Ratio of Land Consumption Rate to Population Growth Rate in the Major Metropolitan Areas of Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Spatial Data
2.2.2. Built-Up and Population Data
2.3. Methods
2.3.1. General Considerations
2.3.2. LCR, PGR and LCRPGR Computation
2.3.3. Built-Up Change Rate Computation
3. Results
3.1. The Grid Level Analysis
3.1.1. The Spatial Dynamics of the Built-Up Area
3.1.2. The Spatial Dynamics of the Population
3.1.3. Spatial and Temporal Dynamic Changes in LCRPGR
3.2. The Metropolitan Area Level Analysis
3.2.1. LCR at Metropolitan Area Level
3.2.2. PGR at Metropolitan Area Level
3.2.3. LCRPGR at Metropolitan Area Level
3.3. Remarks on the Growth of the Built-Up Area in the Metropolitan Area
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Position in the Rank | The Built-Up Space Average Increase Rate (%) | ||
---|---|---|---|
2006–2009 | 2009–2015 | 2015–2020 | |
1 | Cluj (5.96%) | Braşov (2.53%) | Cluj (1.18%) |
2 | Braşov (1.26%) | Timişoara (1.73%) | Braşov (1.03%) |
3 | Timişoara (1.17%) | Craiova (1.44%) | Timişoara (0.75%) |
4 | Iaşi (1.06%) | Iaşi (1.33%) | Iaşi (0.62%) |
5 | Bucharest (0.89%) | Bucharest (1.12%) | Bucharest (0.52%) |
6 | Ploieşti (0.45%) | Constanţa (0.9%) | Ploieşti (0.31%) |
7 | Craiova (0.23%) | Cluj (0.59%) | Constanţa (0.28%) |
8 | Constanţa (0.2%) | Ploieşti (0.36%) | Craiova (0.18%) |
References
- Florida, R. The Rise of the Creative Class; Basic Books: New York, NY, USA, 2002. [Google Scholar]
- Glaeser, E. The Triumph of the City; Penguin: New York, NY, USA, 2012. [Google Scholar]
- United Nations, Department of Economic and Social Affairs. Revision of World Urbanization Prospects. 2018. Available online: https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html (accessed on 21 July 2022).
- United Nations Human Settlements Programme (UN-Habitat). World Cities Report 2020. The Value of Sustainable Urbanization. Available online: https://unhabitat.org/sites/default/files/2020/10/wcr_2020_report.pdf (accessed on 21 July 2022).
- Ghazaryan, G.; Rienow, A.; Oldenburg, C.; Thonfeld, F.; Trampnau, B.; Sticksel, S.; Jürgens, C. Monitoring of Urban Sprawl and Densification Processes in Western Germany in the Light of SDG Indicator 11.3.1 Based on an Automated Retrospective Classification Approach. Remote Sens. 2021, 13, 1694. [Google Scholar] [CrossRef]
- Schiavina, M.; Melchiorri, M.; Corbane, C.; Florczyk, A.J.; Freire, S.; Pesaresi, M.; Kemper, T. Multi-Scale Estimation of Land Use Efficiency (SDG 11.3.1) across 25 Years Using Global Open and Free Data. Sustainability 2019, 11, 5674. [Google Scholar] [CrossRef] [Green Version]
- European Environmental Agency (EEA). Urban Sprawl in Europe Joint EEA-FOEN Report 2016; European Environmental Agency—Swiss Federal Office for the Environment: Luxembourg, 2016; ISBN 978-92-9213-738-0. [Google Scholar]
- Haase, D.; Kabisch, N.; Haase, A. Endless urban growth? On the mismatch of population, household and urban land area growth and its effects on the urban debate. PLoS ONE 2013, 8, e66531. [Google Scholar] [CrossRef] [Green Version]
- Rienow, A.; Stenger, D.; Menz, G. Sprawling cities and shrinking region—Forecasting urban growth in the Ruhr for 2025 by coupling cells and agents. Erdkunde 2014, 68, 85–107. [Google Scholar] [CrossRef]
- Zhai, W.; Jiang, Z.; Meng, X.; Zhang, X.; Zhao, M.; Long, Y. Satellite monitoring of shrinking cities on the globe and containment solutions. iScience 2022, 25, 104411. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Ye, Y.; You, S.; Zheng, Q.; Huang, L.; Zhu, C.; Tong, C.; Li, S.; Li, Y.; Wang, K. Identifying and classifying shrinking cities using long-term continuous night-time light time series. Remote Sens. 2021, 13, 3142. [Google Scholar] [CrossRef]
- United Nations General Assembly. Resolution 70/1, Transforming our World: The 2030 Agenda for Sustainable Development; United Nations General Assembly: New York, NY, USA, 2015. [Google Scholar]
- UN-Habitat. Sustainable Development Goal 11+ Make Cities and Human Settlements Inclusive, Safe, Resilient and Sustainable: A Guide to Assist National and Local Governments to Monitor and Report on SDG Goal 11+ Indicators. Monitoring Framework—Definitions—Metadata—UN-Habitat Technical Support; 2020. Available online: https://www.local2030.org/library/60/SDG-Goal-11-Monitoring-Framework-A-guide-to-assist-national-and-local-governments-to-monitor-and-report-on-SDG-goal-11-indicators.pdf (accessed on 15 March 2022).
