Giant Planet Observations in NASA’s Planetary Data System
Abstract
:1. Introduction
- The Atmospheres Node (ATM, https://pds-atmospheres.nmsu.edu, accessed on 30 October 2022) archives all non-imaging atmospheric data from planetary missions (excluding Earth observations), ground-based observations, and planetary analog, laboratory and field measurements.
- The Cartography and Imaging Sciences Node (IMG, https://pds-imaging.jpl.nasa.gov, accessed on 30 October 2022) archives digital image collections from planetary missions, and supports cartographic and geospatial data analysis.
- The Geosciences Node (GEO, https://pds-geosciences.wustl.edu, accessed on 30 October 2022) archives and distributes digital data related to the study of the surfaces and interiors of terrestrial planetary bodies.
- The Planetary Plasma Interactions Node (PPI, https://pds-ppi.igpp.ucla.edu, accessed on 30 October 2022) archives data related to the study of the interaction between the solar wind and planetary winds with planetary magnetospheres, ionospheres and surfaces.
- The Ring-Moon Systems Node (RMS, https://pds-rings.seti.org, accessed on 30 October 2022) archives data relevant to outer planetary systems, with a focus on individual data products within their original context. This includes remote sensing data (images, imaging spectrometer, and occultations) for systems beyond the asteroid belt (that is, Jupiter through Pluto). RMS also hosts the Radio Science Sub-Node (RSSN), which assists all of PDS with the ingestion and curation of radio science data, including gravity science and occultations.
- The Small Bodies Node (SBN, https://pds-smallbodies.astro.umd.edu, accessed on 30 October 2022) archives mission, ground-based, and laboratory data for objects generally described as comets, asteroids and interplanetary dust. This includes dwarf planets, objects in the Kuiper Belt and the Oort cloud, Centaurs, and small planetary satellites, as well as observations of the giant planets acquired en route to small body targets.
- PDS version 1.0: Focused on software infrastructure and catalog design (1990)
- PDS version 2.0: Basic operations in the central cataloging and distribution node, with two selected DNs being brought up to full operational status as test cases (1992–1993)
- PDS version 3.0: “Final” release with all DNs fully operational and user support in place (1994–1995)
2. Giant Planets Data in the PDS
2.1. Atmospheric Science
2.1.1. Atmospheric Composition
2.1.2. Global Dynamics
2.1.3. Vortices
2.1.4. Vertical Profiles
2.1.5. Upper Atmospheres and Aurora
2.1.6. Impacts and Convective Outbursts
2.1.7. Ground-Based Photometric Monitoring
2.2. Particles and Fields
2.3. Interiors
3. Data Discoverability and Usability
3.1. OPUS and Viewmaster: Search and Browse the RMS Archive
3.2. Ephemeris Tools
- Planet Viewer generates a diagram showing the appearance of a planetary system at a specified time. Bodies and rings are rendered with terminators and shadows as appropriate. The viewpoint can be Earth’s center, a particular Earth-based observatory, JWST, HST, or a specific planetary spacecraft. Figure 11 shows diagrams from the Jupiter Viewer tool for the same approximate times of Galileo’s observations of Jupiter and its four large moons in 1610.
- Moon Tracker generates a diagram showing the apparent east–west motion of one or more moons relative to the disk of a planet, within a specified time period.
- Ephemeris Generator generates a table listing of useful information about the viewing geometry for a planet or any of its moons as a function of time. Users are free to specify which of a variety of useful quantities to tabulate (e.g., RA and dec, phase angle, ring opening angle, distance, lunar phase, etc.)
