What the Upper Atmospheres of Giant Planets Reveal
Abstract
:1. Background and Motivation
2. Introduction to Giant Planet Upper Atmospheres
3. Observing Giant Glanet Upper Atmospheres
4. Giant Planet Aurorae
5. Global Upper Atmospheric Weather and Circulation
6. Saturn’s Ring Rain
7. Conclusions and Future
- Are the auroras the main cause of planet-wide heating? Additional global temperature maps recorded over several years could confirm whether or not this is the case by giving a definitive view of Jupiter’s upper-atmospheric climate and reveal the contributions from other heat sources. While global maps of temperature have been used to infer transport through the study of temperature gradients, direct velocity measurements of the equatorward winds could remove much of the remaining doubt about this heat-circulation mechanism. Understanding of global energy balance will also be improved by measuring the magnitude, location and time-variability of heating delivered by other sources, such as from acoustic waves of storms below (e.g., the GRS at Jupiter).
- Do auroras redistribute heat at Uranus, Neptune and exoplanets, as they appear to do at Jupiter and Saturn? Observations of Uranus and Neptune at high spatial resolution can answer these questions, although Neptune’s upper atmosphere is (so far) impossible to observe from the vicinity of Earth. Measurements of exoplanetary H could be used to determine if giant planet upper-atmospheric temperatures are chiefly driven by mechanisms local to the planet, as opposed to stellar heating, if they can be shown to have anomalously high temperatures despite being separated a great distance from their parent star.
- Why do the temperatures of the upper atmospheres of Saturn and Uranus change slowly over long time scales (several years to decades)? Yearly observations taken over decades are important for understanding the apparent seasonal trends in temperature seen at these worlds. Global circulation models can also be improved for all planets by including new physics (such as wave-damping [97]), which can then be used to make testable predictions about future temperatures.
- What is the seasonal variability of Saturn’s ring rain and the equatorial influx? Determining the likely large variation of influx is essential for understanding the evolution and lifetime of the ring system. Ring grain charging by solar EUV increases when the rings are fully exposed to the Sun during solstice and decreases during equinox. Long-term observations can be used to derive the (likely) varying influx of material as a function of latitude and season. The equatorial influx may also vary over the long-term, but owing to the equatorial region being obscured by the rings this is only possible near solstice (from Earth-based platforms).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burke, B.F.; Franklin, K.L. Observations of a Variable Radio Source Associated with the Planet Jupiter. J. Geophys. Res. 1955, 60, 213–217. [Google Scholar] [CrossRef]
- Clarke, J.T.; Grodent, D.; Cowley, S.W.H.; Bunce, E.J.; Zarka, P.; Connerney, J.E.P.; Satoh, T. Jupiter’s aurora. Jupiter Planet Satell. Magnetos. 2004, 1, 639–670. [Google Scholar]
- Yelle, R.V.; Miller, S. Jupiter’s thermosphere and ionosphere. In Jupiter. The Planet, Satellites and Magnetosphere; Cambridge University Press: Cambridge, UK, 2004; pp. 185–218. [Google Scholar]
- Melin, H.; Badman, S.V.; Stallard, T.S.; Cowley, S.W.H.; Dyudina, U.; Nichols, J.D.; Provan, G.; O’Donoghue, J.; Pryor, W.R.; Baines, K.H.; et al. Simultaneous multi-scale and multi-instrument observations of Saturn’s aurorae during the 2013 observing campaign. Icarus 2016, 263, 56–74. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, A.; Gladstone, G.R. Auroral emissions of the giant planets. Rev. Geophys. 2000, 38, 295–354. [Google Scholar] [CrossRef] [Green Version]
- Stallard, T.S.; Burrell, A.G.; Melin, H.; Fletcher, L.N.; Miller, S.; Moore, L.; O’Donoghue, J.; Connerney, J.E.P.; Satoh, T.; Johnson, R.E. Identification of Jupiter’s magnetic equator through H ionospheric emission. Nat. Astron. 2018, 2, 773–777. [Google Scholar] [CrossRef]