- UK Office for National Statistics. Using Innovative Methods to Report against the Sustainable Development Goals. 2018. Available online: https://www.ons.gov.uk/economy/environmentalaccounts/articles/usinginnovativemethodstoreportagainstthesustainabledevelopmentgoals/2018-10-22 (accessed on 21 July 2022).
- Nicolau, R.; David, J.; Caetano, M.; Pereira, J.M.C. Ratio of Land Consumption Rate to Population Growth Rate- Analysis of Different Formulations Applied to Mainland Portugal. ISPRS Int. J. Geo-Inf. 2018, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Huang, C.; Feng, Y.; Zhao, M.; Gu, J. Using Earth Observation for Monitoring SDG 11.3.1-Ratio of Land Consumption Rate to Population Growth Rate in Mainland China. Remote Sens. 2020, 12, 357. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Lu, L.; Guo, H.; Weng, Q.; Cao, S.; Zhang, S.; Li, Q. Urban Sprawl and Changes in Land-Use Efficiency in the Beijing–Tianjin–Hebei Region, China from 2000 to 2020: A Spatiotemporal Analysis Using Earth Observation Data. Remote Sens. 2021, 13, 2850. [Google Scholar] [CrossRef]
- Calka, B.; Orych, A.; Bielecka, E.; Mozuriunaite, S. The Ratio of the Land Consumption Rate to the Population Growth Rate: A Framework for the Achievement of the Spatiotemporal Pattern in Poland and Lithuania. Remote Sens. 2022, 14, 1074. [Google Scholar] [CrossRef]
- Philip, E. Coupling Sustainable Development Goal 11.3.1 with Current Planning Tools: City of Hamilton, Canada. Hydrol. Sci. J. 2021, 66, 1124–1131. [Google Scholar] [CrossRef]
- Benedek, J.; Ivan, K.; Török, I.; Temerdek, A.; Holobâcă, I.-H. Indicator-based assessment of local and regional progress toward the Sustainable Development Goals (SDGs): An integrated approach from Romania. Sustain. Dev. 2021, 29, 860–875. [Google Scholar] [CrossRef]
- Ionescu-Heroiu, M.; Cristea, M.; China, A.M.; Butacu, B.C.; Dolean, B.E.; Vinţan, A.D.; Franţ, O.; Mihăilescu, G.M.; Moldovan, S.C.; Sfârlea, E.V. Romania Catching-Up Regions: Metropolitan Romania. World Bank 2019, 145528, 1–91. [Google Scholar]
- Török, I.; Benedek, J. Spatial Patterns of Local Income Inequalities. J. Settl. Spat. Plan. 2018, 9, 77–91. [Google Scholar] [CrossRef]
- Benedek, J.; Varvari, Ș.; Litan, C. Chapter 8: Urban growth pole policy and regional development: Old vine in new bottles. In Regional and Local Development in Times of Polarization. Re-Thinking Spatial Policies in Europe; Lang, T., Görmar, F., Eds.; Palgrave/MacMillan: Basingstoke, UK, 2019; pp. 173–196. [Google Scholar] [CrossRef] [Green Version]
- Ivan, K.; Benedek, J.; Ciobanu, S. School-age pedestrian-vehicle crashes vulnerability. Case study: Bucharest city, Romania. Sustainability 2019, 11, 1214. [Google Scholar] [CrossRef] [Green Version]
- Kriss, P.; Ivanov, I.; Taralunga, N.; Racoviceanu, S.C.; Stadler, R.L.; Ghintuiala, D.L.; Ionescu-Heroiu, M.; Silimela, Y.T.; Vinţan, A.D.; Moldoveanu, G.A. Romania Catching-Up Regions: Interjurisdictional Cooperation Models. World Bank 2019, 145525, 1–87. [Google Scholar]
- National Institute of Statistics (NIS). Population by Residence. 2022. Available online: http://statistici.insse.ro:8077/tempo-online/#/pages/tables/insse-table (accessed on 23 March 2022).
