Assessment of Spatio-Temporal Empirical Forecasting Performance of Future Shoreline Positions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Shoreline Extraction
2.3.2. Shoreline Uncertainty
2.3.3. Shoreline Change Rates Calculation
2.3.4. Shoreline Prediction and Temporal Strategy
2.3.5. Prediction Performance Metric
3. Results
3.1. Correlation of Different Shoreline Erosion Rates
3.2. Spatio-Temporal Variation in Shoreline Change Rates
3.3. Spatio-Temporal Variation in Shoreline Prediction Performance
3.3.1. One-Year Shoreline Prediction Performance
3.3.2. Five-Year Shoreline Prediction Performance
3.3.3. Ten-Year Shoreline Prediction Performance
3.3.4. Twenty-Year Shoreline Prediction Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Image Date | Representative Year | Satellite | Path/Row | Resolution (m) |
---|---|---|---|---|
19 February 1988 | 1988 | Landsat 5 | 137/44 | 30 |
21 February 1989 | 1989 | Landsat 5 | 137/44 | 30 |
7 January 1990 | 1990 | Landsat 5 | 137/44 | 30 |
15 March 1991 | 1991 | Landsat 5 | 137/44 | 30 |
12 December 1991 | 1992 | Landsat 5 | 137/44 | 30 |
30 December 1992 | 1993 | Landsat 5 | 137/44 | 30 |
2 January 1994 | 1994 | Landsat 5 | 137/44 | 30 |
21 January 1995 | 1995 | Landsat 5 | 137/44 | 30 |
9 February 1996 | 1996 | Landsat 5 | 137/44 | 30 |
26 January 1997 | 1997 | Landsat 5 | 137/44 | 30 |
14 February 1998 | 1998 | Landsat 5 | 137/44 | 30 |
17 February 1999 | 1999 | Landsat 5 | 137/44 | 30 |
20 February 2000 | 2000 | Landsat 5 | 137/44 | 30 |
5 January 2001 | 2001 | Landsat 5 | 137/44 | 30 |
1 February 2002 | 2002 | Landsat 7 | 137/44 | 30 |
2 December 2002 | 2003 | Landsat 7 | 137/44 | 30 |
13 December 2003 | 2004 | Landsat 5 | 137/44 | 30 |
15 December 2004 | 2005 | Landsat 5 | 137/44 | 30 |
4 February 2006 | 2006 | Landsat 5 | 137/44 | 30 |
22 January 2007 | 2007 | Landsat 5 | 137/44 | 30 |
16 December 2007 | 2008 | Landsat 7 | 137/44 | 30 |
3 January 2009 | 2009 | Landsat 7 | 137/44 | 30 |
30 January 2010 | 2010 | Landsat 5 | 137/44 | 30 |
1 January 2011 | 2011 | Landsat 5 | 137/44 | 30 |
28 January 2012 | 2012 | Landsat 7 | 137/44 | 30 |
14 January 2013 | 2013 | Landsat 7 | 137/44 | 30 |
24 December 2013 | 2014 | Landsat 8 | 137/44 | 30 |
25 November 2014 | 2015 | Landsat 8 | 137/44 | 30 |
30 December 2015 | 2016 | Landsat 8 | 137/44 | 30 |
1 January 2017 | 2017 | Landsat 8 | 137/44 | 30 |
4 January 2018 | 2018 | Landsat 8 | 137/44 | 30 |
7 January 2019 | 2019 | Landsat 8 | 137/44 | 30 |
10 January 2020 | 2020 | Landsat 8 | 137/44 | 30 |
27 December 2020 | 2021 | Landsat 8 | 137/44 | 30 |
Appendix B
References
- Sahoo, B.; Bhaskaran, P.K. Multi-Hazard Risk Assessment of Coastal Vulnerability from Tropical Cyclones—A GIS Based Approach for the Odisha Coast. J. Environ. Manag. 2018, 206, 1166–1178. [Google Scholar] [CrossRef] [PubMed]
- UN. Factsheet: People and Oceans; United Nations: New York, NY, USA, 2017. [Google Scholar]
- Klein, R.J.T.; Nicholls, R.J.; Thomalla, F. Resilience to Natural Hazards: How Useful Is This Concept? Environ. Hazards 2003, 5, 35–45. [Google Scholar] [CrossRef]
