Impact of Satellite Attitude on Altimetry Calibration with Microwave Transponders
Abstract
:1. Introduction
2. Ground Cal/Val Infrastructure
3. Satellite Attitude and Transponder Calibration
3.1. Determination of the Satellite Attitude
- The inertial reference system (IRS; [O: ]), with its origin at the geocenter O. It is a system that does not rotate with the Earth, and its axes are parallel to the barycentric system whose origin is at the Sun. The U axis passes from the equatorial plane with direction towards the vernal equinox . The W axis coincides with the Earth’s mean rotation axis, and the V axis is perpendicular to the U axis to form a right-hand orthogonal reference system. This system is also referred to as “pseudo-inertial” because of the acceleration arising from the Earth’s revolution around the Sun.
- The Earth-fixed reference system (EFRS; [O: ]), with its origin at the geocenter O. It is a reference system that rotates with the Earth’s angular velocity. Its origin O also coincides with the center of the reference ellipsoid, i.e., the WGS84 ellipsoid for the latest processing baseline (F) of Jason-3 products. The X and Y axes are located at the equatorial plane with directions towards the prime meridian () and perpendicular to it (), respectively. The Z axis coincides with the Earth’s rotation axis with direction towards the North Pole.
- The satellite body reference system (SAT; [Q: ]), with its origin at the center Q of the launcher attachment ring on the satellite. The axis is parallel to the satellite primary direction and towards the radiometer antenna. The axis is parallel to the rotation axis of the solar panels with direction towards the right solar panel array. The axis direction is chosen to form an orthogonal right-handed reference system. Ideal attitude of the satellite body is realized when the axis is perpendicular to the reference ellipsoid.
- The orbital reference system (ORB; [K: ]), with its origin at the satellite CoG (denoted by K in Figure 2). The x axis is along the radial vector connecting the geocenter O and the satellite CoG, K, with direction towards the zenith (reverse geocentric positioning [40]). The z axis is perpendicular to the satellite orbital plane with the same direction as the orbital angular momentum. Finally, the y axis has a direction to complete a right-hand orthogonal reference system (i.e., towards the satellite velocity vector but not always parallel to it).
- The local orbital reference system or roll-pitch-yaw system (RPY; [K: ]), has its origin at the satellite CoG, K. Its axis (yaw) is perpendicular to the reference ellipsoid with a direction towards nadir. The axis (pitch) is perpendicular to the orbital plane with direction opposite to angular momentum. Finally, the axis (roll) is defined to form an orthogonal reference system, with the same direction as the satellite velocity vector.
3.2. Range and Datation Bias
3.3. Calibration Accounting for Satellite Attitude
Reference Points | (m) | (m) | (m) | |
---|---|---|---|---|
Jason-3 | Spacecraft center of gravity | 1.0023 | 0.0000 | −0.0021 |
Altimeter phase center | 1.6390 | 0.0000 | 0.6644 | |
Sentinel-6A MF | Spacecraft center of gravity | 1.5274 | −0.0073 | 0.0373 |
Altimeter phase center | 2.5240 | 0.0001 | 0.5650 |
4. Results
4.1. Jason-3 Attitude Determination
4.2. Jason-3 Attitude Effects on Transponder Results
4.3. Jason-3 and Sentinel-6A MF Crossover Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADCS | Attitude Determination and Control System |
APC | Altimeter Phase Center |
Cal/Val | Calibration and Validation |
CDDIS | Crustal Dynamics Data Information System |
CoG | Center of Gravity |
CRS | Celestial Reference System |
DORIS | Doppler Orbitography and Radiopositioning Integrated by Satellite |
ECV | Essential Climate Variables |
EFRS | Earth-fixed reference system |
ESA | European Space Agency |
GCRS | Geocentric Celestial Reference System |
GNSS | Global Navigation Satellite System |
ICRS | International Celestial Reference System |
IDS | International DORIS Service |
ORB | Orbital Reference Frame |
PCA | Point of Closest Approach |
PFAC | Permanent Facility for Altimeter Calibration |
POD | Precise Orbit Determination |
PTR | Point Target Response |
RPY | Local Orbital Reference or Roll-Pitch-Yaw system |
SAR | Synthetic Aperture Radar |
SAT | Satellite body reference frame |
Sentinel-6A MF | Sentinel-6A Michael Freilich |
SIRAL | SAR/Interferometric Radar Altimeter |
SLR | Satellite Laser Ranging |
TCA | Time of Closest Approach |
TOPEX | Ocean Topography Experiment |
TRP | Transponder |
USO | Ultra-Stable Oscillator |
References
- Gornitz, V. Monitoring sea level changes. Clim. Chang. 1995, 31, 515–544. [Google Scholar] [CrossRef]
- Haigh, I.D.; Wahl, T.; Rohling, E.J.; Price, R.M.; Pattiaratchi, C.B.; Calafat, F.M.; Dangendorf, S. Timescales for detecting a significant acceleration in sea level rise. Nat. Commun. 2014, 5, 3635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlowicz, M. Sea Level Rise Hits Home at NASA: Watching Water Rise Right Outside the Front Door. 2015. Available online: https://earthobservatory.nasa.gov/features/NASASeaLevel (accessed on 26 August 2015).
