CARNet: Context-Aware Residual Learning for JPEG-LS Compressed Remote Sensing Image Restoration
Abstract
:1. Introduction
- We develop the initial line of work on JPEG-LS near-lossless compressed remote sensing image restoration.
- We propose a novel CNN network, called CARNet, to deal with new challenges in this initial line of work. Its core idea is a context-aware residual learning mechanism. Further, we design special loss functions to further improve restoration performance by utilizing JPEG-LS compression priors.
- We propose novel R IQA algorithms, called LS-PSNR and LS-SSIM, to provide better assessment results for our research by utilizing special characteristics of JPEG-LS banding artifacts.
- We prepare a new dataset of JPEG-LS compressed remote sensing images to supplement existing benchmark data. Experiments show that our method sets the state-of-the-art for JPEG-LS near-lossless compressed remote sensing image restoration.
2. Related Work
3. Method
3.1. CARNet Framework
3.1.1. Scale-Invariant Baseline
3.1.2. Context-Aware Subnet
3.1.3. Prior-Guided Reconstruction
3.2. Loss Function
3.3. R IQA Algorithm
Algorithm 1 LS-PSNR |
Input: original image I, compressed image C, parameters: Output: LS-PSNR
|
3.4. Dataset
4. Results and Discussion
4.1. R IQA Model Performance Evaluation
4.1.1. Distribution Analysis
4.1.2. Performance Analysis
4.2. JPEG-LS Image Restoration Performance Evaluation
4.2.1. Implementation Details
4.2.2. Objective Comparisons
4.2.3. Statistical Analysis of Quantitative Results
4.2.4. Subjective Comparisons
4.3. Ablation Studies
4.4. Color JPEG Image Restoration Performance Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CNN | Convolutional Neural Network |
R IQA | Reference Image Quality Assessment |
FCN | Fully Convolutional Neural Network |
MOS | Mean Opinion Score |
RMSE | Root Mean Squared Error |
PLCC | Pearson’s (linear) correlation coefficient |
SROCC | Spearman Rank-Order Correlation Coefficient |
References
- Yang, M.; Bourbakis, N. An overview of lossless digital image compression techniques. In Proceedings of the 48th Midwest Symposium on Circuits and Systems, Covington, KY, USA, 7–10 August 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 1099–1102. [Google Scholar]
- Weinberger, M.J.; Seroussi, G.; Sapiro, G. LOCO-I: A low complexity, context-based, lossless image compression algorithm. In Proceedings of the Proceedings of Data Compression Conference-DCC’96, Snowbird, UT, USA, 31 March–3 April 1996; IEEE: Piscataway, NJ, USA, 1996; pp. 140–149. [Google Scholar]
- Rane, S.D.; Sapiro, G. Evaluation of JPEG-LS, the new lossless and controlled-lossy still image compression standard, for compression of high-resolution elevation data. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2298–2306. [Google Scholar] [CrossRef]
- List, P.; Joch, A.; Lainema, J.; Bjontegaard, G.; Karczewicz, M. Adaptive deblocking filter. IEEE Trans. Circuits Syst. Video Technol. 2003, 13, 614–619. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.B.; Choi, K.; Ra, J.B. Post-processing for blocking artifact reduction based on inter-block correlation. IEEE Trans. Multimed. 2014, 16, 1536–1548. [Google Scholar] [CrossRef]
- Foi, A.; Katkovnik, V.; Egiazarian, K. Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images. IEEE Trans. Image Process. 2007, 16, 1395–1411. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, X.; Zhou, J.; Zhao, D. Data-driven sparsity-based restoration of JPEG-compressed images in dual transform-pixel domain. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5171–5178. [Google Scholar]
- Li, Y.; Guo, F.; Tan, R.T.; Brown, M.S. A contrast enhancement framework with JPEG artifacts suppression. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 174–188. [Google Scholar]
- Dong, C.; Deng, Y.; Loy, C.C.; Tang, X. Compression artifacts reduction by a deep convolutional network. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 576–584. [Google Scholar]
- Wang, Z.; Liu, D.; Chang, S.; Ling, Q.; Yang, Y.; Huang, T.S. D3: Deep dual-domain based fast restoration of JPEG-compressed images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2764–2772. [Google Scholar]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Pock, T. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1256–1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galteri, L.; Seidenari, L.; Bertini, M.; Del Bimbo, A. Deep generative adversarial compression artifact removal. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4826–4835. [Google Scholar]
