Accurate Monitoring of Submerged Aquatic Vegetation in a Macrophytic Lake Using Time-Series Sentinel-2 Images
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Sentinel-2 Data
2.3. In Situ Survey Data
3. Methodology
3.1. Phenological Characteristics of Aquatic Vegetation in Baiyangdian Lake
3.1.1. Construction of Dense Time-Series NDVI Dataset
3.1.2. Analysis of Key Phenological Characteristics of Aquatic Vegetation
3.2. A Phenology–Pixel Algorithm for SAV Mapping
3.2.1. Determination of Extraction Threshold
3.2.2. Extraction Steps of Annual SAV Mapping
3.2.3. Start and End Time of SAV Growth
3.2.4. Removal of Dikes and Sparse FEAV
3.3. Accuracy Validation
4. Results
4.1. Accuracy Assessment of the SAV Map
4.2. Comparison before and after Removal of Dikes and Sparse FEAV
4.3. Growth Time of SAV in Baiyangdian Lake
5. Discussion
5.1. Advantages of the SAV Mapping Method in This Study
5.2. Stable Growth Area of SAV in Baiyangdian Lake
5.3. Uncertainties and Limitations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agostinho, A.A.; Thomaz, S.M.; Gomes, L.C.; Baltar, S.L.S.M. Influence of the macrophyte Eichhornia azurea on fish assemblage of the Upper Paraná River floodplain (Brazil). Aquat. Ecol. 2007, 41, 611–619. [Google Scholar] [CrossRef]
- Barko, J.W.; Gunnison, D.; Carpenter, S.R. Sediment interactions with submersed macrophyte growth and community dynamics. Aquat. Bot. 1991, 41, 41–65. [Google Scholar] [CrossRef]
- Bolpagni, R.; Bresciani, M.; Laini, A.; Pinardi, M.; Matta, E.; Ampe, E.M.; Giardino, C.; Viaroli, P.; Bartoli, M. Remote sensing of phytoplankton-macrophyte coexistence in shallow hypereutrophic fluvial lakes. Hydrobiologia 2014, 737, 67–76. [Google Scholar] [CrossRef]
- Gumbricht, T. Nutrient removal processes in freshwater submersed macrophyte systems. Ecol. Eng. 1993, 2, 1–30. [Google Scholar] [CrossRef]
- Jeppesen, E. The Structuring Role of Submerged Macrophytes in Lakes; Springer: New York, NY, USA, 1998. [Google Scholar]
- Orth, R.J.; Carruthers, T.J.B.; Dennison, W.C.; Duarte, C.M.; Fourqurean, J.W.; Heck, K.L.; Hughes, A.R.; Kendrick, G.A.; Kenworthy, W.J.; Olyarnik, S. A Global Crisis for Seagrass Ecosystems. BioScience 2006, 56, 987–996. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, X.; Qin, B.; Shi, K.; Deng, J.; Zhou, Y. Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: Implications for lake ecological restoration. Sci. Rep. 2016, 6, 23867. [Google Scholar] [CrossRef] [PubMed]
- Folke, C.; Carpenter, S.; Walker, B.; Scheffer, M.; Elmqvist, T.; Gunderson, L.; Holling, C.S. Regime Shifts, Resilience, and Biodiversity in Ecosystem Management. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 557–581. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Li, X.; Ma, R.; Li, F.; Duan, H.; Hu, W.; Qin, B.; Huang, W. Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China. Ecol. Indic. 2016, 60, 503–513. [Google Scholar] [CrossRef]
- Espel, D.; Courty, S.; Auda, Y.; Sheeren, D.; Elger, A. Submerged macrophyte assessment in rivers: An automatic mapping method using Pléiades imagery. Water Res. 2020, 186, 116353. [Google Scholar] [CrossRef]
- Luo, J.; Duan, H.; Ma, R.; Jin, X.; Huang, W. Mapping species of submerged aquatic vegetation with multi-seasonal satellite images and considering life history information. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Gao, Y.; Li, Q.; Gao, J.; Zhai, S.; Zhou, Y.; Cheng, Y. Long-term and inter-monthly dynamics of aquatic vegetation and its relation with environmental factors in Taihu Lake, China. Sci. Total Environ. 2018, 651, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Villa, P.; Mousivand, A.; Bresciani, M. Aquatic vegetation indices assessment through radiative transfer modeling and linear mixture simulation. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 113–127. [Google Scholar] [CrossRef]
- Zhao, D.; Lv, M.; Jiang, H.; Cai, Y.; Xu, D. Spatio-Temporal Variability of Aquatic Vegetation in Taihu Lake over the Past 30 Years. PLoS ONE 2013, 8, e66365. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Ma, R.; Duan, H.; Hu, W.; Zhu, J.; Huang, W.; Lin, C. A New Method for Modifying Thresholds in the Classification of Tree Models for Mapping Aquatic Vegetation in Taihu Lake with Satellite Images. Remote Sens. 2014, 6, 7442–7462. [Google Scholar] [CrossRef] [Green Version]
- Brooks, C.; Grimm, A.; Shuchman, R.; Sayers, M.; Jessee, N. A satellite-based multi-temporal assessment of the extent of nuisance Cladophora and related submerged aquatic vegetation for the Laurentian Great Lakes. Remote Sens. Environ. 2015, 157, 58–71. [Google Scholar] [CrossRef]
- Dai, Y.; Feng, L.; Hou, X.; Tang, J. An automatic classification algorithm for submerged aquatic vegetation in shallow lakes using Landsat imagery. Remote Sens. Environ. 2021, 260, 112459. [Google Scholar] [CrossRef]