3.3. User-Directed Classification via Self-Supervised Learning
3.4. Mission Pages
3.5. Planetary Image Locator Tool (PILOT)
3.6. Map Projection on the Web (POW)
3.7. Planetary Image Atlas
4. Discussion
4.1. Future Mission Data
4.2. Data Derived from Analysis of Remote Sensing Observations
4.3. Data Generated in Support of Giant Planet Studies
4.4. Connections to Other Archives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
API | Application Programming Interface |
ATM | Atmospheres Node |
CDF | Common Data Format |
CDF-A | Common Data Format Archival |
CIRS | Composite Infrared Spectrometer (Cassini) |
CODMAC | Committee on Data Management and Computation |
Dec | Declination |
DN | Discipline Node |
DOI | Digital Object Identifier |
DSN | Deep Space Network |
ENA | Energetic Neutral Atom |
EPN-TAP | EuroPlaNet Table Access Protocol |
ESA | European Space Agency |
EUV | Extreme Ultraviolet spectrographic channel of the UVIS instrument (Cassini) |
FAIR | Findability, Accessibility, Interoperability, and Reuse of digital assets |
FUV | Far Ultraviolet spectrographic channel of the UVIS instrument (Cassini) |
GDAL | Geospatial Data Abstraction Library |
GeoTiff | A standard geospatial format |
GIS | Geographic Information System |
HAPI | Heliophysics Application Programming Interface |
HST | Hubble Space Telescope |
IMG | Cartography and Imaging Sciences Node |
INCA | Ion and Neutral Camera (Cassini) |
IPDA | International Planetary Data Alliance |
IPP | Imaging Photopolarimeter (Pioneer 10, 11) |
IR | Infrared |
IRB | Independent Review Board |
IRIS | Infrared Interferometer Spectrometer and Radiometer (Voyager 1, 2) |
ISS | Imaging Science Subsystem (Cassini, Voyager 1, 2) |
IVOA | International Virtual Observatory Alliance |
JIRAM | Jovian Infrared Auroral Mapper (Juno) |
JPEG | A common image format developed by the Joint Photographic Experts Group |
JUICE | JUpiter ICy moons Explorer (European Space Agency mission) |
JWST | JamesWebb Space Telescope |
ISIS | Integrated Software for Imagers and Spectrometers |
LORRI | Long Range Reconnaissance Imager (New Horizons) |
LWIR | Long-Wave Infrared Spectrometer (several missions) |
MAST | Mikulski Archive for Space Telescopes |
MIMI | Magnetospheric Imaging Instrument (Cassini) |
MVIC | Multispectral Visible Imaging Camera (New Horizons) |
MWR | MicroWave Radiometer (Juno) |
NASA | National Aeronautics and Space Administration |
NIMS | Near Infrared Mapping Spectrometer |
NSSDC | National Space Science Data Center |
OPUS | Outer Planet Unified Search |
PDE | Planetary Data Ecosystem |
PDS | Planetary Data System |
PDS3 | Governing standards of the PDS from the mid-1990s until the adoption of PDS4 |
PDS4 | Current governing standards of the PDS, adopted in 2005 |
PI | Principal Investigator |
PILOT | Planetary Image Locator Tool |
PNG | Portable Network Graphic, a common image format |
POW | Map Projection on the Web |
PPI | Planetary Plasma Interactions Node |
PPO | Planetary Period Oscillations |
PRA | Planetary Radio Astronomy (Voyager 1, 2) |
PWS | PlasmaWave Subsystem (Voyager 1, 2) |
RA | Right Ascension |
RMS | Ring-Moon Systems Node |
RSS | Radio Science Subsystem (Cassini) |
RSSN | Radio Science Sub-Node |
RPWS | Radio and Plasma Wave Science (Cassini) |
SBN | Small Bodies Node |
SL9 | Comet Shoemaker-Levy 9 |
SPICE | Observation geometry information system for planetary spacecraft |
SSI | Solid State Imager (Galileo) |
TOPCAT | Tool for OPerations on Catalogs And Tables |
UPC | Unified Planetary Coordinates |
URAP | Unified Radio and Plasma Experiment |
USGS | United States Geological Survey |
UV | Ultraviolet |
UVIS | Ultraviolet Imaging Spectrograph (Cassini) |
VIMS | Visual and Infrared Mapping Spectrometer (Cassini) |
References
- Bernstein, R.; Alexander, S.S.; Arvidson, R.E.; Ely, O.; Goad, C.; Groth, E.J.; Landgrebe, D.A.; Legeckis, R.; McPherron, R.L.; Tananbaum, H.; et al. Data Management and Computation; Volume 1: Issues and recommendations associated with distributed computation and data management systems for the space sciences; National Academy Press: Washington, DC, USA, 1982. [Google Scholar] [CrossRef]
- Arvidson, R.E.; Hunt, G.; Landgrebe, D.A.; Levinthal, E.; Ludwig, G.H.; McCord, T.B.; Schreier, E.; Walker, R.; Wiederhold, G. Data Management and Computation; Volume 2: Issues and recommendations associated with distributed computation and data management systems for the space sciences; National Academy Press: Washington, DC, USA, 1986. [Google Scholar] [CrossRef] [Green Version]
- Planetary Data System Roadmap Study for 2017–2026. Technical Report, NASA Science Mission Directorate. 2017. Available online: https://pds.nasa.gov/home/about/PlanetaryDataSystemRMS17-26_20jun17.pdf (accessed on 30 October 2022).
