, H.; Huang, X. Elastic Full Waveform Inversion based on Full-Band Seismic Data Reconstructed by Dual Deconvolution. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8028205. [Google Scholar] [CrossRef]
- Sun, H.; Demanet, L. Low-frequency extrapolation with deep learning. In SEG Technical Program Expanded Abstracts 2018; Society of Exploration Geophysicists: Houston, TX, USA, 2018. [Google Scholar]
- Sun, H.; Demanet, L. Extrapolated full-waveform inversion with deep learning. Geophysics 2020, 85, R275–R288. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Zhou, H.; Li, Y.E.; Zhang, Q.; Zhang, J. Data-driven low-frequency signal recovery using deep learning predictions in full-waveform inversion. Geophysics 2020, 85, A37–A43. [Google Scholar] [CrossRef]
- Zhang, Z.; Alkhalifah, T. Regularized elastic full-waveform inversion using deep learning. In Advances in Subsurface Data Analytics; Elsevier: Amsterdam, The Netherlands, 2022; pp. 219–250. [Google Scholar]
- Warner, M.; Guasch, L. Adaptive waveform inversion: Theory. Geophysics 2016, 81, R429–R445. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Fomel, S. Building good starting models for full-waveform inversion using adaptive matching filtering misfit. Geophysics 2016, 81, U61–U72. [Google Scholar] [CrossRef]
- Sun, B.; Alkhalifah, T. Adaptive Traveltime Inversion. Geophysics 2019, 84, U13–U29. [Google Scholar] [CrossRef]
- Sun, B.; Alkhalifah, T.A. Joint Minimization of the Mean and Information Entropy of the Matching Filter Distribution for a Robust Misfit Function in Full-Waveform Inversion. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4704–4720. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yang, D.; Jing, H.; Wu, H. Full waveform inversion based on the ensemble Kalman filter method using uniform sampling without replacement. Sci. Bull. 2019, 64, 321–330. [Google Scholar] [CrossRef]
- Solano, C.A.P.; Donno, D.; Chauris, H. Alternative waveform inversion for surface wave analysis in 2-D media. Geophys. J. Int. 2014, 198, 1359–1372. [Google Scholar] [CrossRef]
- Fu, L.; Guo, B.; Schuster, G.T. Multiscale phase inversion of seismic data. Geophysics 2017, 83, R159–R171. [Google Scholar] [CrossRef]
- Hu, Y.; Han, L.G.; Yu, J.L.; Chen, R.D. Time-frequency domain multi-scale full waveform inversion based on adaptive non-stationary phase correction. Chin. J. Geophys. 2018, 61, 2969–2988. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, Z.; Fu, L.; AlTheyab, A.; Feng, S.; Schuster, G. Multiscale reflection phase inversion with migration deconvolution. Geophysics 2019, 85, R55–R73. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Fu, L.-Y.; Li, Q.; Deng, W.; Han, L. Frequency-Wavenumber Domain Elastic Full Waveform Inversion with a Multistage Phase Correction. Remote Sens. 2022, 14, 5916. https://doi.org/10.3390/rs14235916
Hu Y, Fu L-Y, Li Q, Deng W, Han L. Frequency-Wavenumber Domain Elastic Full Waveform Inversion with a Multistage Phase Correction. Remote Sensing. 2022; 14(23):5916. https://doi.org/10.3390/rs14235916
Chicago/Turabian StyleHu, Yong, Li-Yun Fu, Qingqing Li, Wubing Deng, and Liguo Han. 2022. "Frequency-Wavenumber Domain Elastic Full Waveform Inversion with a Multistage Phase Correction" Remote Sensing 14, no. 23: 5916. https://doi.org/10.3390/rs14235916
APA StyleHu, Y., Fu, L. -Y., Li, Q., Deng, W., & Han, L. (2022). Frequency-Wavenumber Domain Elastic Full Waveform Inversion with a Multistage Phase Correction. Remote Sensing, 14(23), 5916. https://doi.org/10.3390/rs14235916