- Stallard, T.; Miller, S.; Ballester, G.E.; Rego, D.; Joseph, R.D.; Trafton, L.M. The H Latitudinal Profile of Saturn. Astrophys. J. 1999, 521, L149–L152. [Google Scholar] [CrossRef]
- Lam, H.A.; Miller, S.; Joseph, R.D.; Geballe, T.R.; Trafton, L.M.; Tennyson, J.; Ballester, G.E. Variation in the H Emission of Uranus. Astrophys. J. 1997, 474, L73–L76. [Google Scholar] [CrossRef] [Green Version]
- Herbert, F. Aurora and magnetic field of Uranus. J. Geophys. Res. (Space Phys.) 2009, 114, A11206. [Google Scholar] [CrossRef]
- Melin, H.; Stallard, T.S.; Miller, S.; Geballe, T.R.; Trafton, L.M.; O’Donoghue, J. Post-equinoctial observations of the ionosphere of Uranus. Icarus 2013, 223, 741–748. [Google Scholar] [CrossRef]
- Satoh, T.; Connerney, J.E.P. Jupiter’s H Emissions Viewed in Corrected Jovimagnetic Coordinates. Icarus 1999, 141, 236–252. [Google Scholar] [CrossRef]
- Melin, H. Comparative Aeronomy of the Upper Atmospheres of the Giant Planets; University College London: London, UK, 2006. [Google Scholar]
- Mura, A.; Adriani, A.; Altieri, F.; Connerney, J.E.P.; Bolton, S.J.; Moriconi, M.L.; Gérard, J.C.; Kurth, W.S.; Dinelli, B.M.; Fabiano, F.; et al. Infrared observations of Jovian aurora from Juno’s first orbits: Main oval and satellite footprints. Geophys. Res. Lett. 2017, 44, 5308–5316. [Google Scholar] [CrossRef]
- Pryor, W.R.; Rymer, A.M.; Mitchell, D.G.; Hill, T.W.; Young, D.T.; Saur, J.; Jones, G.H.; Jacobsen, S.; Cowley, S.W.H.; Mauk, B.H.; et al. The auroral footprint of Enceladus on Saturn. Nature 2011, 472, 331–333. [Google Scholar] [CrossRef] [PubMed]
- Melin, H. The upper atmospheres of Uranus and Neptune. Phil. Trans. Roy. Soc. Lond. Ser. A 2020, 378, 20190478. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.; Galand, M.; Kliore, A.J.; Nagy, A.F.; O’Donoghue, J. Saturn’s Ionosphere; Cambridge University Press: Cambridge, UK, 2018; pp. 196–223. [Google Scholar] [CrossRef]
- Moore, L.; Melin, H.; O’Donoghue, J.; Stallard, T.S.; Moses, J.I.; Galand, M.; Miller, S.; Schmidt, C.A. Modelling H in planetary atmospheres: Effects of vertical gradients on observed quantities. Philos. Trans. R. Soc. Lond. Ser. A 2019, 377, 20190067. [Google Scholar] [CrossRef] [Green Version]
- Moore, L.; Moses, J.I.; Melin, H.; Stallard, T.S.; O’Donoghue, J. Atmospheric implications of the lack of H detection at Neptune. Philos. Trans. R. Soc. Lond. Ser. A 2020, 378, 20200100. [Google Scholar] [CrossRef]
- O’Donoghue, J.; Stallard, T.S.; Melin, H.; Jones, G.H.; Cowley, S.W.H.; Miller, S.; Baines, K.H.; Blake, J.S.D. The domination of Saturn’s low-latitude ionosphere by ring ‘rain’. Nature 2013, 496, 193–195. [Google Scholar] [CrossRef] [Green Version]
- Stallard, T.; Miller, S.; Melin, H.; Lystrup, M.; Cowley, S.W.H.; Bunce, E.J.; Achilleos, N.; Dougherty, M. Jovian-like aurorae on Saturn. Nature 2008, 453, 1083–1085. [Google Scholar] [CrossRef]
- Tao, C.; Badman, S.V.; Fujimoto, M. UV and IR auroral emission model for the outer planets: Jupiter and Saturn comparison. Icarus 2011, 213, 581–592. [Google Scholar] [CrossRef]
- Melin, H.; Miller, S.; Stallard, T.; Smith, C.; Grodent, D. Estimated energy balance in the jovian upper atmosphere during an auroral heating event. Icarus 2006, 181, 256–265. [Google Scholar] [CrossRef]
- Johnson, R.E.; Melin, H.; Stallard, T.S.; Tao, C.; Nichols, J.D.; Chowdhury, M.N. Mapping H Temperatures in Jupiter’s Northern Auroral Ionosphere Using VLT-CRIRES. J. Geophys. Res. (Space Phys.) 2018, 123, 5990–6008. [Google Scholar] [CrossRef]
- O’Donoghue, J.; Stallard, T.S.; Melin, H.; Cowley, S.W.H.; Badman, S.V.; Moore, L.; Miller, S.; Tao, C.; Baines, K.H.; Blake, J.S.D. Conjugate observations of Saturn’s northern and southern H aurorae. Icarus 2014, 229, 214–220. [Google Scholar] [CrossRef]
- Melin, H.; Stallard, T.S.; O’Donoghue, J.; Badman, S.V.; Miller, S.; Blake, J.S.D. On the anticorrelation between H temperature and density in giant planet ionospheres. Mon. Not. R. Astron. Soc. 2014, 438, 1611–1617. [Google Scholar] [CrossRef] [Green Version]
- Gaidos, E.; Yung, Y. Evolution of earth’s atmosphere. In Encyclopedia of Atmospheric Sciences; Holton, J.R., Ed.; Academic Press: Oxford, UK, 2003; pp. 762–767. [Google Scholar] [CrossRef]