- Data Design Working Group. PDS4 Concepts. Technical report, NASA PDS. 2021. Available online: https://pds.jpl.nasa.gov/datastandards/documents/concepts/Concepts_1.17.0.pdf (accessed on 30 October 2022).
- Prockter, L.; Tiscareno, M.S.; Grayzeck, E.J.; Acton, C.H.; Arvidson, R.E.; Bauer, J.M.; Beebe, R.; Besse, S.; Chanover, N.; Crichton, D.J.; et al. The Planetary Data System: A Vital Component in NASA’s Science Exploration Program. Bull. Am. Astron. Soc. 2021, 53, 459. [Google Scholar] [CrossRef]
- Raugh, A.; Hughes, J.S. The Road to an Archival Data Format—Data Structures. Planet. Sci. J. 2021, 2, 204. [Google Scholar] [CrossRef]
- Owen, T.; Encrenaz, T. Compositional constraints on giant planet formation. Planet. Space Sci. 2006, 54, 1188–1196. [Google Scholar] [CrossRef]
- Gautier, D.; Conrath, B.; Flasar, M.; Hanel, R.; Kunde, V.; Chedin, A.; Scott, N. The helium abundance of Jupiter from Voyager. J. Geophys. Res. 1981, 86, 8713–8720. [Google Scholar] [CrossRef] [Green Version]
- Conrath, B.J.; Gautier, D.; Hanel, R.A.; Hornstein, J.S. The helium abundance of Saturn from Voyager measurements. Astrophys. J. 1984, 282, 807–815. [Google Scholar] [CrossRef]
- Conrath, B.J.; Gautier, D. Saturn Helium Abundance: A Reanalysis of Voyager Measurements. Icarus 2000, 144, 124–134. [Google Scholar] [CrossRef]
- Conrath, B.; Gautier, D.; Hanel, R.; Lindal, G.; Marten, A. The helium abundance of Uranus from Voyager measurements. J. Geophys. Res. 1987, 92, 15003–15010. [Google Scholar] [CrossRef]
- Conrath, B.J.; Gautier, D.; Lindal, G.F.; Samuelson, R.E.; Shaffer, W.A. The helium abundance of Neptune from Voyager measurements. J. Geophys. Res. Supp. 1991, 96, 18907. [Google Scholar] [CrossRef]
- Fouchet, T.; Moses, J.I.; Conrath, B.J. Saturn: Composition and Chemistry. In Saturn from Cassini-Huygens; Dougherty, M.K., Esposito, L.W., Krimigis, S.M., Eds.; Springer: New York, NY, USA, 2009; p. 83. [Google Scholar] [CrossRef]
- Fletcher, L.N.; Achterberg, R.K.; Greathouse, T.K.; Orton, G.S.; Conrath, B.J.; Simon-Miller, A.A.; Teanby, N.; Guerlet, S.; Irwin, P.G.J.; Flasar, F.M. Seasonal change on Saturn from Cassini/CIRS observations, 2004–2009. Icarus 2010, 208, 337–352. [Google Scholar] [CrossRef]
- Fletcher, L.N.; Greathouse, T.K.; Guerlet, S.; Moses, J.I.; West, R.A. Saturn’s Seasonally Changing Atmosphere. In Saturn in the 21st Century; Baines, K.H., Flasar, F.M., Krupp, N., Stallard, T., Eds.; Cambridge University Press: Cambridge, UK, 2018; pp. 251–294. [Google Scholar] [CrossRef]
- Smith, B.A.; Soderblom, L.A.; Johnson, T.V.; Ingersoll, A.P.; Collins, S.A.; Shoemaker, E.M.; Hunt, G.E.; Masursky, H.; Carr, M.H.; Davies, M.E.; et al. The Jupiter System Through the Eyes of Voyager 1. Science 1979, 204, 951–972. [Google Scholar] [CrossRef]
- Smith, B.A.; Soderblom, L.A.; Beebe, R.; Boyce, J.; Briggs, G.; Carr, M.; Collins, S.A.; Cook, A.F.; Danielson, G.E.; Davies, M.E.; et al. The Galilean Satellites and Jupiter: Voyager 2 Imaging Science Results. Science 1979, 206, 927–950. [Google Scholar] [CrossRef]
- Smith, B.A.; Soderblom, L.; Beebe, R.; Boyce, J.; Briggs, G.; Bunker, A.; Collins, S.A.; Hansen, C.J.; Johnson, T.V.; Mitchell, J.L.; et al. Encounter with Saturn: Voyager 1 Imaging Science Results. Science 1981, 212, 163–191. [Google Scholar] [CrossRef]