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef] [Green Version]
- Hollmann, R.; Merchant, C.J.; Saunders, R.; Downy, C.; Buchwitz, M.; Cazenave, A.; Chuvieco, E.; Defourny, P.; de Leeuw, G.; Forsberg, R.; et al. The ESA climate change initiative: Satellite data records for essential climate variables. Bull. Am. Meteorol. Soc. 2013, 94, 1541–1552. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.L.; Le Traon, P.Y. Satellite altimetry and ocean dynamics. Comptes Rendus Geosci. 2006, 338, 1063–1076. [Google Scholar] [CrossRef] [Green Version]
- Vignudelli, S.; Birol, F.; Benveniste, J.; Fu, L.L.; Picot, N.; Raynal, M.; Roinard, H. Satellite altimetry measurements of sea level in the coastal zone. Surv. Geophys. 2019, 40, 1319–1349. [Google Scholar] [CrossRef]
- Calmant, S.; Crétaux, J.F.; Rémy, F. Principles of radar satellite altimetry for application on inland waters. In Microwave Remote Sensing of Land Surface; Elsevier: Amsterdam, The Netherlands, 2016; pp. 175–218. [Google Scholar]
- Foresta, L.; Gourmelen, N.; Pálsson, F.; Nienow, P.; Björnsson, H.; Shepherd, A. Surface elevation change and mass balance of Icelandic ice caps derived from swath mode CryoSat-2 altimetry. Geophys. Res. Lett. 2016, 43, 12–138. [Google Scholar] [CrossRef] [Green Version]
- Archer, M.R.; Li, Z.; Fu, L.L. Increasing the space–time resolution of mapped sea surface height from altimetry. J. Geophys. Res. Ocean. 2020, 125, e2019JC015878. [Google Scholar] [CrossRef]
- Timmermans, B.; Gommenginger, C.; Dodet, G.; Bidlot, J.R. Global wave height trends and variability from new multimission satellite altimeter products, reanalyses, and wave buoys. Geophys. Res. Lett. 2020, 47, e2019GL086880. [Google Scholar] [CrossRef]
- Abdalla, S. Ku-band radar altimeter surface wind speed algorithm. Mar. Geod. 2012, 35, 276–298. [Google Scholar] [CrossRef]
- Ray, R.D. Daily harmonics of ionospheric total electron content from satellite altimetry. J. Atmos. Sol.-Terr. Phys. 2020, 209, 105423. [Google Scholar] [CrossRef]
- Rose, S.K.; Andersen, O.B.; Passaro, M.; Ludwigsen, C.A.; Schwatke, C. Arctic Ocean sea level record from the complete radar altimetry era: 1991–2018. Remote Sens. 2019, 11, 1672. [Google Scholar] [CrossRef] [Green Version]
- Müller, F.L.; Wekerle, C.; Dettmering, D.; Passaro, M.; Bosch, W.; Seitz, F. Dynamic ocean topography of the northern Nordic seas: A comparison between satellite altimetry and ocean modeling. Cryosphere 2019, 13, 611–626. [Google Scholar] [CrossRef] [Green Version]
- Powell, R.J. Relative Vertical Positioning Using Ground-Level Transponders with the ERS-1 Altimeter. IEEE Trans. Geosci. Remote. Sens. 1986, GE-24, 421–425. [Google Scholar] [CrossRef]
- Willis, J.; Bonnefond, P.; Leuliette, E.; Scharroo, R.; Donlon, C. Report of the Ocean Surface Topography Science Team Meeting; OSTST Technical Report; NASA: Washington, DC, USA; CNES: Pairs, France; NOAA: Washington, DC, USA; EUMETSAT: Darmstadt, Germany; ESA: Pairs, France; Ocean Surface Topography Science Team Symposium Summary: Chicago, IL, USA, 2019.