- Miller, S.; Stallard, T.; Smith, C.; Millward, G.; Melin, H.; Lystrup, H.; Aylward, A. H: The driver of giant planet atmospheres. Phil. Trans. R. Soc. Lond. 2006, 364, 3121–3137. [Google Scholar] [CrossRef]
- Miller, S.; Tennyson, J.; Geballe, T.R.; Stallard, T. Thirty years of H astronomy. Rev. Mod. Phys. 2020, 92, 035003. [Google Scholar] [CrossRef]
- Oka, T. Interstellar Chemistry Special Feature: Interstellar H. Proc. Natl. Acad. Sci. USA 2006, 103, 12235–12242. [Google Scholar] [CrossRef] [Green Version]
- Moore, L.; O’Donoghue, J.; Müller-Wodarg, I.; Galand, M.; Mendillo, M. Saturn ring rain: Model estimates of water influx into Saturn’s atmosphere. Icarus 2015, 245, 355–366. [Google Scholar] [CrossRef] [Green Version]
- Stallard, T.; Miller, S.; Millward, G.; Joseph, R.D. On the Dynamics of the Jovian Ionosphere and Thermosphere. I. The Measurement of Ion Winds. Icarus 2001, 154, 475–491. [Google Scholar] [CrossRef]
- Stallard, T.; Miller, S.; Millward, G.; Joseph, R.D. On the Dynamics of the Jovian Ionosphere and Thermosphere. II. The Measurement of H Vibrational Temperature, Column Density, and Total Emission. Icarus 2002, 156, 498–514. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.; Joseph, R.D.; Tennyson, J. Infrared emissions of H in the atmosphere of Jupiter in the 2.1 and 4.0 micron region. Astrophys. J. 1990, 360, L55–L58. [Google Scholar] [CrossRef]
- Moore, L.; Galand, M.; Mueller-Wodarg, I.; Yelle, R.; Mendillo, M. Plasma temperatures in Saturn’s ionosphere. J. Geophys. Res. (Space Phys.) 2008, 113, 10306. [Google Scholar] [CrossRef]
- Drossart, P.; Maillard, J.P.; Caldwell, J.; Kim, S.J.; Watson, J.K.G.; Majewski, W.A.; Tennyson, J.; Miller, S.; Atreya, S.K.; Clarke, J.T.; et al. Detection of H on Jupiter. Nature 1989, 340, 539–541. [Google Scholar] [CrossRef] [Green Version]
- Ballester, G.E.; Miller, S.; Tennyson, J.; Trafton, L.M.; Geballe, T.R. Latitudinal Temperature Variations of Jovian H. Icarus 1994, 107, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Geballe, T.R.; Jagod, M.F.; Oka, T. Detection of H Infrared Emission Lines in Saturn. Astrophys. J. 1993, 408, L109. [Google Scholar] [CrossRef]
- O’Donoghue, J.; Moore, L.; Connerney, J.; Melin, H.; Stallard, T.S.; Miller, S.; Baines, K.H. Observations of the chemical and thermal response of ’ring rain’ on Saturn’s ionosphere. Icarus 2019, 322, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Trafton, L.M.; Geballe, T.R.; Miller, S.; Tennyson, J.; Ballester, G.E. The Detection of H in Uranus’ Atmosphere. AAS/Division for Planetary Sciences Meeting Abstracts #24. Bull. Am. Astron. Soc. 1993, 24, 989. [Google Scholar]
- Feuchtgruber, H.; Encrenaz, T. The infrared spectrum of Neptune at 3.5-4.1 microns: Search for H and evidence for recent meteorological variations. Astron. Astrophys. 2003, 403, L7–L10. [Google Scholar] [CrossRef] [Green Version]
- Melin, H.; Stallard, T.; Miller, S.; Lystrup, M.B.; Trafton, L.M.; Booth, T.C.; Rivers, C. New limits on H abundance on Neptune using Keck NIRSPEC. Mon. Not. R. Ast. Soc. 2011, 410, 641–644. [Google Scholar] [CrossRef] [Green Version]
- Melin, H.; Fletcher, L.N.; Stallard, T.S.; Johnson, R.E.; O’Donoghue, J.; Moore, L.; Donnelly, P.T. The quest for H at Neptune: Deep burn observations with NASA IRTF iSHELL. Mon. Not. R. Ast. Soc. 2018, 474, 3714–3719. [Google Scholar] [CrossRef]
- Moos, H.W.; Fastie, W.G.; Bottema, M. Rocket Measurement of Ultraviolet Spectra of Venus and Jupiter Between 1200 and 1800 Å. Astrophys. J. 1969, 155, 887. [Google Scholar] [CrossRef]
- Gérard, J.C.; Gkouvelis, L.; Bonfond, B.; Gladstone, G.R.; Mura, A.; Adriani, A.; Grodent, D.; Hue, V.; Greathouse, T.K. H cooling in the Jovian aurora: Juno remote sensing observations and modeling. Icarus 2023, 389, 115261. [Google Scholar] [CrossRef]
- Melin, H.; Stallard, T.S. Jupiter’s hydrogen bulge: A Cassini perspective. Icarus 2016, 278, 238–247. [Google Scholar] [CrossRef] [Green Version]