- Passeri, D.L.; Hagen, S.C.; Medeiros, S.C.; Bilskie, M.V.; Alizad, K.; Wang, D. The Dynamic Effects of Sea Level Rise on Low-Gradient Coastal Landscapes: A Review. Earth’s Future 2015, 3, 159–181. [Google Scholar] [CrossRef]
- Woodroffe, C.D.; Nicholls, R.J.; Saito, Y.; Chen, Z.; Goodbred, S.L. Landscape Variability and the Response of Asian Megadeltas to Environmental Change. In Global Change and Integrated Coastal Management: The Asia-Pacific Region; Coastal Systems and Continental Margins; Harvey, N., Ed.; Springer: Dordrecht, The Netherlands, 2006; pp. 277–314. ISBN 978-1-4020-3628-6. [Google Scholar]
- Dangendorf, S.; Marcos, M.; Wöppelmann, G.; Conrad, C.P.; Frederikse, T.; Riva, R. Reassessment of 20th Century Global Mean Sea Level Rise. Proc. Natl. Acad. Sci. USA 2017, 114, 5946–5951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hay, C.C.; Morrow, E.; Kopp, R.E.; Mitrovica, J.X. Probabilistic Reanalysis of Twentieth-Century Sea-Level Rise. Nature 2015, 517, 481–484. [Google Scholar] [CrossRef]
- Zhang, K.; Douglas, B.C.; Leatherman, S.P. Global Warming and Coastal Erosion. Clim. Chang. 2004, 64, 41. [Google Scholar] [CrossRef]
- Brammer, H. Bangladesh’s Dynamic Coastal Regions and Sea-Level Rise. Clim. Risk Manag. 2014, 1, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Drake, F.; Nawaz, R.; Woulds, C. Where Is the Coast? Monitoring Coastal Land Dynamics in Bangladesh: An Integrated Management Approach Using GIS and Remote Sensing Techniques. Ocean Coast. Manag. 2018, 151, 10–24. [Google Scholar] [CrossRef]
- Crawford, T.W.; Rahman, M.K.; Miah, M.G.; Islam, M.R.; Paul, B.K.; Curtis, S.; Islam, M.S. Coupled Adaptive Cycles of Shoreline Change and Households in Deltaic Bangladesh: Analysis of a 30-Year Shoreline Change Record and Recent Population Impacts. Ann. Am. Assoc. Geogr. 2021, 111, 1002–1024. [Google Scholar] [CrossRef]
- Crawford, T.W.; Islam, M.S.; Rahman, M.K.; Paul, B.K.; Curtis, S.; Miah, M.G.; Islam, M.R. Coastal Erosion and Human Perceptions of Revetment Protection in the Lower Meghna Estuary of Bangladesh. Remote Sens. 2020, 12, 3108. [Google Scholar] [CrossRef]
- Paul, B.K.; Rahman, M.K.; Crawford, T.; Curtis, S.; Miah, M.G.; Islam, M.R.; Islam, M.S. Explaining Mobility Using the Community Capital Framework and Place Attachment Concepts: A Case Study of Riverbank Erosion in the Lower Meghna Estuary, Bangladesh. Appl. Geogr. 2020, 125, 102199. [Google Scholar] [CrossRef]
- Hossain, M.S.; Dearing, J.A.; Rahman, M.M.; Salehin, M. Recent Changes in Ecosystem Services and Human Well-Being in the Bangladesh Coastal Zone. Reg. Environ. Chang. 2016, 16, 429–443. [Google Scholar] [CrossRef] [Green Version]
- Poncelet, A.; Gemenne, F.; Martiniello, M.; Bousetta, H. A Country Made for Disasters: Environmental Vulnerability and Forced Migration in Bangladesh. In Environment, Forced Migration and Social Vulnerability; Afifi, T., Jäger, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 211–222. ISBN 978-3-642-12416-7. [Google Scholar]
- Splinter, K.D.; Coco, G. Challenges and Opportunities in Coastal Shoreline Prediction. Front. Mar. Sci. 2021, 8, 788657. [Google Scholar] [CrossRef]
