Detection of Bering Sea Slope Mesoscale Eddies Derived from Satellite Altimetry Data by an Attention Network
Abstract
:1. Introduction
2. Data
3. Methods
3.1. Deep Learning Models Based on Attention Networks
3.2. Experimental Setup
4. Results
4.1. Eddy Detection
4.2. Validation
4.3. Eddy Size, Trajectory, and Lifetime
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M.; de Szoeke, R.A. Global observations of large oceanic eddies: Global observations of oceanic eddies. Geophys. Res. Lett. 2007, 34, 87–101. [Google Scholar] [CrossRef]
- Chen, G.; Gan, J.; Xie, Q.; Chu, X.; Wang, D.; Hou, Y. Eddy heat and salt transports in the South China Sea and their seasonal modulations: Eddy transports in the scs. J. Geophys. Res. 2012, 117, C05021. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; McWilliams, J.C.; Liu, Y.; Chen, D. Global heat and salt transports by eddy movement. Nat. Commun. 2014, 5, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinder, T.H.; Coachman, L.K.; Galt, J.A. The Bering Slope Current System. J. Phys. Oceanogr. 1975, 5, 231–244. [Google Scholar] [CrossRef]
- Solomon, H.; Ahlnäs, K. Eddies in the Kamchatka Current. Deep Sea Res. 1978, 25, 403–410. [Google Scholar] [CrossRef]
- Kinder, T.H.; Schumacher, J.D.; Hansen, D.V. Observation of a Baroclinic Eddy: An Example of Mesoscale Variability in the Bering Sea. J. Phys. Oceanogr. 1980, 10, 1228–1245. [Google Scholar] [CrossRef]
- Paluszkiewicz, T.; Niebauer, H.J. Satellite observations of circulation in the eastern Bering Sea. J. Geophys. Res. 1984, 89, 3663. [Google Scholar] [CrossRef]
- Stabeno, P.J.; Ladd, C.; Reed, R.K. Observations of the Aleutian North Slope Current, Bering Sea, 1996–2001. J. Geophys. Res. 2009, 114, C05015. [Google Scholar] [CrossRef]
- Springer, A.M.; McROY, C.P.; Flint, M.V. The Bering Sea Green Belt: Shelf-edge processes and ecosystem production. Fish. Ocean. 1996, 5, 205–223. [Google Scholar] [CrossRef]
- Lin, M.; Jia, Y. Past, Present and Future Marine Microwave Satellite Missions in China. Remote Sens. 2022, 14, 1330. [Google Scholar] [CrossRef]
- Donlon, C.J.; Cullen, R.; Giulicchi, L.; Vuilleumier, P.; Francis, C.R.; Kuschnerus, M.; Simpson, W.; Bouridah, A.; Caleno, M.; Bertoni, R.; et al. The Copernicus Sentinel-6 mission: Enhanced continuity of satellite sea level measurements from space. Remote Sens. Environ. 2021, 258, 112395. [Google Scholar] [CrossRef]
- Lambin, J.; Morrow, R.; Fu, L.L.; Willis, J.K.; Bonekamp, H.; Lillibridge, J.; Perbos, J.; Zaouche, G.; Vaze, P.; Bannoura, W.; et al. The OSTM/Jason-2 Mission. Mar. Geod. 2010, 33, 4–25. [Google Scholar] [CrossRef]
- Tran, N.; Girard-Ardhuin, F.; Ezraty, R.; Feng, H.; Femenias, P. Defining a Sea Ice Flag for Envisat Altimetry Mission. IEEE Geosci. Remote Sens. Lett. 2009, 6, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Lin, L.; Fan, L.; Liu, N.; Huang, L.; Xu, Y.; Mertikas, S.P.; Jia, Y.; Lin, M. Satellite Altimetry: Achievements and Future Trends by a Scientometrics Analysis. Remote Sensing 2022, 14, 3332. [Google Scholar] [CrossRef]