- Uno, T.; Kasaba, Y.; Tao, C.; Sakanoi, T.; Kagitani, M.; Fujisawa, S.; Kita, H.; Badman, S.V. Vertical emissivity profiles of Jupiter’s northern H and H2 infrared auroras observed by Subaru/IRCS. J. Geophys. Res. 2014, 119, 10219–10241. [Google Scholar] [CrossRef] [Green Version]
- Lam, H.A.; Achilleos, N.; Miller, S.; Tennyson, J.; Trafton, L.M.; Geballe, T.R.; Ballester, G.E. A Baseline Spectroscopic Study of the Infrared Auroras of Jupiter. Icarus 1997, 127, 379–393. [Google Scholar] [CrossRef] [Green Version]
- Dunn, W.R.; Branduardi-Raymont, G.; Ray, L.C.; Jackman, C.M.; Kraft, R.P.; Elsner, R.F.; Rae, I.J.; Yao, Z.; Vogt, M.F.; Jones, G.H.; et al. The independent pulsations of Jupiter’s northern and southern X-ray auroras. Nat. Astron. 2017, 1, 758–764. [Google Scholar] [CrossRef] [Green Version]
- Dunn, W.R.; Ness, J.U.; Lamy, L.; Tremblay, G.R.; Branduardi-Raymont, G.; Snios, B.; Kraft, R.P.; Yao, Z.; Wibisono, A.D. A Low Signal Detection of X Rays From Uranus. J. Geophys. Res. (Space Phys.) 2021, 126, e28739. [Google Scholar] [CrossRef]
- Weigt, D.M.; Dunn, W.R.; Jackman, C.M.; Kraft, R.; Branduardi-Raymont, G.; Nichols, J.D.; Wibisono, A.D.; Vogt, M.F.; Gladstone, G.R. Searching for Saturn’s X-rays during a rare Jupiter Magnetotail crossing using Chandra. Mon. Not. R. Astron. Soc. 2021, 506, 298–305. [Google Scholar] [CrossRef]
- Strobel, D.F.; Koskinen, T.T.; Müller-Wodarg, I. Saturn’s Variable Thermosphere. In Saturn in the 21st Century; Baines, K.H., Flasar, F.M., Krupp, N., Stallard, T., Eds.; Cambridge Planetary Science, Cambridge University Press: Cambridge, UK, 2018; pp. 224–250. [Google Scholar] [CrossRef]
- Kliore, A.J.; Nagy, A.F.; Marouf, E.A.; Anabtawi, A.; Barbinis, E.; Fleischman, D.U.; Kahan, D.S. Midlatitude and high-latitude electron density profiles in the ionosphere of Saturn obtained by Cassini radio occultation observations. J. Geophys. Res. (Space Phys.) 2009, 114, A04315. [Google Scholar] [CrossRef] [Green Version]
- Kurth, W.S.; Imai, M.; Hospodarsky, G.B.; Gurnett, D.A.; Louarn, P.; Valek, P.; Allegrini, F.; Connerney, J.E.P.; Mauk, B.H.; Bolton, S.J.; et al. A new view of Jupiter’s auroral radio spectrum. Geophys. Res. Lett. 2017, 44, 7114–7121. [Google Scholar] [CrossRef] [Green Version]
- Lamy, L.; Zarka, P.; Cecconi, B.; Prangé, R.; Kurth, W.S.; Hospodarsky, G.; Persoon, A.; Morooka, M.; Wahlund, J.E.; Hunt, G.J. The low-frequency source of Saturn’s kilometric radiation. Science 2018, 362, aat2027. [Google Scholar] [CrossRef]
- Lamy, L.; Prangé, R.; Tao, C.; Kim, T.; Badman, S.V.; Zarka, P.; Cecconi, B.; Kurth, W.S.; Pryor, W.; Bunce, E.; et al. Saturn’s Northern Aurorae at Solstice From HST Observations Coordinated With Cassini’s Grand Finale. Geophys. Res. Lett. 2018, 45, 9353–9362. [Google Scholar] [CrossRef] [Green Version]
- Martos, Y.M.; Imai, M.; Connerney, J.E.P.; Kotsiaros, S.; Kurth, W.S. Juno Reveals New Insights Into Io-Related Decameter Radio Emissions. J. Geophys. Res. (Planets) 2020, 125, e06415. [Google Scholar] [CrossRef]
- Bunce, E.J.; Arridge, C.S.; Clarke, J.T.; Coates, A.J.; Cowley, S.W.H.; Dougherty, M.K.; Gérard, J.C.; Grodent, D.; Hansen, K.C.; Nichols, J.D.; et al. Origin of Saturn’s aurora: Simultaneous observations by Cassini and the Hubble Space Telescope. J. Geophys. Res. 2008, 113, 9209. [Google Scholar] [CrossRef] [Green Version]
- Kollmann, P.; Cohen, I.; Allen, R.C.; Clark, G.; Roussos, E.; Vines, S.; Dietrich, W.; Wicht, J.; de Pater, I.; Runyon, K.D.; et al. Magnetospheric Studies: A Requirement for Addressing Interdisciplinary Mysteries in the Ice Giant Systems. Space Sci. Rev. 2020, 216, 78. [Google Scholar] [CrossRef]
- Cowley, S.W.H.; Alexeev, I.I.; Belenkaya, E.S.; Bunce, E.J.; Cottis, C.E.; Kalegaev, V.V.; Nichols, J.D.; Prangé, R.; Wilson, F.J. A simple axisymmetric model of magnetosphere-ionosphere coupling currents in Jupiter’s polar ionosphere. J. Geophys. Res. 2005, 110, 11209. [Google Scholar] [CrossRef] [Green Version]