- Smith, B.A.; Soderblom, L.; Batson, R.; Bridges, P.; Inge, J.; Masursky, H.; Shoemaker, E.; Beebe, R.; Boyce, J.; Briggs, G.; et al. A New Look at the Saturn System: The Voyager 2 Images. Science 1982, 215, 504–537. [Google Scholar] [CrossRef]
- Smith, B.A.; Soderblom, L.A.; Beebe, R.; Bliss, D.; Boyce, J.M.; Brahic, A.; Briggs, G.A.; Brown, R.H.; Collins, S.A.; Cook, A.F.; et al. Voyager 2 in the Uranian System: Imaging Science Results. Science 1986, 233, 43–64. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.A.; Soderblom, L.A.; Banfield, D.; Barnet, C.; Basilevsky, A.T.; Beebe, R.F.; Bollinger, K.; Boyce, J.M.; Brahic, A.; Briggs, G.A.; et al. Voyager 2 at Neptune: Imaging Science Results. Science 1989, 246, 1422–1449. [Google Scholar] [CrossRef] [Green Version]
- Vasavada, A.R.; Ingersoll, A.P.; Banfield, D.; Bell, M.; Gierasch, P.J.; Belton, M.J.; Orton, G.S.; Klaasen, K.P.; DeJong, E.; Breneman, H.; et al. Galileo Imaging of Jupiter’s Atmosphere: The Great Red Spot, Equatorial Region, and White Ovals. Icarus 1998, 135, 265–275. [Google Scholar] [CrossRef]
- Porco, C.C.; Baker, E.; Barbara, J.; Beurle, K.; Brahic, A.; Burns, J.A.; Charnoz, S.; Cooper, N.; Dawson, D.D.; Genio, A.D.D.; et al. Cassini Imaging Science: Initial Results on Saturn’s Atmosphere. Science 2005, 307, 1243–1247. [Google Scholar] [CrossRef] [Green Version]
- García-Melendo, E.; Pérez-Hoyos, S.; Sánchez-Lavega, A.; Hueso, R. Saturn’s zonal wind profile in 2004–2009 from Cassini ISS images and its long-term variability. Icarus 2011, 215, 62–74. [Google Scholar] [CrossRef]
- Porco, C.C.; West, R.A.; McEwen, A.; Genio, A.D.D.; Ingersoll, A.P.; Thomas, P.; Squyres, S.; Dones, L.; Murray, C.D.; Johnson, T.V.; et al. Cassini Imaging of Jupiter’s Atmosphere, Satellites, and Rings. Science 2003, 299, 1541–1547. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Ingersoll, A.P.; Vasavada, A.R.; Simon-Miller, A.A.; Genio, A.D.D.; Ewald, S.P.; Porco, C.C.; West, R.A. Vertical wind shear on Jupiter from Cassini images. J. Geophys. Res. 2006, 111, E04004. [Google Scholar] [CrossRef]
- Simon, A.A.; Li, L.; Reuter, D.C. Small-scale waves on Jupiter: A reanalysis of New Horizons, Voyager, and Galileo data. Geophys. Res. Lett. 2015, 42, 2612–2618. [Google Scholar] [CrossRef]
- Simon, A.A.; Wong, M.H.; Rogers, J.H.; Orton, G.S.; de Pater, I.; Asay-Davis, X.; Carlson, R.W.; Marcus, P.S. Dramatic Change in Jupiter’s Great Red Spot from Spacecraft Observations. Astrophys. J. Lett. 2014, 797, L31. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Lavega, A.; Fischer, G.; Fletcher, L.N.; Garcia-Melendo, E.; Hesman, B.; Perez-Hoyos, S.; Sayanagi, K.M.; Sromovsky, L.A. The Great Saturn Storm of 2010–2011. In Saturn in the 21st Century; Baines, K.H., Flasar, F.M., Krupp, N., Stallard, T., Eds.; Cambridge University Press: Cambridge, UK, 2018; pp. 377–416. [Google Scholar] [CrossRef]
- Elliot, J.L.; Olkin, C.B. Probing Planetary Atmospheres with Stellar Occultations. Ann. Rev. Earth Planet. Sci. 1996, 24, 89–124. [Google Scholar] [CrossRef] [Green Version]
- Greathouse, T.K.; Gladstone, G.R.; Moses, J.I.; Stern, S.A.; Retherford, K.D.; Vervack, R.J.; Slater, D.C.; Versteeg, M.H.; Davis, M.W.; Young, L.A.; et al. New Horizons Alice ultraviolet observations of a stellar occultation by Jupiter’s atmosphere. Icarus 2010, 208, 293–305. [Google Scholar] [CrossRef]