- Crawford, W.R.; Cherniawsky, J.Y.; Foreman, M.G. Multi-year meanders and eddies in the Alaskan Stream as observed by TOPEX/Poseidon altimeter. Geophys. Res. Lett. 2000, 27, 1025–1028. [Google Scholar] [CrossRef]
- Kubryakov, A.; Stanichny, S. Mesoscale eddies in the Black Sea from satellite altimetry data. Oceanology 2015, 55, 56–67. [Google Scholar] [CrossRef]
- Zhabin, I.A.; Dmitrieva, E.V.; Taranova, S.N. Mesoscale Eddies in the Bering Sea from Satellite Altimetry Data. Izv. Atmos. Ocean. Phys. 2021, 57, 1627–1642. [Google Scholar] [CrossRef]
- Weiss, J. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Phys. D Nonlinear Phenom. 1991, 48, 273–294. [Google Scholar] [CrossRef]
- Sadarjoen, I.A.; Post, F.H. Geometric methods for vortex extraction. In Proceedings of the Data Visualization’99, Vienna, Austria, 26–28 May 1999; pp. 53–62. [Google Scholar]
- Nencioli, F.; Dong, C.; Dickey, T.; Washburn, L.; McWilliams, J.C. A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J. Atmos. Ocean. Technol. 2010, 27, 564–579. [Google Scholar] [CrossRef]
- Franz, K.; Roscher, R.; Milioto, A.; Wenzel, S.; Kusche, J. Ocean Eddy Identification and Tracking using Neural Networks. arXiv 2018, arXiv:1803.07436. [Google Scholar]
- Moschos, E.; Schwander, O.; Stegner, A.; Gallinari, P. Deep-SST-Eddies: A Deep Learning Framework to Detect Oceanic Eddies in Sea Surface Temperature Images. In Proceedings of the ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 4307–4311. [Google Scholar] [CrossRef]
- Li, X.; Liu, B.; Zheng, G.; Ren, Y.; Zhang, S.; Liu, Y.; Gao, L.; Liu, Y.; Zhang, B.; Wang, F. Deep-learning-based information mining from ocean remote-sensing imagery. Natl. Sci. Rev. 2020, 7, 1584–1605. [Google Scholar] [CrossRef] [PubMed]
- Lguensat, R.; Sun, M.; Fablet, R.; Tandeo, P.; Mason, E.; Chen, G. EddyNet: A Deep Neural Network For Pixel-Wise Classification of Oceanic Eddies. In Proceedings of the IGARSS 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1764–1767. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Cheng, C.; Yang, W.; Xie, W.; Kong, L.; Hang, R.; Ma, F.; Dong, C.; Yang, J. Oceanic Eddy Identification Using an AI Scheme. Remote Sens. 2019, 11, 1349. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, X.; Ren, Y. A Deep Learning Model for Oceanic Mesoscale Eddy Detection Based on Multi-source Remote Sensing Imagery. In Proceedings of the IGARSS 2020 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2020; pp. 6762–6765. [Google Scholar] [CrossRef]
- Santana, O.; Hernández-Sosa, D.; Martz, J.; Smith, R. Neural Network Training for the Detection and Classification of Oceanic Mesoscale Eddies. Remote Sens. 2020, 12, 2625. [Google Scholar] [CrossRef]
- Liu, Y. Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2012, 68, 54–67. [Google Scholar] [CrossRef]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention U-Net: Learning Where to Look for the Pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. arXiv 2018, arXiv:1807.06521. [Google Scholar]