- Gong, Z.; Liang, S.; Wang, X.; Pu, R. Remote Sensing Monitoring of the Bottom Topography in a Shallow Reservoir and the Spatiotemporal Changes of Submerged Aquatic Vegetation Under Water Depth Fluctuations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5684–5693. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, Y.; Wang, S.; Wang, L.; Liu, W.; Li, H.; Mei, J. Analysis of changes of Baiyangdian wetland from 1975 to 2018 based on remote sensing. J. Remote Sens. 2019, 23, 971–986. [Google Scholar]
- Liu, J.; Feng, Q.; Gong, J.; Zhou, J.; Liang, J.; Li, Y. Winter wheat mapping using a random forest classifier combined with multi-temporal and multi-sensor data. Int. J. Digit. Earth 2018, 11, 783–802. [Google Scholar] [CrossRef]
- Junhong, B.; Jingsi, F.; Laibin, H.; Wei, D.; Ainong, L.; Bo, K. Landscape pattern evolution and its driving factors of Baiyangdian lake-marsh wetland system. Geogr. Res. 2013, 32, 1634–1644. [Google Scholar]
- Zhang, M.; Gong, Z.; Zhao, W.; Duo, A. Landscape pattern change and the driving forces in Baiyangdian wetland from 1984 to 2014. Acta Ecol. Sin. 2016, 36, 4780–4791. [Google Scholar]
- Wang, K.; Li, H.; Wu, A.; Li, M.; Zhou, Y.; Li, W.P. An Analysis of the Evolution of Baiyangdian Wetlands in Hebei Province with Artificial Recharge. Acta Geosci. Sin. 2018, 39, 549–558. [Google Scholar]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Lin, Z.; Xingguo, M. Phenologies from harmonics analysis of AVHRR NDVI time series. Trans. CSAE 2006, 12, 138–144. [Google Scholar]
- Li, J.; Liu, H.B.; Li, C.; Li, L. Changes of Green-up Day of Vegetation Growing Season Based on GIMMS 3g NDVI in Northern China in Recent 30 Years. Sci. Geogr. Sin. 2017, 37, 620–629. [Google Scholar]
- Xiao, X.; Biradar, C.; Czarnecki, C.; Alabi, T.; Keller, M. A Simple Algorithm for Large-Scale Mapping of Evergreen Forests in Tropical America, Africa and Asia. Remote Sens. 2009, 1, 355–374. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Du, P.; Wang, X.; Bai, X.; Guo, S. Monitoring Human-induced Surface Water Disturbance around Taihu Lake since 1984 by Time Series Landsat Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3780–3789. [Google Scholar] [CrossRef]
- Chen, Q.; Yu, R.; Hao, Y.; Wu, L.; Zhang, W.; Zhang, Q.; Bu, X. A New Method for Mapping Aquatic Vegetation Especially Underwater Vegetation in Lake Ulansuhai Using GF-1 Satellite Data. Remote Sens. 2018, 10, 1279. [Google Scholar] [CrossRef] [Green Version]
- Vahtme, E.; Kutser, T.; Paavel, B. Performance and Applicability of Water Column Correction Models in Optically Complex Coastal Waters. Remote Sens. 2020, 12, 1861. [Google Scholar] [CrossRef]
- Zhou, G.; Yang, S.; Sathyendranath, S.; Platt, T. Canopy modeling of aquatic vegetation: A geometric optical approach (AVGO). Remote Sens. Environ. 2020, 245, 111829. [Google Scholar] [CrossRef]
- Bustamante, J.; Pacios, F.; Diaz-Delgado, R.; Aragones, D. Predictive models of turbidity and water depth in the Doana marshes using Landsat TM and ETM+ images. J. Environ. Manag. 2009, 90, 2219–2225. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.; Costa, M.; Melack, J.M.; Novo, E. Remote sensing of aquatic vegetation: Theory and applications. Environ. Monit. Assess. 2008, 140, 131–145. [Google Scholar] [CrossRef] [PubMed]
Class | Type | Dominant Species |
---|---|---|
FEAV (floating-leaved and emergent aquatic vegetation) | FEAV1 | Phragmites communis, Typha angustifolia |
FEAV2 | Nelumbo nucifera, Lemna minor, Salvinia natans | |
SAV (submerged aquatic vegetation) | SAV | Potamogeton crispus, Ceratophyllum demersum, Myriophyllum verticillatum, Potamogeton pectinatus |
Class | PA (%) | UA (%) | OA (%) |
---|---|---|---|
SAV | 87.3 | 93.3 | 94.8 |
Non-SAV | 97.6 | 95.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, S.; Gong, Z.; Wang, Y.; Zhao, J.; Zhao, W. Accurate Monitoring of Submerged Aquatic Vegetation in a Macrophytic Lake Using Time-Series Sentinel-2 Images. Remote Sens. 2022, 14, 640. https://doi.org/10.3390/rs14030640
Liang S, Gong Z, Wang Y, Zhao J, Zhao W. Accurate Monitoring of Submerged Aquatic Vegetation in a Macrophytic Lake Using Time-Series Sentinel-2 Images. Remote Sensing. 2022; 14(3):640. https://doi.org/10.3390/rs14030640
Chicago/Turabian StyleLiang, Shuang, Zhaoning Gong, Yingcong Wang, Jiafu Zhao, and Wenji Zhao. 2022. "Accurate Monitoring of Submerged Aquatic Vegetation in a Macrophytic Lake Using Time-Series Sentinel-2 Images" Remote Sensing 14, no. 3: 640. https://doi.org/10.3390/rs14030640
APA StyleLiang, S., Gong, Z., Wang, Y., Zhao, J., & Zhao, W. (2022). Accurate Monitoring of Submerged Aquatic Vegetation in a Macrophytic Lake Using Time-Series Sentinel-2 Images. Remote Sensing, 14(3), 640. https://doi.org/10.3390/rs14030640