- Florczyk, A.J.; Politis, P.; Corbane, C.; Pesaresi, M. GHS-BUILT R2018A—GHS Built-up Grid INPUT DATA, Landsat Multitemporal Collections (1975-1990-2000-2014). European Commission, Joint Research Centre (JRC) [Dataset] 2018. Available online: http://data.europa.eu/89h/jrc-ghsl-10009 (accessed on 2 March 2022).
- UN Habitat. Land Consumption. Available online: https://www.unescwa.org/sites/www.unescwa.org/files/u593/module_3_land_consumption_edited_23-03-2018.pdf (accessed on 23 March 2022).
- Florczyk, A.J.; Corbane, C.; Ehrlich, D.; Freire, S.; Kemper, T.; Maffenini, L.; Melchiorri, M.; Pesaresi, M.; Politis, P.; Schiavina, M.; et al. GHSL Data Package 2019, EUR 29788 EN; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-13186-1. [Google Scholar] [CrossRef]
- Sustainable Development Goals. SDG Indicators. Metadata Repository. Available online: https://unstats.un.org/sdgs/metadata (accessed on 23 March 2022).
- Socioeconomic Data and Applications Center (SEDAC). Gridded Population of the World (GPW), v4. Available online: https://sedac.ciesin.columbia.edu/data/collection/gpw-v4 (accessed on 2 March 2022).
- European Environment Agency (EEA). High Resolution Layer, Imperviousness, Status Maps- Imperviousness Density. 2018. Available online: https://land.copernicus.eu/pan-european/high-resolution-layers/imperviousness/status-maps (accessed on 20 March 2022).
- Langanke, T. Copernicus Land Monitoring Service—High Resolution Layer Imperviousness: Product Specifications Document. European Environment Agency, Land Copernicus 2018. Available online: https://land.copernicus.eu/user-corner/technical-library/hrl-imperviousness-technical-document-prod-2015 (accessed on 20 March 2022).
- Bauer, M.E.; Heinert, N.J.; Doyle, J.K.; Yuan, F. Impervious surface mapping and change monitoring using satellite Remote Sensing. In Proceedings of the ASPRS 2004 Annual Conference, Denver, CO, USA, 24–28 May 2004; Volume 10. [Google Scholar]
- Bauer, M.E.; Loeffelholz, B.C.; Wilson, B. Estimating and mapping impervious surface area by regression analysis of Landsat imagery. In Remote Sensing of Impervious Surfaces; Weng, Q., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 3–20. [Google Scholar]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Xu, H. A new index for delineating built-up landfeatures in satellite imagery. Int. J. Remote Sens. 2008, 29, 4269–4276. [Google Scholar] [CrossRef]
- Xu, H. Analysis of Impervious Surface and its Impact on Urban Heat Environment using the Normalized Difference Impervious Surface Index (NDISI). Photogramm. Eng. Remote Sens. 2010, 76, 557–565. [Google Scholar] [CrossRef]
- Deng, C.; Wu, C.A. spatially adaptive spectral mixture analysis for mapping subpixel urban impervious surface distribution. Remote Sens. Environ. 2013, 133, 62–70. [Google Scholar] [CrossRef]
- Liu, C.; Shao, Z.; Chen, M.; Luo, H. MNDISI: A multi-source composition index for impervious surface area estimation at the individual city scale. Remote Sens. Lett. 2013, 4, 803–812. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, C.; Guo, H.; Shang, R. A Modified Normalized Difference Impervious Surface Index (MNDISI) for Automatic Urban Mapping from Landsat Imagery. Remote Sens. 2017, 9, 942. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Gang, C.; Li, X.; Chen, Y.; Li, J. Application of a normalized difference impervious index (NDII) to extract urban impervious surface features based on Landsat TM images. Int. J. Remote Sens. 2015, 36, 1055–1069. [Google Scholar] [CrossRef]