- Fletcher, L.N.; Orton, G.S.; Greathouse, T.K.; Rogers, J.H.; Zhang, Z.; Oyafuso, F.A.; Eichstädt, G.; Melin, H.; Li, C.; Levin, S.M.; et al. Jupiter’s Equatorial Plumes and Hot Spots: Spectral Mapping from Gemini/TEXES and Juno/MWR. J. Geophys. Res. (Planets) 2020, 125, e06399. [Google Scholar] [CrossRef]
- Atkinson, D.H.; Ingersoll, A.P.; Seiff, A. Deep winds on Jupiter as measured by the Galileo probe. Nature 1997, 388, 649–650. [Google Scholar] [CrossRef]
- Niemann, H.B.; Atreya, S.K.; Carignan, G.R.; Donahue, T.M.; Haberman, J.A.; Harpold, D.N.; Hartle, R.E.; Hunten, D.M.; Kasprzak, W.T.; Mahaffy, P.R.; et al. The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer. J. Geophys. Res. 1998, 103, 22831–22846. [Google Scholar] [CrossRef]
- Rinnert, K.; Lanzerotti, L.J.; Uman, M.A.; Dehmel, G.; Gliem, F.O.; Krider, E.P.; Bach, J. Measurements of radio frequency signals from lightning in Jupiter’s atmosphere. J. Geophys. Res. 1998, 103, 22979–22992. [Google Scholar] [CrossRef]
- Nagy, A.F.; Kliore, A.J.; Mendillo, M.; Miller, S.; Moore, L.; Moses, J.I.; Müller-Wodarg, I.; Shemansky, D. Upper Atmosphere and Ionosphere of Saturn. In Saturn from Cassini-Huygens; Dougherty, M.K., Esposito, L.W., Krimigis, S.M., Eds.; Springer: New York, NY, USA, 2009; p. 181. [Google Scholar] [CrossRef]
- Bader, A.; Cowley, S.W.H.; Badman, S.V.; Ray, L.C.; Kinrade, J.; Palmaerts, B.; Pryor, W.R. The Morphology of Saturn’s Aurorae Observed During the Cassini Grand Finale. Geophys. Res. Lett. 2020, 47, e85800. [Google Scholar] [CrossRef] [Green Version]
- Dinelli, B.M.; Adriani, A.; Mura, A.; Altieri, F.; Migliorini, A.; Moriconi, M.L. JUNO/JIRAM’s view of Jupiter’s H emissions. Philos. Trans. R. Soc. Lond. Ser. A 2019, 377, 20180406. [Google Scholar] [CrossRef] [Green Version]
- Lockwood, G.W. Final compilation of photometry of Uranus and Neptune, 1972–2016. Icarus 2019, 324, 77–85. [Google Scholar] [CrossRef]
- Lockwood, G.W. Lowell Observatory Uranus and Neptune b (472 nm) and y (551 nm) Photometry (1972–2016) Data Archive. 2019; PDS Atmospheres Node (ATM). [Google Scholar] [CrossRef]
- Burke, B.F.; Franklin, K.L. Observations of a Variable Radio Source Associated with the Planet Jupiter. J. Geophys. Res. 1955, 60, 213–217. [Google Scholar] [CrossRef]
- Gurnett, D.; Persoon, A.; Kurth, W.; Groene, J.; Averkamp, T.; Dougherty, M.; Southwood, D. The Variable Rotation Peripod of the Inner Region of Saturn’s Plasma Disk. Science 2007, 316, 442–445. [Google Scholar] [CrossRef]
- Zarka, P. Auroral radio emissions at the outer planets: Observations and theories. J. Geophys. Res. 1998, 103, 20159–20194. [Google Scholar] [CrossRef]
- Kaspi, Y.; Galanti, E.; Showman, A.P.; Stevenson, D.J.; Guillot, T.; Iess, L.; Bolton, S.J. Comparison of the Deep Atmospheric Dynamics of Jupiter and Saturn in Light of the Juno and Cassini Gravity Measurements. Space Sci. Rev. 2020, 216, 84. [Google Scholar] [CrossRef]
- Iess, L.; Folkner, W.M.; Durante, D.; Parisi, M.; Kaspi, Y.; Galanti, E.; Guillot, T.; Hubbard, W.B.; Stevenson, D.J.; Anderson, J.D.; et al. Measurement of Jupiter’s asymmetric gravity field. Nature 2018, 555, 220–222. [Google Scholar] [CrossRef]
- Hedman, M.M.; Nicholson, P.D.; El Moutamid, M.; Smotherman, S. Kronoseismology. VI. Reading the recent history of Saturn’s gravity field in its rings. Planet. Sci. J. 2022, 3, 61. [Google Scholar] [CrossRef]