- Cowley, S.W.H.; Arridge, C.S.; Bunce, E.J.; Clarke, J.T.; Coates, A.J.; Dougherty, M.K.; Gérard, J.C.; Grodent, D.; Nichols, J.D.; Talboys, D.L. Auroral current systems in Saturn’s magnetosphere: Comparison of theoretical models with Cassini and HST observations. Ann. Geophys. 2008, 26, 2613–2630. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.E.; Stallard, T.S.; Melin, H.; Nichols, J.D.; Cowley, S.W.H. Jupiter’s polar ionospheric flows: High resolution mapping of spectral intensity and line-of-sight velocity of H ions. J. Geophys. Res. (Space Phys.) 2017, 122, 7599–7618. [Google Scholar] [CrossRef]
- Grodent, D.; Bonfond, B.; GéRard, J.C.; Radioti, A.; Gustin, J.; Clarke, J.T.; Nichols, J.; Connerney, J.E.P. Auroral evidence of a localized magnetic anomaly in Jupiter’s northern hemisphere. J. Geophys. Res. 2008, 113, 9201. [Google Scholar] [CrossRef] [Green Version]
- Nichols, J.D.; Bunce, E.J.; Clarke, J.T.; Cowley, S.W.H.; Gérard, J.C.; Grodent, D.; Pryor, W.R. Response of Jupiter’s UV auroras to interplanetary conditions as observed by the Hubble Space Telescope during the Cassini flyby campaign. J. Geophys. Res. (Space Phys.) 2007, 112, A02203. [Google Scholar] [CrossRef] [Green Version]
- Grodent, D.; Bonfond, B.; Yao, Z.; Gérard, J.C.; Radioti, A.; Dumont, M.; Palmaerts, B.; Adriani, A.; Badman, S.V.; Bunce, E.J.; et al. Jupiter’s Aurora Observed With HST During Juno Orbits 3 to 7. J. Geophys. Res. (Space Phys.) 2018, 123, 3299–3319. [Google Scholar] [CrossRef]
- Bonfond, B.; Yao, Z.H.; Gladstone, G.R.; Grodent, D.; Gérard, J.C.; Matar, J.; Palmaerts, B.; Greathouse, T.K.; Hue, V.; Versteeg, M.H.; et al. Are Dawn Storms Jupiter’s Auroral Substorms? AGU Adv. 2021, 2, e00275. [Google Scholar] [CrossRef]
- Clarke, J.T.; Nichols, J.; Gérard, J.C.; Grodent, D.; Hansen, K.C.; Kurth, W.; Gladstone, G.R.; Duval, J.; Wannawichian, S.; Bunce, E.; et al. Response of Jupiter’s and Saturn’s auroral activity to the solar wind. J. Geophys. Res. (Space Phys.) 2009, 114, 5210. [Google Scholar] [CrossRef]
- Kita, H.; Kimura, T.; Tao, C.; Tsuchiya, F.; Misawa, H.; Sakanoi, T.; Kasaba, Y.; Murakami, G.; Yoshioka, K.; Yamazaki, A.; et al. Characteristics of solar wind control on Jovian UV auroral activity deciphered by long-term Hisaki EXCEED observations: Evidence of preconditioning of the magnetosphere? Geophys. Res. Lett. 2016, 43, 6790–6798. [Google Scholar] [CrossRef] [Green Version]
- Tao, C.; Kimura, T.; Kronberg, E.A.; Tsuchiya, F.; Murakami, G.; Yamazaki, A.; Vogt, M.F.; Bonfond, B.; Yoshioka, K.; Yoshikawa, I.; et al. Variation of Jupiter’s Aurora Observed by Hisaki/EXCEED: 4. Quasi Periodic Variation. J. Geophys. Res. (Space Phys.) 2021, 126, e28575. [Google Scholar] [CrossRef]
- Badman, S.V.; Bonfond, B.; Fujimoto, M.; Gray, R.L.; Kasaba, Y.; Kasahara, S.; Kimura, T.; Melin, H.; Nichols, J.D.; Steffl, A.J.; et al. Weakening of Jupiter’s main auroral emission during January 2014. Geophys. Res. Lett. 2016, 43, 988–997. [Google Scholar] [CrossRef] [Green Version]
- Badman, S.V.; Cowley, S.W.H.; Gérard, J.C.; Grodent, D. A statistical analysis of the location and width of Saturn’s southern auroras. Ann. Geophys. 2006, 24, 3533–3545. [Google Scholar] [CrossRef] [Green Version]
- Badman, S.V.; Tao, C.; Grocott, A.; Kasahara, S.; Melin, H.; Brown, R.H.; Baines, K.H.; Fujimoto, M.; Stallard, T. Cassini VIMS observations of latitudinal and hemispheric variations in Saturn’s infrared auroral intensity. Icarus 2011, 216, 367–375. [Google Scholar] [CrossRef]
- Burton, M.E.; Dougherty, M.K.; Russell, C.T. Saturn’s internal planetary magnetic field. J. Geophys. Res. 2010, 37, 24105. [Google Scholar] [CrossRef]
- Melin, H.; Miller, S.; Stallard, T.; Trafton, L.M.; Geballe, T.R. Variability in the H emission of Saturn: Consequences for ionisation rates and temperature. Icarus 2007, 186, 234–241. [Google Scholar] [CrossRef]
- Stallard, T.S.; Melin, H.; Miller, S.; O’ Donoghue, J.; Cowley, S.W.H.; Badman, S.; Adriani, A.; Brown, R.H.; Baines, K.H. Temperature changes and energy inputs in giant planet atmospheres: What we are learning from H. Phil. Trans. R. Soc. 2012, 370, 5213–5224. [Google Scholar] [CrossRef]
- O’Donoghue, J.; Melin, H.; Stallard, T.S.; Provan, G.; Moore, L.; Badman, S.V.; Cowley, S.W.H.; Baines, K.H.; Miller, S.; Blake, J.S.D. Ground-based observations of Saturn’s auroral ionosphere over three days: Trends in H temperature, density and emission with Saturn local time and planetary period oscillation. Icarus 2016, 263, 44–55. [Google Scholar] [CrossRef] [Green Version]