- Deng, Y.; Wu, C.; Li, M.; Chen, R. RNDSI: A ratio normalized difference soil index for Remote Sensing of urban/suburban environments. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 40–48. [Google Scholar] [CrossRef]
- Sun, G.; Chen, X.; Jia, X.; Yao, Y.; Wang, Z. Combinational build-up index (CBI) for effective impervious surface mapping in urban areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2081–2092. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, K.; Li, M.; Ma, Y.; Sun, M. Combinational Biophysical Composition Index (CBCI) for Effective Mapping Biophysical Composition in Urban Areas. IEEE Access 2018, 6, 41224–41237. [Google Scholar] [CrossRef]
- Chen, J.; Yang, K.; Chen, S.; Yang, C.; Zhang, S.; He, L. Enhanced normalized difference index for impervious surface area estimation at the plateau basin scale. J. Appl. Remote Sens. 2019, 13, 016502. [Google Scholar] [CrossRef] [Green Version]
- Shao, Z.; Fu, H.; Fu, P.; Yin, L. Mapping Urban Impervious Surface by Fusing Optical and SAR Data at the Decision Level. Remote Sens. 2016, 8, 945. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, L.; Wu, C.; Chen, X.; Gao, Y.; Xie, S.; Zhang, B. Development of a global 30 m impervious surface map using multisource and multitemporal Remote Sensing datasets with the Google Earth Engine platform. Earth Syst. Sci. Data 2020, 12, 1625–1648. [Google Scholar] [CrossRef]
- Holobâcă, I.-H.; Ivan, K.; Alexe, M. Extracting built-up areas from Sentinel-1 imagery using land-cover classification and texture analysis. Int. J. Remote Sens. 2019, 40, 8054–8069. [Google Scholar] [CrossRef]
- Goldblatt, R.; Stuhlmacher, M.F.; Tellman, B.; Clinton, N.; Hanson, G.; Georgescu, M.; Wang, C.; Serrano-Candela, F.; Khandelwal, A.K.; Cheng, W.-H.; et al. Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover. Remote Sens. Environ. 2018, 205, 253–275. [Google Scholar] [CrossRef]
- Sang, X.; Guo, Q.; Wu, X.; Fu, Y.; Xie, T.; He, C.; Zang, J. Intensity and Stationarity Analysis of Land Use Change Based on CART Algorithm. Sci. Rep. 2019, 9, 12279. [Google Scholar] [CrossRef] [Green Version]
- Jalilov, S.-M.; Chen, Y.; Quang, N.H.; Nguyen, M.N.; Leighton, B.; Paget, M.; Lazarow, N. Estimation of Urban Land-Use Efficiency for Sustainable Development by Integrating over 30-Year Landsat Imagery with Population Data: A Case Study of Ha Long, Vietnam. Sustainability 2021, 13, 8848. [Google Scholar] [CrossRef]
Metropolitan Area | Surface (km²) | Population (2020) | Cities | Communes | Total TAUs |
---|---|---|---|---|---|
Braşov | 1969.52 | 493,350 | 7 | 15 | 22 |
Craiova | 1822.57 | 407,312 | 3 | 26 | 29 |
Bucharest | 1804.23 | 2,612,781 | 9 | 32 | 41 |
Cluj | 1740.7 | 447,714 | 1 | 19 | 20 |
Iaşi | 1238.64 | 544,361 | 1 | 20 | 21 |
Timişoara | 1173.23 | 435,775 | 1 | 15 | 16 |
Constanţa | 1115.62 | 490,264 | 6 | 10 | 16 |
Ploiești | 611.77 | 347,972 | 4 | 10 | 14 |
City Urban Extent Density | Indicator Value |
---|---|
10–150 persons/hectare | Below 1: Efficient land use Above 1: Inefficient land use |
151–250 persons/hectare | Below 1: Moving toward efficiency Above 1: Moving away from efficiency |
Greater than 250 persons/hectare | Below 1: Insufficient land per person Above 1: Moving toward sufficient land per person |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
Brașov | 72.2 | 19.6 | 5.4 | 0.0 | 2.7 | 0.0 |
Bucharest | 56.2 | 19.2 | 5.7 | 0.6 | 18.1 | 0.1 |
Cluj | 58.6 | 27.0 | 14.3 | 0.1 | 0.0 | 0.0 |
Constanța | 70.4 | 17.0 | 11.4 | 0.2 | 1.0 | 0.0 |