- Galilei, G. Sidereus Nuncius Magna, Longeque Admirabilia Spectacula Pandens Lunae Facie, Fixis Innumeris, Lacteo Circulo, Stellis Nebulosis, … Galileo Galileo: Nuper a se Reperti Beneficio Sunt Observata in Apprime vero in Quatuor Planetis Circa Iovis Stellam Disparibus Intervallis, Atque Periodis, Celeritate Mirabili Circumvolutis … atque Medicea Sidera Nuncupandos Decrevit; Thomas Baglioni: Republic of Venice, 1610. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, Furthermore, Prediction; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2. [Google Scholar]
- Edgington, S.G.; Tapella, R.K.; Beebe, R.F.; Buratti, B.J.; Burton, M.E.; Weld, K.R.; Streiffert, B.A.; Connell, A.M.; Ray, T.L.; Brooks, S.M.; et al. Cassini-Huygens Scientific Legacy: The Cassini Mission Archive at the Planetary Data System. In Proceedings of the 50th Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2019; Lunar and Planetary Institute: Houston, TX, USA, 2019; p. 2932. [Google Scholar]
- Bailen, M.S.; Sucharski, R.M.; Akins, S.W.; Hare, T.M.; Gaddis, L.R. Using the PDS Planetary Image Locator Tool (PILOT) to Identify and Download Spacecraft Data for Research. In Proceedings of the 44th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2013; Lunar and Planetary Institute: Houston, TX, USA, 2013; p. Abstract #2246. [Google Scholar]
- Akins, S.W.; Gaddis, L.; Becker, K.; Barrett, J.; Bailen, M.; Hare, T.; Soderblom, L.A.; Raub, R. Status of the PDS Unified Planetary Coordinates Database and the Planetary Image Locator Tool (PILOT). In Proceedings of the 40th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 23–27 March 2009; Lunar and Planetary Institute: Houston, TX, USA, 2009; p. Abstract #2002. [Google Scholar]
- Hare, T.M.; Akins, S.W.; Sucharski, R.M.; Bailen, M.S.; Anderson, J.A. Map Projection Web Service for PDS Images. In Proceedings of the 44th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2013; Lunar and Planetary Institute: Houston, TX, USA, 2013; p. Abstract #2068. [Google Scholar]
- Akins, S.W.; Hare, T.M.; Sucharski, R.M.; Bailen, M.S.; Gaddis, L.R. POW and MAP2: Job Management and Advanced Processing. In Proceedings of the Second Planetary Data Workshop, Flagstaff, AZ, USA, 8–11 June 2015; Lunar and Planetary Institute: Houston, TX, USA, 2015; p. Abstract #7037. [Google Scholar]
- Sides, S.C.; Becker, T.L.; Becker, K.J.; Edmundson, K.L.; Backer, J.W.; Wilson, T.J.; Weller, L.A.; Humphrey, I.R.; Berry, K.L.; Shepherd, M.R.; et al. The USGS Integrated Software for Imagers and Spectrometers (ISIS 3) Instrument Support, New Capabilities, and Releases. In Proceedings of the 48th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 20–24 March 2017; Lunar and Planetary Institute: Houston, TX, USA, 2017; p. Abstract #2739. [Google Scholar]
- Hare, T.M.; Plesea, L. Planetary GIS Updates for 2007. In Proceedings of the 39th Lunar and Planetary Science Conference; Lunar and Planetary Institute: Houston, TX, USA, 2008; p. Abstract #2536. [Google Scholar]
- Padams, J.; Grimes, K.; Hollins, G.; Lavoie, S.; Stanboli, A. NASA PDS IMG: Accessing Your Planetary Image Data. In Proceedings of the 3rd Planetary Data Workshop, Flagstaff, AZ, USA, 12–15 June 2017; Lunar and Planetary Institute: Houston, TX, USA, 2017; p. Abstract #7114. [Google Scholar]