- Zhang, X.; Yang, W.; Hu, Y.; Liu, J. DMCNN: Dual-domain multi-scale convolutional neural network for compression artifacts removal. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 390–394. [Google Scholar]
- Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.H.; Shao, L. Multi-stage progressive image restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14821–14831. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Weinberger, M.J.; Seroussi, G.; Sapiro, G. The LOCO-I lossless image compression algorithm: Principles and standardization into JPEG-LS. IEEE Trans. Image Process. 2000, 9, 1309–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, D.; Zuo, W.; Hu, Q.; Zhu, P.; Meng, D. Progressive image deraining networks: A better and simpler baseline. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 3937–3946. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.; Bampis, C.G.; Gupta, P.; Bovik, A.C. Predicting the quality of images compressed after distortion in two steps. IEEE Trans. Image Process. 2019, 28, 5757–5770. [Google Scholar] [CrossRef] [PubMed]
- Reeve, H.C., III; Lim, J.S. Reduction of blocking effects in image coding. Opt. Eng. 1984, 23, 230134. [Google Scholar]
- Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; IEEE: Piscataway, NJ, USA, 2005; Volume 2, pp. 60–65. [Google Scholar]
- Zhai, G.; Zhang, W.; Yang, X.; Lin, W.; Xu, Y. Efficient image deblocking based on postfiltering in shifted windows. IEEE Trans. Circuits Syst. Video Technol. 2008, 18, 122–126. [Google Scholar] [CrossRef]
- Sun, D.; Cham, W.K. Postprocessing of low bit-rate block DCT coded images based on a fields of experts prior. IEEE Trans. Image Process. 2007, 16, 2743–2751. [Google Scholar]
- Zhang, X.; Xiong, R.; Fan, X.; Ma, S.; Gao, W. Compression artifact reduction by overlapped-block transform coefficient estimation with block similarity. IEEE Trans. Image Process. 2013, 22, 4613–4626. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, X.; Zhou, J.; Zhao, D. Data-driven soft decoding of compressed images in dual transform-pixel domain. IEEE Trans. Image Process. 2016, 25, 1649–1659. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zhang, H.; Zhang, K.; Lin, L.; Zuo, W. Multi-level wavelet-CNN for image restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 773–782. [Google Scholar]
- Fu, X.; Zha, Z.J.; Wu, F.; Ding, X.; Paisley, J. Jpeg artifacts reduction via deep convolutional sparse coding. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 2501–2510. [Google Scholar]
- Galteri, L.; Seidenari, L.; Bertini, M.; Del Bimbo, A. Deep universal generative adversarial compression artifact removal. IEEE Trans. Multimed. 2019, 21, 2131–2145. [Google Scholar] [CrossRef]
- Fan, Y.; Yu, J.; Liu, D.; Huang, T.S. Scale-wise convolution for image restoration. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 10770–10777. [Google Scholar]
- Ehrlich, M.; Davis, L.; Lim, S.N.; Shrivastava, A. Quantization guided jpeg artifact correction. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 293–309. [Google Scholar]
- Jiang, J.; Zhang, K.; Timofte, R. Towards flexible blind JPEG artifacts removal. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 4997–5006. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar]
- Fu, X.; Huang, J.; Zeng, D.; Huang, Y.; Ding, X.; Paisley, J. Removing rain from single images via a deep detail network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3855–3863. [Google Scholar]
- Sheikh, H.R.; Sabir, M.F.; Bovik, A.C. A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 2006, 15, 3440–3451. [Google Scholar] [CrossRef] [PubMed]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. arXiv 2019, arXiv:1912.01703. [Google Scholar]
- Independant JPEG Group. Libjpeg. 1998. Available online: http://libjpeg.sourceforge.net (accessed on 27 March 1998).
- Agustsson, E.; Timofte, R. Ntire 2017 challenge on single image super-resolution: Dataset and study. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 126–135. [Google Scholar]
- Timofte, R.; Agustsson, E.; Van Gool, L.; Yang, M.H.; Zhang, L. Ntire 2017 challenge on single image super-resolution: Methods and results. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 114–125. [Google Scholar]
- Sheikh, H. LIVE Image Quality Assessment Database Release 2. 2005. Available online: http://live.ece.utexas.edu/research/quality (accessed on 30 November 2022).