- Nichols, J.D.; Badman, S.V.; Bunce, E.J.; Clarke, J.T.; Cowley, S.W.H.; Crary, F.J.; Dougherty, M.K.; Gérard, J.C.; Grodent, D.; Hansen, K.C.; et al. Saturn’s equinoctial auroras. Geophys. Res. Lett. 2009, 36, 24102. [Google Scholar] [CrossRef] [Green Version]
- Stallard, T.S.; Miller, S.; Trafton, L.M.; Geballe, T.R.; Joseph, R.D. Ion winds in Saturn’s southern auroral/polar region. Icarus 2004, 167, 204–211. [Google Scholar] [CrossRef]
- Chowdhury, M.N.; Stallard, T.S.; Melin, H.; Johnson, R.E. Exploring Key Characteristics in Saturn’s Infrared Auroral Emissions Using VLT-CRIRES: H Intensities, Ion Line-of-Sight Velocities, and Rotational Temperatures. Geophys. Res. Lett. 2019, 46, 7137–7146. [Google Scholar] [CrossRef] [Green Version]
- Stallard, T.S.; Baines, K.H.; Melin, H.; Bradley, T.J.; Moore, L.; O’Donoghue, J.; Miller, S.; Chowdhury, M.N.; Badman, S.V.; Allison, H.J.; et al. Local-time averaged maps of H emission, temperature and ion winds. Phil. Trans. R. Soc. A 2019, 377, 20180405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurnett, D.A.; Kurth, W.S.; Hospodarsky, G.B.; Persoon, A.M.; Averkamp, T.F.; Cecconi, B.; Lecacheux, A.; Zarka, P.; Canu, P.; Cornilleau-Wehrlin, N.; et al. Radio and Plasma Wave Observations at Saturn from Cassini’s Approach and First Orbit. Science 2005, 307, 1255–1259. [Google Scholar] [CrossRef]
- Hunt, G.J.; Cowley, S.W.H.; Provan, G.; Bunce, E.J.; Alexeev, I.I.; Belenkaya, E.S.; Kalegaev, V.V.; Dougherty, M.K.; Coates, A.J. Field-aligned currents in Saturn’s southern nightside magnetosphere: Sub-corotation and planetary period oscillation components. J. Geophys. Res. 2014, 119, 9847–9899. [Google Scholar] [CrossRef] [Green Version]
- Carbary, J.F.; Hedman, M.M.; Hill, T.W.; Jia, X.; Kurth, W.; Lamy, L.; Provan, G. The Mysterious Periodicities of Saturn. In Saturn in the 21st Century; Baines, K.H., Flasar, F.M., Krupp, N., Stallard, T., Eds.; Cambridge University Press: Cambridge, UK, 2018; pp. 97–125. [Google Scholar] [CrossRef]
- Chowdhury, M.N.; Stallard, T.S.; Baines, K.H.; Provan, G.; Melin, H.; Hunt, G.J.; Moore, L.; O’Donoghue, J.; Thomas, E.M.; Wang, R.; et al. Saturn’s Weather-Driven Aurorae Modulate Oscillations in the Magnetic Field and Radio Emissions. Geophys. Res. Lett. 2022, 49, e96492. [Google Scholar] [CrossRef]
- Smith, C.G.A. A Saturnian cam current system driven by asymmetric thermospheric heating. Mon. Not. R. Ast. Soc. 2011, 410, 2315–2328. [Google Scholar] [CrossRef]
- Palmroth, M.; Grandin, M.; Sarris, T.; Doornbos, E.; Tourgaidis, S.; Aikio, A.; Buchert, S.; Clilverd, M.; Dandouras, I.; Heelis, R.; et al. Lower thermosphere–ionosphere (LTI) quantities: Current status of measuring techniques and models. Ann. Geophys. 2021, 39, 189–237. [Google Scholar] [CrossRef]
- Koskinen, T.T.; Sandel, B.R.; Yelle, R.V.; Strobel, D.F.; Müller-Wodarg, I.C.F.; Erwin, J.T. Saturn’s variable thermosphere from Cassini/UVIS occultations. Icarus 2015, 260, 174–189. [Google Scholar] [CrossRef]
- Strobel, D.F.; Smith, G.R. On the temperature of the Jovian thermosphere. J. Atmos. Sci. 1973, 30, 718–725. [Google Scholar] [CrossRef]
- Smith, C.G.A.; Aylward, A.D.; Millward, G.H.; Miller, S.; Moore, L.E. An unexpected cooling effect in Saturn’s upper atmosphere. Nature 2007, 445, 399–401. [Google Scholar] [CrossRef] [PubMed]
- Yates, J.N.; Ray, L.C.; Achilleos, N.; Witasse, O.; Altobelli, N. Magnetosphere-Ionosphere-Thermosphere Coupling at Jupiter Using a Three-Dimensional Atmospheric General Circulation Model. J. Geophys. Res. (Space Phys.) 2020, 125, e26792. [Google Scholar] [CrossRef] [Green Version]
- Hickey, M.P.; Walterscheid, R.L.; Schubert, G. Gravity Wave Heating and Cooling in Jupiter’s Thermosphere. Icarus 2000, 148, 266–281. [Google Scholar] [CrossRef]
- Matcheva, K.I.; Strobel, D.F. Heating of Jupiter’s Thermosphere by Dissipation of Gravity Waves Due to Molecular Viscosity and Heat Conduction. Icarus 1999, 140, 328–340. [Google Scholar] [CrossRef]