- Altinok, A.; Bornstein, B.; Estlin, T.; Gaines, D.; Schaffer, S.; Thompson, D.R.; Anderson, R.C.; Burl, M.; Castano, R.; Wiens, R. Automatic Image Analysis for Adaptive Instrument Targeting: Applications to MSL and Mars 2020. In Proceedings of the 45th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 17–21 March 2014; Lunar and Planetary Institute: Houston, TX, USA, 2014; p. Abstract #2871. [Google Scholar]
- Stanboli, A.; Bue, B.; Wagstaff, K.; Altinok, A. Automated Content Detection for Cassini Images. In Proceedings of the 3rd Planetary Data Workshop, Flagstaff, AZ, USA, 12–15 June 2017; Lunar and Planetary Institute: Houston, TX, USA, 2017; p. Abstract #7048. [Google Scholar]
- García-Melendo, E.; Sánchez-Lavega, A. Saturn Zonal Wind Bundle Data Archive. 2011; PDS Atmospheres Node (ATM). [Google Scholar] [CrossRef]
- Koskinen, T. Structure of Saturn’s Thermosphere from Stellar Occultations Bundle Data Archive. 2018; PDS Atmospheres Node (ATM). [Google Scholar] [CrossRef]
- Bernath, P. Laboratory Study of Hydrocarbon IR Spectra Bundle Data Archive. 2022; newblock PDS Atmospheres Node (ATM). [Google Scholar] [CrossRef]
- Newman, C.; Airapetian, V.; Battalio, M.; Bougher, S.; Brown, A.; Domagal-Goldman, S.D.; Fan, S.; Guzewich, S.D.; Heavens, N.G.; Jackson, D.; et al. An Urgently Needed Repository for Planetary Atmospheric Model Output. Bull. Am. Astron. Soc. 2021, 53, 505. [Google Scholar] [CrossRef]
- Final Report of the Planetary Data Ecosystem Independent Review Board. Technical Report, NASA Science Mission Directorate. 2021. Available online: https://science.nasa.gov/science-pink/s3fs-public/atoms/files/PDE%20IRB%20Final%20Report.pdf (accessed on 30 October 2022).
- Hsu, A.I.; Wong, M.H.; Simon, A.A. Lifetimes and Occurrence Rates of Dark Vortices on Neptune from 25 Years of Hubble Space Telescope Images. Astron. J. 2019, 157, 152. [Google Scholar] [CrossRef]
- Clarke, J.T.; Gérard, J.C.; Grodent, D.; Wannawichian, S.; Gustin, J.; Connerney, J.; Crary, F.; Dougherty, M.; Kurth, W.; Cowley, S.W.H.; et al. Morphological differences between Saturn’s ultraviolet aurorae and those of Earth and Jupiter. Nature 2005, 433, 717–719. [Google Scholar] [CrossRef] [Green Version]
- Tollefson, J.; Wong, M.H.; Pater, I.d.; Simon, A.A.; Orton, G.S.; Rogers, J.H.; Atreya, S.K.; Cosentino, R.G.; Januszewski, W.; Morales-Juberías, R.; et al. Changes in Jupiter’s Zonal Wind Profile preceding and during the Juno mission. Icarus 2017, 296, 163–178. [Google Scholar] [CrossRef]
- Karkoschka, E. Spectrophotometry of the Jovian Planets and Titan at 300- to 1000-nm Wavelength: The Methane Spectrum. Icarus 1994, 111, 174–192. [Google Scholar] [CrossRef]
- Karkoschka, E. Spectrophotometry of the Jovian Planets and Titan Data Archive. 1998; newblock PDS Atmospheres Node (ATM). [Google Scholar] [CrossRef]
- Mayorga, L.C.; Jackiewicz, J.; Rages, K.; West, R.A.; Knowles, B.; Lewis, N.; Marley, M.S. Jupiter’s Phase Variations from Cassini: A Testbed for Future Direct-imaging Missions. Astron. J. 2016, 152, 209. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Atreya, S.K.; Steffes, P.G.; Fletcher, L.N.; Guillot, T.; Allison, M.D.; Bolton, S.J.; Helled, R.; Levin, S.; Li, C.; et al. Jupiter’s Temperature Structure: A Reassessment of the Voyager Radio Occultation Measurements. Planet. Sci. J. 2022, 3, 159. [Google Scholar] [CrossRef]