Craiova | 70.0 | 20.4 | 4.0 | 0.0 | 5.6 | 0.0 |
Iași | 66.2 | 21.5 | 6.0 | 0.0 | 6.3 | 0.0 |
Ploiești | 76.1 | 15.0 | 8.9 | 0.0 | 0.0 | 0.0 |
Timişoara | 54.1 | 28.6 | 16.9 | 0.1 | 0.2 | 0.0 |
MA | LCR | ||
---|---|---|---|
2006–2009 | 2009–2015 | 2015–2020 | |
Brașov | 0.012 | 0.024 | 0.010 |
Cluj | 0.055 | 0.006 | 0.011 |
Constanța | 0.002 | 0.009 | 0.003 |
Craiova | 0.002 | 0.014 | 0.002 |
Iași | 0.010 | 0.013 | 0.006 |
Ploiești | 0.004 | 0.004 | 0.003 |
Timişoara | 0.012 | 0.016 | 0.007 |
Bucharest | 0.009 | 0.011 | 0.005 |
MA | PGR | ||
---|---|---|---|
2006–2009 | 2009–2015 | 2015–2020 | |
Brașov | 0.001 | 0.002 | 0.003 |
Cluj | 0.007 | 0.010 | 0.013 |
Constanța | 0.003 | 0.002 | 0.000 |
Craiova | −0.001 | −0.002 | −0.003 |
Iași | 0.006 | 0.016 | 0.018 |
Ploiești | −0.001 | −0.003 | −0.006 |
Timişoara | 0.006 | 0.007 | 0.009 |
Bucharest | 0.004 | 0.001 | 0.009 |
MA | LCRPGR | ||
---|---|---|---|
2006–2009 | 2009–2015 | 2015–2020 | |
Brașov | Moving away from efficiency | Moving away from efficiency | Moving away from efficiency |
Cluj-Napoca | Moving away from efficiency | Efficient land use | Efficient land use |
Constanța | Efficient land use | Moving away from efficiency | Inefficient land use |
Craiova | Inefficient land use | Inefficient land use | Moving away from efficiency |
Iași | Moving away from efficiency | Efficient land use | Efficient land use |
Ploiești | Inefficient land use | Inefficient land use | Moving away from efficiency |
Timişoara | Moving away from efficiency | Moving away from efficiency | Efficient land use |
Bucharest | Moving away from efficiency | Moving away from efficiency | Efficient land use |
Metropolitan Area | Built-Up Space Difference (km²) | Built Space Change Rate (%) | ||||||
---|---|---|---|---|---|---|---|---|
2009–2006 | 2015–2009 | 2020–2015 | 2020–2006 | 2006–2009 | 2009–2015 | 2015–2020 | 2006–2020 | |
Cluj | 11.45 | 2.68 | 4.60 | 18.73 | 5.96 | 0.59 | 1.18 | 2.09 |
Braşov | 2.44 | 10.18 | 3.96 | 16.58 | 1.26 | 2.53 | 1.03 | 1.83 |
Timişoara | 2.65 | 8.12 | 3.22 | 13.99 | 1.17 | 1.73 | 0.75 | 1.32 |
Iaşi | 2.14 | 5.55 | 2.34 | 10.04 | 1.06 | 1.33 | 0.62 | 1.06 |
Bucharest | 7.94 | 20.54 | 8.50 | 36.97 | 0.89 | 1.12 | 0.52 | 0.89 |
Craiova | 0.60 | 7.47 | 0.84 | 8.91 | 0.23 | 1.44 | 0.18 | 0.74 |
Constanţa | 0.61 | 5.68 | 1.57 | 7.86 | 0.20 | 0.90 | 0.28 | 0.53 |
Ploiești | 0.97 | 1.59 | 1.16 | 3.72 | 0.45 | 0.36 | 0.31 | 0.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holobâcă, I.-H.; Benedek, J.; Ursu, C.-D.; Alexe, M.; Temerdek-Ivan, K. Ratio of Land Consumption Rate to Population Growth Rate in the Major Metropolitan Areas of Romania. Remote Sens. 2022, 14, 6016. https://doi.org/10.3390/rs14236016
Holobâcă I-H, Benedek J, Ursu C-D, Alexe M, Temerdek-Ivan K. Ratio of Land Consumption Rate to Population Growth Rate in the Major Metropolitan Areas of Romania. Remote Sensing. 2022; 14(23):6016. https://doi.org/10.3390/rs14236016
Chicago/Turabian StyleHolobâcă, Iulian-Horia, József Benedek, Cosmina-Daniela Ursu, Mircea Alexe, and Kinga Temerdek-Ivan. 2022. "Ratio of Land Consumption Rate to Population Growth Rate in the Major Metropolitan Areas of Romania" Remote Sensing 14, no. 23: 6016. https://doi.org/10.3390/rs14236016
APA StyleHolobâcă, I. -H., Benedek, J., Ursu, C. -D., Alexe, M., & Temerdek-Ivan, K. (2022). Ratio of Land Consumption Rate to Population Growth Rate in the Major Metropolitan Areas of Romania. Remote Sensing, 14(23), 6016. https://doi.org/10.3390/rs14236016