- Bamunawala, J.; Ranasinghe, R.; Dastgheib, A.; Nicholls, R.J.; Murray, A.B.; Barnard, P.L.; Sirisena, T.A.J.G.; Duong, T.M.; Hulscher, S.J.M.H.; van der Spek, A. Twenty-First-Century Projections of Shoreline Change along Inlet-Interrupted Coastlines. Sci. Rep. 2021, 11, 14038. [Google Scholar] [CrossRef]
- Sanuy, M.; Jiménez, J.A. Sensitivity of Storm-Induced Hazards in a Highly Curvilinear Coastline to Changing Storm Directions. The Tordera Delta Case (NW Mediterranean). Water 2019, 11, 747. [Google Scholar] [CrossRef] [Green Version]
- Ibaceta, R.; Splinter, K.D.; Harley, M.D.; Turner, I.L. Enhanced Coastal Shoreline Modeling Using an Ensemble Kalman Filter to Include Nonstationarity in Future Wave Climates. Geophys. Res. Lett. 2020, 47, e2020GL090724. [Google Scholar] [CrossRef]
- Vitousek, S.; Barnard, P.L.; Limber, P.; Erikson, L.; Cole, B. A Model Integrating Longshore and Cross-Shore Processes for Predicting Long-Term Shoreline Response to Climate Change. J. Geophys. Res. Earth Surf. 2017, 122, 782–806. [Google Scholar] [CrossRef]
- Ciritci, D.; Türk, T. Assessment of the Kalman Filter-Based Future Shoreline Prediction Method. Int. J. Environ. Sci. Technol. 2020, 17, 3801–3816. [Google Scholar] [CrossRef]
- Yan, D.; Yao, X.; Li, J.; Qi, L.; Luan, Z. Shoreline Change Detection and Forecast along the Yancheng Coast Using a Digital Shoreline Analysis System. Wetlands 2021, 41, 47. [Google Scholar] [CrossRef]
- Sarwar, M.G.M.; Woodroffe, C.D. Rates of Shoreline Change along the Coast of Bangladesh. J. Coast Conserv. 2013, 17, 515–526. [Google Scholar] [CrossRef]
- Kaliraj, S.; Chandrasekar, N.; Ramachandran, K.K.; Srinivas, Y.; Saravanan, S. Coastal Landuse and Land Cover Change and Transformations of Kanyakumari Coast, India Using Remote Sensing and GIS. Egypt. J. Remote Sens. Space Sci. 2017, 20, 169–185. [Google Scholar] [CrossRef]
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Ergul, A. The Digital Shoreline Analysis System (DSAS) Version 4.0—An ArcGIS Extension for Calculating Shoreline Change; Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2009; Volume 2008-1278.
- Mondal, I.; Thakur, S.; Juliev, M.; Bandyopadhyay, J.; De, T.K. Spatio-Temporal Modelling of Shoreline Migration in Sagar Island, West Bengal, India. J. Coast Conserv. 2020, 24, 50. [Google Scholar] [CrossRef]
- Patel, K.; Jain, R.; Patel, A.N.; Kalubarme, M.H. Shoreline Change Monitoring for Coastal Zone Management Using Multi-Temporal Landsat Data in Mahi River Estuary, Gujarat State. Appl. Geomat. 2021, 13, 333–347. [Google Scholar] [CrossRef]
- Al-Zubieri, A.G.; Ghandour, I.M.; Bantan, R.A.; Basaham, A.S. Shoreline Evolution Between Al Lith and Ras Mahāsin on the Red Sea Coast, Saudi Arabia Using GIS and DSAS Techniques. J. Indian Soc. Remote Sens. 2020, 48, 1455–1470. [Google Scholar] [CrossRef]
- Himmelstoss, E.A.; Henderson, R.E.; Kratzmann, M.G.; Farris, A.S. Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide; Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2018; Volume 2018-1179.