- Li, R.; Zheng, S.; Duan, C.; Su, J.; Zhang, C. Multistage Attention ResU-Net for Semantic Segmentation of Fine-Resolution Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual Attention Network for Scene Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2019, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Chaigneau, A.; Gizolme, A.; Grados, C. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr. 2008, 79, 106–119. [Google Scholar] [CrossRef]
Dice Coef Anti | Dice Coef Cyc | Mean Dice Coef | Accuracy (%) | |||||
---|---|---|---|---|---|---|---|---|
SLA | SLA,U,V | SLA | SLA,U,V | SLA | SLA,U,V | SLA | SLA,U,V | |
AttresUnet | 0.65 | 0.72 | 0.54 | 0.62 | 0.71 | 0.77 | 90.72 | 92.69 |
Danet | 0.69 | 0.72 | 0.57 | 0.62 | 0.74 | 0.77 | 91.88 | 93.75 |
Eddynet | 0.65 | 0.71 | 0.52 | 0.63 | 0.71 | 0.76 | 90.78 | 92.37 |
Day | 3379 | 2194 | 1981 | 3046 | 890 | 3631 | 129 | 1561 | 2182 | 752 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
True eddies | 42 | 39 | 39 | 39 | 47 | 45 | 51 | 46 | 44 | 39 | 431 |
29 | 27 | 27 | 24 | 31 | 29 | 37 | 34 | 32 | 29 | 299 | |
1 | 2 | 1 | 0 | 1 | 2 | 1 | 2 | 2 | 0 | 12 | |
Missed eddies | 12 | 12 | 12 | 15 | 16 | 16 | 14 | 12 | 12 | 10 | 132 |
SDR(%) | 69.05 | 69.23 | 69.23 | 61.54 | 65.96 | 64.44 | 72.55 | 73.91 | 72.73 | 74.36 | 69.37 |
EDR(%) | 2.38 | 5.13 | 2.56 | 0.00 | 2.13 | 4.44 | 1.96 | 4.35 | 4.55 | 0.00 | 2.78 |
Day | 3379 | 2194 | 1981 | 3046 | 890 | 3631 | 129 | 1561 | 2182 | 752 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
True eddies | 42 | 39 | 39 | 39 | 47 | 45 | 51 | 46 | 44 | 39 | 431 |
17 | 14 | 19 | 14 | 19 | 17 | 13 | 21 | 17 | 15 | 166 | |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | |
Missed eddies | 23 | 25 | 20 | 24 | 28 | 28 | 38 | 25 | 25 | 24 | 260 |
SDR(%) | 40.48 | 35.90 | 48.72 | 35.90 | 40.43 | 37.78 | 25.49 | 45.65 | 40.48 | 38.46 | 38.69 |
EDR(%) | 2.38 | 0.00 | 2.56 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, N.; Zhang, Z.; Liu, M.; Fan, L.; Li, Y.; Yang, L.; Lin, L.; Chen, H. Detection of Bering Sea Slope Mesoscale Eddies Derived from Satellite Altimetry Data by an Attention Network. Remote Sens. 2022, 14, 4974. https://doi.org/10.3390/rs14194974
Zhang Y, Liu N, Zhang Z, Liu M, Fan L, Li Y, Yang L, Lin L, Chen H. Detection of Bering Sea Slope Mesoscale Eddies Derived from Satellite Altimetry Data by an Attention Network. Remote Sensing. 2022; 14(19):4974. https://doi.org/10.3390/rs14194974
Chicago/Turabian StyleZhang, Yuyuan, Na Liu, Zhiyuan Zhang, Min Liu, Long Fan, Yunbo Li, Lei Yang, Lina Lin, and Hongxia Chen. 2022. "Detection of Bering Sea Slope Mesoscale Eddies Derived from Satellite Altimetry Data by an Attention Network" Remote Sensing 14, no. 19: 4974. https://doi.org/10.3390/rs14194974
APA StyleZhang, Y., Liu, N., Zhang, Z., Liu, M., Fan, L., Li, Y., Yang, L., Lin, L., & Chen, H. (2022). Detection of Bering Sea Slope Mesoscale Eddies Derived from Satellite Altimetry Data by an Attention Network. Remote Sensing, 14(19), 4974. https://doi.org/10.3390/rs14194974