- Bloßfeld, M.; Zeitlhöfler, J.; Rudenko, S.; Dettmering, D. Observation-based attitude realization for accurate jason satellite orbits and its impact on geodetic and altimetry results. Remote Sens. 2020, 12, 682. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Zhou, X.; Guo, N.; Zhou, S. Effect of PCV and attitude on the precise orbit determination of Jason-3 satellite. J. Appl. Geod. 2022, 16, 143–150. [Google Scholar] [CrossRef]
- Hayne, G.; Hancock, D., III. Corrections for the effects of significant wave height and attitude on Geosat radar altimeter measurements. J. Geophys. Res. Ocean. 1990, 95, 2837–2842. [Google Scholar] [CrossRef]
- Hayne, G.; Hancock, D., III.; Purdy, C.; Callahan, P. The corrections for significant wave height and attitude effects in the TOPEX radar altimeter. J. Geophys. Res. Ocean. 1994, 99, 24941–24955. [Google Scholar] [CrossRef]
- Amarouche, L.; Thibaut, P.; Zanife, O.Z.; Dumont, J.P.; Vincent, P.; Steunou, N. Improving the Jason-1 ground retracking to better account for attitude effects. Mar. Geod. 2004, 27, 171–197. [Google Scholar] [CrossRef]
- Sepulveda, H.H.; Queffeulou, P.; Ardhuin, F. Assessment of SARAL/AltiKa wave height measurements relative to buoy, Jason-2, and Cryosat-2 data. Mar. Geod. 2015, 38, 449–465. [Google Scholar] [CrossRef]
- Galin, N.; Wingham, D.J.; Cullen, R.; Francis, R.; Lawrence, I. Measuring the pitch of CryoSat-2 using the SAR mode of the SIRAL altimeter. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1399–1403. [Google Scholar] [CrossRef]
- Watson, C.; White, N.; Church, J.; Burgette, R.; Tregoning, P.; Coleman, R. Absolute calibration in bass strait, Australia: TOPEX, Jason-1 and OSTM/Jason-2. Mar. Geod. 2011, 34, 242–260. [Google Scholar] [CrossRef]
- Cristea, E.; Moore, P. Altimeter bias determination using two years of transponder observations. Proc. Envisat Symp. 2007, 23–27. [Google Scholar]
- Hausleitner, W.; Moser, F.; Desjonqueres, J.D.; Boy, F.; Picot, N.; Weingrill, J.; Mertikas, S.; Daskalakis, A. A new method of precise Jason-2 altimeter calibration using a microwave transponder. Mar. Geod. 2012, 35, 337–362. [Google Scholar] [CrossRef]
- Quartly, G.D.; Rinne, E.; Passaro, M.; Andersen, O.B.; Dinardo, S.; Fleury, S.; Guerreiro, K.; Guillot, A.; Hendricks, S.; Kurekin, A.A.; et al. Review of radar altimetry techniques over the Arctic ocean: Recent progress and future opportunities for sea level and sea ice research. In The Cryosphere Discussions; European Geosciences Union: Munich, Germany, 2018; pp. 1–51. [Google Scholar]
- Mertikas, S.; Tripolitsiotis, A.; Donlon, C.; Mavrocordatos, C.; Féménias, P.; Borde, F.; Frantzis, X.; Kokolakis, C.; Guinle, T.; Vergos, G.; et al. The ESA Permanent Facility for altimetry calibration: Monitoring performance of radar altimeters for Sentinel-3A, Sentinel-3B and Jason-3 using transponder and sea-surface calibrations with FRM standards. Remote Sens. 2020, 12, 2642. [Google Scholar] [CrossRef]
- Wei, G.; Xiao-Yan, G.; Xi-Yu, X.; Liu, H.G.; Chuan-Dong, X.; Yue-Heng, D. A transponder system dedicating for the on-orbit calibration of China’s new-generation satellite altimeter and scatterometer. In Proceedings of the 2011 IEEE CIE International Conference on Radar, Chengdu, China, 24–27 October 2011; Volume 1, pp. 22–25. [Google Scholar]