- Paul, B.K.; Rahman, M.K.; Crawford, T.; Curtis, S.; Miah, M.G.; Islam, R.; Islam, M.S. Coping Strategies of People Displaced by Riverbank Erosion in the Lower Meghna Estuary. In Living on the Edge: Char Dwellers in Bangladesh; Springer Geography; Zaman, M., Alam, M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 227–239. ISBN 978-3-030-73592-0. [Google Scholar]
- Rahman, M.K.; Crawford, T.W.; Paul, B.K.; Islam, M.S.; Curtis, S.; Miah, M.G.; Islam, M.R. Riverbank Erosions, Coping Strategies, and Resilience Thinking of the Lower-Meghna River Basin Community, Bangladesh. In Climate Vulnerability and Resilience in the Global South: Human Adaptations for Sustainable Futures; Climate Change Management; Alam, G.M.M., Erdiaw-Kwasie, M.O., Nagy, G.J., Filho, W.L., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 259–278. ISBN 978-3-030-77259-8. [Google Scholar]
- Ghoneim, E.; Mashaly, J.; Gamble, D.; Halls, J.; AbuBakr, M. Nile Delta Exhibited a Spatial Reversal in the Rates of Shoreline Retreat on the Rosetta Promontory Comparing Pre- and Post-Beach Protection. Geomorphology 2015, 228, 1–14. [Google Scholar] [CrossRef]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Hapke, C.; Himmelstoss, E.; Kratzmann, M.; Thieler, E. National Assessment of Shoreline Change: Historical Shoreline Change along the New England and Mid-Atlantic Coasts; U.S. Geological Survey: Reston, VA, USA, 2011.
- Mullick, M.R.A.; Islam, K.M.A.; Tanim, A.H. Shoreline Change Assessment Using Geospatial Tools: A Study on the Ganges Deltaic Coast of Bangladesh. Earth Sci. Inform. 2020, 13, 299–316. [Google Scholar] [CrossRef]
- Mahmud, M.I.; Mia, A.J.; Islam, M.A.; Peas, M.H.; Farazi, A.H.; Akhter, S.H. Assessing Bank Dynamics of the Lower Meghna River in Bangladesh: An Integrated GIS-DSAS Approach. Arab. J. Geosci. 2020, 13, 602. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy Coastlines under Threat of Erosion. Nat. Clim. Chang. 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Agrawal, G.; Ferhatosmanoglu, H.; Niu, X.; Bedford, K.; Li, R. A Vision for Cyberinfrastructure for Coastal Forecasting and Change Analysis. In GeoSensor Networks: Second International Conference, GSN 2006, Boston, MA, USA, October 1–3, 2006, Revised Selected and Invited Papers; Lecture Notes in Computer Science; Nittel, S., Labrinidis, A., Stefanidis, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 151–174. ISBN 978-3-540-79996-2. [Google Scholar]
- Mukhopadhyay, A.; Mukherjee, S.; Mukherjee, S.; Ghosh, S.; Hazra, S.; Mitra, D. Automatic Shoreline Detection and Future Prediction: A Case Study on Puri Coast, Bay of Bengal, India. Eur. J. Remote Sens. 2012, 45, 201–213. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Ghosh, P.; Chanda, A.; Ghosh, A.; Ghosh, S.; Das, S.; Ghosh, T.; Hazra, S. Threats to Coastal Communities of Mahanadi Delta Due to Imminent Consequences of Erosion—Present and near Future. Sci. Total Environ. 2018, 637–638, 717–729. [Google Scholar] [CrossRef] [PubMed]
Georeferencing Uncertainty (Ug) | Pixel Uncertainty (Up) | Digitizing Uncertainty (Ud) | Tidal Uncertainty (Ut) | Total Uncertainty (Utotal) | |
---|---|---|---|---|---|
Minimum | 3.54 | 30 | 0 | 5.60 | 30.72 |
Maximum | 7.34 | 30 | 0 | 19.60 | 36.58 |
Mean | 4.72 | 30 | 0 | 7.32 | 32.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.S.; Crawford, T.W. Assessment of Spatio-Temporal Empirical Forecasting Performance of Future Shoreline Positions. Remote Sens. 2022, 14, 6364. https://doi.org/10.3390/rs14246364
Islam MS, Crawford TW. Assessment of Spatio-Temporal Empirical Forecasting Performance of Future Shoreline Positions. Remote Sensing. 2022; 14(24):6364. https://doi.org/10.3390/rs14246364
Chicago/Turabian StyleIslam, Md Sariful, and Thomas W. Crawford. 2022. "Assessment of Spatio-Temporal Empirical Forecasting Performance of Future Shoreline Positions" Remote Sensing 14, no. 24: 6364. https://doi.org/10.3390/rs14246364
APA StyleIslam, M. S., & Crawford, T. W. (2022). Assessment of Spatio-Temporal Empirical Forecasting Performance of Future Shoreline Positions. Remote Sensing, 14(24), 6364. https://doi.org/10.3390/rs14246364