Spacecraft | Instrument | Target | Access DOIs |
---|---|---|---|
Pioneer 10, 11 | Imaging Photopolarimeter (IPP) | J, S | not available * |
Voyager 1 | Imaging Science Subsystem (ISS) | J | https://doi.org/10.17189/1520214 |
S | https://doi.org/10.17189/1520304 | ||
Voyager 2 | ISS | J | https://doi.org/10.17189/1520214 |
S | https://doi.org/10.17189/1520304 | ||
U | https://doi.org/10.17189/1520365 | ||
N | https://doi.org/10.17189/1520412 | ||
Galileo | Solid State Imager (SSI) | J | https://doi.org/10.17189/1520425 |
Near Infrared Mapping Spectrometer (NIMS) | J | https://doi.org/10.17189/1520293 | |
Cassini | Imaging Science Subsystem (ISS) | J | https://doi.org/10.17189/1520210 |
S | https://doi.org/10.17189/1520177 | ||
Visual and Infrared Mapping Spectrometer (VIMS) | J, S | https://doi.org/10.17189/1520275 | |
New Horizons | Long Range Reconnaissance Imager (LORRI) | J | https://doi.org/10.26007/tcne-cm20 |
Multispectral Visible Imaging Camera (MVIC) | https://doi.org/10.26007/xmy5-zx84 | ||
Juno | JunoCam | J | https://doi.org/10.17189/1520191 |
Spacecraft | Instrument | Target | Access DOIs |
---|---|---|---|
Voyager 1 | Ultraviolet Spectrometer (UVS) | J | https://doi.org/10.17189/4p9r-gc87 |
S | https://doi.org/10.17189/8ads-fr53 | ||
Voyager 2 | UVS | J | https://doi.org/10.17189/0w47-dq75 |
S | https://doi.org/10.17189/emh4-v313 | ||
U | https://doi.org/10.17189/fec9-4c64 | ||
N | https://doi.org/10.17189/2e17-9r73 | ||
Galileo | UVS | J | https://doi.org/10.17189/dv1z-cx79 |
https://doi.org/10.17189/8n8q-xf47 | |||
Cassini | Ultraviolet Imaging Spectrograph (UVIS) | J, S | https://doi.org/10.17189/4be3-xq57 |
https://doi.org/10.17189/zzgw-f046 | |||
https://doi.org/10.17189/kthj-r777 | |||
New | Alice Ultraviolet Imaging Spectrograph | J | https://doi.org/10.26007/qfvg-5k41 |
Horizons | Linear Etalon Imaging Spectral Array (LEISA) | J | https://doi.org/10.26007/0cc7-4a49 |
Juno | Ultraviolet Spectrograph (UVS) | J | https://doi.org/10.17189/b29k-pv96 |
https://doi.org/10.17189/c32j-7r56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chanover, N.J.; Bauer, J.M.; Blalock, J.J.; Gordon, M.K.; Huber, L.F.; Mace, M.J.T.; Neakrase, L.D.V.; Tiscareno, M.S.; Walker, R.J. Giant Planet Observations in NASA’s Planetary Data System. Remote Sens. 2022, 14, 6112. https://doi.org/10.3390/rs14236112
Chanover NJ, Bauer JM, Blalock JJ, Gordon MK, Huber LF, Mace MJT, Neakrase LDV, Tiscareno MS, Walker RJ. Giant Planet Observations in NASA’s Planetary Data System. Remote Sensing. 2022; 14(23):6112. https://doi.org/10.3390/rs14236112
Chicago/Turabian StyleChanover, Nancy J., James M. Bauer, John J. Blalock, Mitchell K. Gordon, Lyle F. Huber, Mia J. T. Mace, Lynn D. V. Neakrase, Matthew S. Tiscareno, and Raymond J. Walker. 2022. "Giant Planet Observations in NASA’s Planetary Data System" Remote Sensing 14, no. 23: 6112. https://doi.org/10.3390/rs14236112
APA StyleChanover, N. J., Bauer, J. M., Blalock, J. J., Gordon, M. K., Huber, L. F., Mace, M. J. T., Neakrase, L. D. V., Tiscareno, M. S., & Walker, R. J. (2022). Giant Planet Observations in NASA’s Planetary Data System. Remote Sensing, 14(23), 6112. https://doi.org/10.3390/rs14236112