- Wang, C.; Lin, M.; Ma, C.; Xu, K.; Liu, P.; Wang, T.; Mu, B.; Zhu, J.; Guo, W. In-orbit calibration and validation of HY-2B altimeter using an improved transponder. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10162–10173. [Google Scholar] [CrossRef]
- Birks, A. Radar altimeter calibration using ground based transponders. In Proceedings of the ERS-ENVISAT Symposium, Gothenburg, Sweden, 16–20 October 2000; pp. 23–27. [Google Scholar]
- Mertikas, S.P.; Donlon, C.; Féménias, P.; Mavrocordatos, C.; Galanakis, D.; Tripolitsiotis, A.; Frantzis, X.; Tziavos, I.N.; Vergos, G.; Guinle, T. Fifteen years of Cal/Val service to reference altimetry missions: Calibration of satellite altimetry at the Permanent Facilities in Gavdos and Crete, Greece. Remote Sens. 2018, 10, 1557. [Google Scholar] [CrossRef] [Green Version]
- Donlon, C.J.; Minnett, P.J.; Fox, N.; Wimmer, W. Strategies for the laboratory and field deployment of ship-borne fiducial reference thermal infrared radiometers in support of satellite-derived sea surface temperature climate data records. In Experimental Methods in the Physical Sciences; Elsevier: Amsterdam, The Netherlands, 2014; Volume 47, pp. 557–603. [Google Scholar]
- Mertikas, S.P.; Donlon, C.; Féménias, P.; Cullen, R.; Galanakis, D.; Frantzis, X.; Tripolitsiotis, A. Fiducial Reference Measurements for Satellite Altimetry Calibration: The Constituents. In Fiducial Reference Measurements for Altimetry; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–6. [Google Scholar]
- Mertikas, S.; Partsinevelos, P.; Tripolitsiotis, A.; Kokolakis, C.; Petrakis, G.; Frantzis, X. Validation of Sentinel-3 OLCI integrated water vapor products using regional GNSS measurements in crete, Greece. Remote Sens. 2020, 12, 2606. [Google Scholar] [CrossRef]
- Cerri, A.L.; Couhert, P.F. DORIS Satellites Models Implemented in POE Processing; Technical Report: SALP-NT-BORD-OP-16137-CN; Centre National d’ètudes Spatiales: Paris, France, 2022. [Google Scholar]
- Perrygo, C. TOPEX satellite yaw maneuvers. IOC 1987, 968, 87-074. [Google Scholar]
- Zeitlhöfler, J. Nominal and observation-based attitude realization for precise orbit determination of the Jason satellites. Master’s Thesis, Technical University of Munich, Department of Civil, Geo and Environmental Engineering, Munich, Germany, 2019. [Google Scholar]
- Vallado, D.A. Fundamentals of Astrodynamics and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001; Volume 12. [Google Scholar]
- Brown, G. The average impulse response of a rough surface and its applications. IEEE Trans. Antennas Propag. 1977, 25, 67–74. [Google Scholar] [CrossRef]
- Garcia-Mondéjar, A.; Fornari, M.; Bouffard, J.; Féménias, P.; Roca, M. CryoSat-2 range, datation and interferometer calibration with Svalbard transponder. Adv. Space Res. 2018, 62, 1589–1609. [Google Scholar] [CrossRef]
- Petit, G.; Luzum, B. IERS Technical Note No. 36, IERS Conventions (2010); Technical Report; International Earth Rotation and Reference Systems Service: Frankfurt, Germany, 2010. [Google Scholar]