- Walterscheid, R.L.; Schubert, G.; Brinkman, D.G. Acoustic waves in the upper mesosphere and lower thermosphere generated by deep tropical convection. J. Geophys. Res. 2003, 108, 1392. [Google Scholar] [CrossRef]
- O’Donoghue, J.; Moore, L.; Stallard, T.S.; Melin, H. Heating of Jupiter’s upper atmosphere above the Great Red Spot. Nature 2016, 536, 190–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donoghue, J.; Moore, L.; Bhakyapaibul, T.; Melin, H.; Stallard, T.; Connerney, J.E.P.; Tao, C. Global upper-atmospheric heating on Jupiter by the polar aurorae. Nature 2021, 596, 54–57. [Google Scholar] [CrossRef]
- Koskinen, T.T.; Sandel, B.R.; Yelle, R.V.; Capalbo, F.J.; Holsclaw, G.M.; McClintock, W.E.; Edgington, S. The density and temperature structure near the exobase of Saturn from Cassini UVIS solar occultations. Icarus 2013, 226, 1318–1330. [Google Scholar] [CrossRef]
- Brown, Z.; Koskinen, T.; Müller-Wodarg, I.; West, R.; Jouchoux, A.; Esposito, L. A pole-to-pole pressure-temperature map of Saturn’s thermosphere from Cassini Grand Finale data. Nat. Astron. 2020, 4, 872–879. [Google Scholar] [CrossRef]
- Müller-Wodarg, I.C.F.; Koskinen, T.T.; Moore, L.; Serigano, J.; Yelle, R.V.; Hörst, S.; Waite, J.H.; Mendillo, M. Atmospheric Waves and Their Possible Effect on the Thermal Structure of Saturn’s Thermosphere. Geophys. Res. Lett. 2019, 46, 2372–2380. [Google Scholar] [CrossRef] [Green Version]
- Melin, H.; Stallard, T.; Miller, S.; Trafton, L.M.; Encrenaz, T.; Geballe, T.R. Seasonal Variability in the Ionosphere of Uranus. Astrophys. J. 2011, 729, 134. [Google Scholar] [CrossRef] [Green Version]
- Melin, H.; Fletcher, L.N.; Stallard, T.S.; Miller, S.; Trafton, L.M.; Moore, L.; O’Donoghue, J.; Vervack, R.J.; Dello Russo, N.; Lamy, L.; et al. The H ionosphere of Uranus: Decades-long cooling and local-time morphology. Philos. Trans. R. Soc. Lond. Ser. A 2019, 377, 20180408. [Google Scholar] [CrossRef] [Green Version]
- Cowley, S.W.H. Response of Uranus’ auroras to solar wind compressions at equinox. J. Geophys. Res. (Space Phys.) 2013, 118, 2897–2902. [Google Scholar] [CrossRef] [Green Version]
- Lamy, L. Auroral emissions from Uranus and Neptune. Phil. Trans. R. Soc. Lond. Ser. A 2020, 378, 20190481. [Google Scholar] [CrossRef]
- Lellouch, E.; Moreno, R.; Paubert, G. A dual origin for Neptune’s carbon monoxide? Astron. Astrophys. 2005, 430, L37–L40. [Google Scholar] [CrossRef]
- Zebker, H.A.; Marouf, E.A.; Tyler, G.L. Saturn’s rings—Particle size distributions for thin layer model. Icarus 1985, 64, 531–548. [Google Scholar] [CrossRef]
- Cuzzi, J.; Clark, R.; Filacchione, G.; French, R.; Johnson, R.; Marouf, E.; Spilker, L. Ring Particle Composition and Size Distribution. In Saturn from Cassini-Huygens; Springer: Dordrecht, The Netherlands, 2009; p. 459. [Google Scholar] [CrossRef]
- Connerney, J. Solar system: Saturn’s ring rain. Nature 2013, 496, 178–179. [Google Scholar] [CrossRef]
- Northrop, T.G.; Hill, J.R. Stability of negatively charged dust grains in Saturn’s ring plane. J. Geophys. Res. 1982, 87, 6045–6051. [Google Scholar] [CrossRef]
- Northrop, T.G.; Connerney, J.E.P. A micrometeorite erosion model and the age of Saturn’s rings. Icarus 1987, 70, 124–137. [Google Scholar] [CrossRef]
- Kliore, A.J.; Patel, I.R.; Lindal, G.F.; Sweetnam, D.N.; Hotz, H.B.; Waite, J.H.; McDonough, T. Structure of the ionosphere and atmosphere of Saturn from Pioneer 11 Saturn radio occultation. J. Geophys. Res. 1980, 85, 5857–5870. [Google Scholar] [CrossRef]
- Atreya, S.K.; Donahue, T.M.; Nagy, A.F.; Waite, J.H., Jr.; McConnell, J.C. Theory, measurements, and models of the upper atmosphere and ionosphere of Saturn. In Saturn; University of Arizona Press: Tucson, AZ, USA, 1984; pp. 239–277. [Google Scholar]
- Kliore, A.J.; Nagy, A.; Asmar, S.; Anabtawi, A.; Barbinis, E.; Fleischman, D.; Kahan, D.; Klose, J. The ionosphere of Saturn as observed by the Cassini Radio Science System. Geophys. Res. Lett. 2014, 41, 5778–5782. [Google Scholar] [CrossRef] [Green Version]
- Northrop, T.G.; Hill, J.R. The inner edge of Saturn’s B ring. J. Geophys. Res. 1983, 88, 6102–6108. [Google Scholar] [CrossRef]