Model | PSNR | SSIM | LS-PSNR | LS-SSIM |
---|---|---|---|---|
RMSE ↓ | 0.0178 | 0.0231 | 0.0074 | 0.0033 |
PLCC ↑ | −0.8485 | 0.4641 | 0.8432 | 0.9523 |
SROCC ↑ | −0.7771 | 0.4719 | 0.7882 | 0.9328 |
Data | NEAR | JPEG-LS | ARCNN | SCN | DMCNN | QGAC | MPRNet | FBCNN | CARNet |
---|---|---|---|---|---|---|---|---|---|
10-bit | 8 | 47.80 | 50.30 | 50.74 | 50.75 | 50.76 | 50.79 | 50.80 | 50.94 |
12 | 44.46 | 47.82 | 48.65 | 48.72 | 48.78 | 48.81 | 48.82 | 48.99 | |
16 | 42.33 | 45.97 | 46.99 | 47.17 | 47.23 | 47.23 | 47.28 | 47.56 | |
12-bit | 8 | 58.73 | 59.53 | 60.76 | 60.78 | 60.78 | 60.80 | 60.80 | 60.93 |
12 | 55.58 | 56.61 | 58.39 | 58.38 | 58.41 | 58.41 | 58.43 | 58.52 | |
16 | 53.36 | 55.98 | 56.73 | 56.71 | 56.75 | 56.78 | 56.80 | 56.96 |
Data | NEAR | ARCNN | SCN | DMCNN | QGAC | MPRNet | FBCNN | CARNet |
---|---|---|---|---|---|---|---|---|
10-bit | 8 | 0.9935 | 0.9941 | 0.9941 | 0.9941 | 0.9941 | 0.9941 | 0.9942 |
12 | 0.9901 | 0.9912 | 0.9913 | 0.9913 | 0.9913 | 0.9913 | 0.9914 | |
16 | 0.9864 | 0.9880 | 0.9882 | 0.9882 | 0.9882 | 0.9883 | 0.9883 | |
12-bit | 8 | 0.9992 | 0.9993 | 0.9993 | 0.9993 | 0.9993 | 0.9994 | 0.9994 |
12 | 0.9985 | 0.9989 | 0.9989 | 0.9989 | 0.9989 | 0.9989 | 0.9989 | |
16 | 0.9981 | 0.9984 | 0.9984 | 0.9989 | 0.9984 | 0.9989 | 0.9984 |
Data | NEAR | JPEG-LS | ARCNN | SCN | DMCNN | QGAC | MPRNet | FBCNN | CARNet |
---|---|---|---|---|---|---|---|---|---|
10-bit | 8 | 42.19 | 45.51 | 46.06 | 46.14 | 46.14 | 46.18 | 46.21 | 46.32 |
12 | 38.62 | 43.11 | 44.05 | 44.02 | 44.05 | 44.07 | 44.11 | 44.35 | |
16 | 36.60 | 41.43 | 42.49 | 42.52 | 42.50 | 42.51 | 42.53 | 42.82 | |
12-bit | 8 | 52.88 | 54.00 | 55.57 | 55.56 | 55.55 | 55.59 | 55.58 | 55.79 |
12 | 49.27 | 50.84 | 53.20 | 53.17 | 53.19 | 53.19 | 53.19 | 53.45 | |
16 | 46.68 | 50.09 | 51.52 | 51.47 | 53.48 | 51.52 | 53.54 | 51.83 |
Data | NEAR | ARCNN | SCN | DMCNN | QGAC | MPRNet | FBCNN | CARNet |
---|---|---|---|---|---|---|---|---|
10-bit | 8 | 0.7138 | 0.7194 | 0.7183 | 0.7185 | 0.7193 | 0.7193 | 0.7202 |
12 | 0.6853 | 0.6937 | 0.6935 | 0.6938 | 0.6938 | 0.6938 | 0.6945 | |
16 | 0.6636 | 0.6725 | 0.6728 | 0.6728 | 0.6727 | 0.6728 | 0.6734 | |
12-bit | 8 | 0.8464 | 0.8518 | 0.8516 | 0.8517 | 0.8520 | 0.8522 | 0.8541 |
12 | 0.8039 | 0.8138 | 0.8129 | 0.8130 | 0.8139 | 0.8139 | 0.8148 | |
16 | 0.7787 | 0.7853 | 0.7833 | 0.7836 | 0.7856 | 0.7855 | 0.7871 |
Model | PSNR | SSIM | LS-PSNR | LS-SSIM |
---|---|---|---|---|
CARNet with context-aware subnet | 47.56 | 0.9883 | 42.82 | 0.6734 |
CARNet w/o context-aware subnet | 47.26 | 0.9881 | 42.52 | 0.6728 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Tang, L.; Fan, L.; Zhong, S.; Luo, H.; Peng, J. CARNet: Context-Aware Residual Learning for JPEG-LS Compressed Remote Sensing Image Restoration. Remote Sens. 2022, 14, 6318. https://doi.org/10.3390/rs14246318
Liu M, Tang L, Fan L, Zhong S, Luo H, Peng J. CARNet: Context-Aware Residual Learning for JPEG-LS Compressed Remote Sensing Image Restoration. Remote Sensing. 2022; 14(24):6318. https://doi.org/10.3390/rs14246318
Chicago/Turabian StyleLiu, Maomei, Lei Tang, Lijia Fan, Sheng Zhong, Hangzai Luo, and Jinye Peng. 2022. "CARNet: Context-Aware Residual Learning for JPEG-LS Compressed Remote Sensing Image Restoration" Remote Sensing 14, no. 24: 6318. https://doi.org/10.3390/rs14246318
APA StyleLiu, M., Tang, L., Fan, L., Zhong, S., Luo, H., & Peng, J. (2022). CARNet: Context-Aware Residual Learning for JPEG-LS Compressed Remote Sensing Image Restoration. Remote Sensing, 14(24), 6318. https://doi.org/10.3390/rs14246318