- Luzum, B.; Petit, G. The IERS Conventions (2010): Reference systems and new models. Proc. Int. Astron. Union 2012, 10, 227–228. [Google Scholar] [CrossRef]
- Giulicchi, L. Sentinel-6 Michael Freilich POD Context; Technical Report JC-TN-ESA-SY-0420; European Space Agency: Paris, France, 2022. [Google Scholar]
- Roinard, L.M.H. Jason-3 Validation and Cross Calibration Activities (Annual Report 2020); Technical Report SALP-RP-MA-EA-23473-CLS; Collecte Localisation Satellites: Toulouse, France, 2021. [Google Scholar]
- Mertikas, S.P.; Donlon, C.; Mavrocordatos, C.; Piretzidis, D.; Kokolakis, C.; Cullen, R.; Matsakis, D.; Borde, F.; Fornari, M.; Boy, F.; et al. Performance evaluation of the CDN1 altimetry Cal/Val transponder to internal and external constituents of uncertainty. Adv. Space Res. 2022, 70, 2458–2479. [Google Scholar] [CrossRef]
- EUMETSAT. Jason-CS/Sentinel-6 RO Level 1B Auxiliary Data Specification; Technical Report EUM/LEO-JASCS/SPE/16/882105; EUMETSAT: Darmstadt, Germany, 2022. [Google Scholar]
- Armitage, T.W.; Davidson, M.W. Using the interferometric capabilities of the ESA CryoSat-2 mission to improve the accuracy of sea ice freeboard retrievals. IEEE Trans. Geosci. Remote Sens. 2013, 52, 529–536. [Google Scholar] [CrossRef]
- Morrow, R.; Fu, L.L.; Ardhuin, F.; Benkiran, M.; Chapron, B.; Cosme, E.; d’Ovidio, F.; Farrar, J.T.; Gille, S.T.; Lapeyre, G.; et al. Global observations of fine-scale ocean surface topography with the Surface Water and Ocean Topography (SWOT) mission. Front. Mar. Sci. 2019, 6, 232. [Google Scholar] [CrossRef]
- Kern, M.; Cullen, R.; Berruti, B.; Bouffard, J.; Casal, T.; Drinkwater, M.R.; Gabriele, A.; Lecuyot, A.; Ludwig, M.; Midthassel, R.; et al. The Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) high-priority candidate mission. Cryosphere 2020, 14, 2235–2251. [Google Scholar] [CrossRef]
- Chen, G.; Tang, J.; Zhao, C.; Wu, S.; Yu, F.; Ma, C.; Xu, Y.; Chen, W.; Zhang, Y.; Liu, J.; et al. Concept design of the “Guanlan” science mission: China’s novel contribution to space oceanography. Front. Mar. Sci. 2019, 6, 194. [Google Scholar] [CrossRef]
Roll | Pitch | Yaw | |
---|---|---|---|
CDN1/GVD1 D018 | 117, 39, 32, 27, 23.5, 21 | 117, 39, 32, 27, 23.5, 21 | 117, 88, 58, 47, 39, 32, 27, 23.5, 21 |
GVD1 A109 | 117, 39, 32, 27, 23.5, 21 | 117, 70, 51, 39, 32, 27, 23.5, 21 | 117, 58, 39, 32, 27, 23.5, 21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokolakis, C.; Piretzidis, D.; Mertikas, S.P. Impact of Satellite Attitude on Altimetry Calibration with Microwave Transponders. Remote Sens. 2022, 14, 6369. https://doi.org/10.3390/rs14246369
Kokolakis C, Piretzidis D, Mertikas SP. Impact of Satellite Attitude on Altimetry Calibration with Microwave Transponders. Remote Sensing. 2022; 14(24):6369. https://doi.org/10.3390/rs14246369
Chicago/Turabian StyleKokolakis, Costas, Dimitrios Piretzidis, and Stelios P. Mertikas. 2022. "Impact of Satellite Attitude on Altimetry Calibration with Microwave Transponders" Remote Sensing 14, no. 24: 6369. https://doi.org/10.3390/rs14246369
APA StyleKokolakis, C., Piretzidis, D., & Mertikas, S. P. (2022). Impact of Satellite Attitude on Altimetry Calibration with Microwave Transponders. Remote Sensing, 14(24), 6369. https://doi.org/10.3390/rs14246369