- Connerney, J.E.P.; Waite, J.H. New model of Saturn’s ionosphere with an influx of water from the rings. Nature 1984, 312, 136–138. [Google Scholar] [CrossRef]
- Dougherty, M.K.; Khurana, K.K.; Neubauer, F.M.; Russell, C.T.; Saur, J.; Leisner, J.S.; Burton, M.E. Identification of a Dynamic Atmosphere at Enceladus with the Cassini Magnetometer. Science 2006, 311, 1406–1409. [Google Scholar] [CrossRef] [Green Version]
- Moses, J.I.; Bass, S.F. The effects of external material on the chemistry and structure of Saturn’s ionosphere. J. Geophys. Res. 2000, 105, 7013–7052. [Google Scholar] [CrossRef]
- Prangé, R.; Fouchet, T.; Courtin, R.; Connerney, J.E.P.; McConnell, J.C. Latitudinal variation of Saturn photochemistry deduced from spatially-resolved ultraviolet spectra. Icarus 2006, 180, 379–392. [Google Scholar] [CrossRef]
- O’Donoghue, J.; Moore, L.; Connerney, J.E.P.; Melin, H.; Stallard, T.S.; Miller, S.; Baines, K.H. Redetection of the Ionospheric H Signature of Saturn’s “Ring Rain”. Geophys. Res. Lett. 2017, 44, 11. [Google Scholar] [CrossRef]
- Hsu, H.W.; Schmidt, J.; Kempf, S.; Postberg, F.; Moragas-Klostermeyer, G.; Seiß, M.; Hoffmann, H.; Burton, M.; Ye, S.; Kurth, W.S.; et al. In situ collection of dust grains falling from Saturn’s rings into its atmosphere. Science 2018, 362, eaat3185. [Google Scholar] [CrossRef] [Green Version]
- Waite, J.H.; Perryman, R.S.; Perry, M.E.; Miller, K.E.; Bell, J.; Cravens, T.E.; Glein, C.R.; Grimes, J.; Hedman, M.; Cuzzi, J.; et al. Chemical interactions between Saturn’s atmosphere and its rings. Science 2018, 362, eaat2382. [Google Scholar] [CrossRef] [Green Version]
- Canup, R.M. Origin of Saturn’s rings and inner moons by mass removal from a lost Titan-sized satellite. Nature 2010, 468, 943–946. [Google Scholar] [CrossRef] [PubMed]
- Rieke, M.J.; Kelly, D.; Horner, S. Overview of James Webb Space Telescope and NIRCam’s Role. In Cryogenic Optical Systems and Instruments XI; Heaney, J.B., Burriesci, L.G., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2005; Volume 5904, pp. 1–8. [Google Scholar] [CrossRef]
- Jakobsen, P.; Ferruit, P.; Alves de Oliveira, C.; Arribas, S.; Bagnasco, G.; Barho, R.; Beck, T.L.; Birkmann, S.; Böker, T.; Bunker, A.J.; et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities. Astron. Astrophys. 2022, 661, A80. [Google Scholar] [CrossRef]
- Yurchenko, S.N.; Tennyson, J.; Miller, S.; Melnikov, V.V.; O’Donoghue, J.; Moore, L. ExoMol line lists—XL. Rovibrational molecular line list for the hydronium ion (H3O+). Mon. Not. R. Ast. Soc. 2020, 497, 2340–2351. [Google Scholar] [CrossRef]
- Rieke, G.H.; Wright, G.S.; Böker, T.; Bouwman, J.; Colina, L.; Glasse, A.; Gordon, K.D.; Greene, T.P.; Güdel, M.; Henning, T.; et al. The Mid-Infrared Instrument for the James Webb Space Telescope, I: Introduction. Publ. Astron. Soc. Pac. 2015, 127, 584. [Google Scholar] [CrossRef] [Green Version]
- Connerney, J.E.P.; Satoh, T. The H ion: A remote diagnostic of the jovian magnetosphere. Philos. Trans. R. Soc. Lond. 2000, 358, 2359–2559. [Google Scholar] [CrossRef]
Auroral H | Non-Auroral H | |||
---|---|---|---|---|
Planet | Emissions | Parameters | Emissions | Parameters |
Jupiter | September 1988 [35] | September 1988 [35] | April 1992 [36] | April 1992 [36] |
Saturn | July 1992 [37] | July 1992 [37] | Oct. 1998 [7] | April 2011 [38] |
Uranus * | April 1992 [39] | April 1992 [39] | April 1993 [8] | June 1995 [8] |
Neptune | Non-detection [40,41,42] | Non-detection [40,41,42] | Non-detection [40,41,42] | Non-detection [40,41,42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Donoghue, J.; Stallard, T. What the Upper Atmospheres of Giant Planets Reveal. Remote Sens. 2022, 14, 6326. https://doi.org/10.3390/rs14246326
O’Donoghue J, Stallard T. What the Upper Atmospheres of Giant Planets Reveal. Remote Sensing. 2022; 14(24):6326. https://doi.org/10.3390/rs14246326
Chicago/Turabian StyleO’Donoghue, James, and Tom Stallard. 2022. "What the Upper Atmospheres of Giant Planets Reveal" Remote Sensing 14, no. 24: 6326. https://doi.org/10.3390/rs14246326
APA StyleO’Donoghue, J., & Stallard, T. (2022). What the Upper Atmospheres of Giant Planets Reveal. Remote Sensing, 14(24), 6326. https://doi.org/10.3390/rs14246326