Improving the Orbits of the BDS-2 IGSO and MEO Satellites with Compensating Thermal Radiation Pressure Parameters
Abstract
:1. Introduction
2. Orbit Dynamic Perturbations
2.1. Solar Radiation Pressure
2.1.1. Extended CODE Orbit Model (ECOM)
2.1.2. The Adjustable Box-Wing (ABW) Model
2.2. Thermal Radiation Pressure
3. Status of BDS-2 IGSO and MEO Orbits
3.1. BDS-2 Orbits from MGEX ACs
3.2. Strategy for the POD with IGS and iGMAS Observations
3.3. The Orbits Determined with the Standard ABW Model
4. The Compensated TRR Model for BDS-2 IGSOs and MEOs
4.1. TR
4.2. Compensated TRR Model
5. Validation
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Y.; Mao, Y.; Sun, B. Basic performance and future developments of BeiDou global navigation satellite system. Satell. Navig. 2020, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Gu, D.; Ju, B.; Shen, Z.; Lai, Y.; Yi, D. A new empirical solar radiation pressure model for BeiDou GEO satellites. Adv. Space Res. 2016, 57, 234–244. [Google Scholar] [CrossRef]
- Wang, C.; Guo, J.; Zhao, Q.; Liu, J. Empirically derived model of solar radiation pressure for BeiDou GEO satellites. J. Geod. 2019, 93, 791–807. [Google Scholar] [CrossRef]
- Tang, C.; Hu, X.; Zhou, S.; Guo, R.; He, F.; Liu, L.; Zhu, L.; Li, X.; Wu, S.; Zhao, G.; et al. Improvement of orbit determination accuracy for Beidou Navigation Satellite System with Two-way Satellite Time Frequency Transfer. Adv. Space Res. 2016, 58, 1390–1400. [Google Scholar] [CrossRef]
- Li, R.; Li, Z.; Wang, N.; Tang, C.; Ma, H.; Zhang, Y.; Wang, Z.; Wu, J. Considering inter-receiver pseudorange biases for BDS-2 precise orbit determination. Measurement 2021, 177, 109251. [Google Scholar] [CrossRef]
- Chen, Q.; Song, S.; Zhou, W. Accuracy Analysis of GNSS Hourly Ultra-Rapid Orbit and Clock Products from SHAO AC of iGMAS. Remote Sens. 2021, 13, 1022. [Google Scholar] [CrossRef]
- Zeng, T.; Sui, L.; Jia, X.; Ji, G.; Zang, Q. Results and Analysis of BDS Precise Orbit Determination with the Enhancement of Fengyun-3C. Acta Geod. Cartogr. Sin. 2017, 46, 824–833. [Google Scholar]
- Ge, H.; Li, B.; Ge, M.; Shen, Y.; Schuh, H. Improving BeiDou precise orbit determination using observations of onboard MEO satellite receivers. J. Geod. 2017, 91, 1447–1460. [Google Scholar] [CrossRef]
- Wang, C.; Guo, J.; Zhao, Q.; Liu, J. Yaw attitude modeling for BeiDou I06 and BeiDou-3 satellites. GPS Solut. 2018, 22, 117. [Google Scholar] [CrossRef]
- Dilssner, F.; Laufer, G.; Springer, T.; Schonemann, E.; Enderle, W. The BeiDou Attitude Model for Continuous Yawing MEO and IGSO. EGU 2018, Vienna. Available online: http://navigation-office.esa.int/attachments_29393052_1_EGU2018_Dilssner_Final.pdf (accessed on 20 November 2021).
- Guo, J.; Chen, G.; Zhao, Q.; Liu, J.; Liu, X. Comparison of solar radiation pressure models for BDS IGSO and MEO satellites with emphasis on improving orbit quality. GPS Solut. 2016, 21, 511–522. [Google Scholar] [CrossRef] [Green Version]
- Montenbruck, O.; Steigenberger, P.; Darugna, F. Semi-analytical solar radiation pressure modeling for QZS-1 orbit-normal and yaw-steering attitude. Adv. Space Res. 2017, 59, 2088–2100. [Google Scholar] [CrossRef]
- Prange, L.; Beutler, G.; Dach, R.; Arnold, D.; Schaer, S.; Jäggi, A. An empirical solar radiation pressure model for satellites moving in the orbit-normal mode. Adv. Space Res. 2020, 65, 235–250. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Y.; Zheng, K.; Yuan, Y.; Liu, G.; Xiong, Y. Precise Orbit and Clock Products of Galileo, BDS and QZSS from MGEX Since 2018: Comparison and PPP Validation. Remote Sens. 2020, 12, 1415. [Google Scholar] [CrossRef]
- Beutler, G.; Brockmann, E.; Gurtner, W.; Hugentobler, U.; Mervart, L.; Rothacher, M.; Verdun, A. Extended orbit modeling techniques at the CODE processing center of the International GPS Service for Geodynamics (IGS): Theory and initial results. Manuscr. Geod. 1994, 19, 367–386. [Google Scholar]
- Johnston, G.; Riddell, A.; Hausler, G. The International GNSS Service. In Springer Handbook of Global Navigation Satellite Systems, 1st ed.; Teunissen, P.J.G., Montenbruck, O., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 967–982. [Google Scholar] [CrossRef]
- Sośnica, K.; Zajdel, R.; Bury, G.; Bosy, J.; Moore, M.; Masoumi, S. Quality assessment of experimental IGS multi-GNSS combined orbits. GPS Solut. 2020, 24, 54. [Google Scholar] [CrossRef] [Green Version]
- Bury, G.; Sośnica, K.; Zajdel, R.; Strugarek, D. Toward the 1-cm Galileo orbits: Challenges in modeling of perturbing forces. J. Geod. 2020, 94, 16. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Huang, G.; Zhang, Q.; Gao, Y.; Gao, Y. Asynchronous RTK Method for Detecting the Stability of the Reference Station in GNSS Deformation Monitoring. Sensors 2020, 20, 1320. [Google Scholar] [CrossRef] [Green Version]
- Ye, F.; Yuan, Y.; Deng, Z. Improved Ultra-Rapid UT1-UTC Determination and Its Preliminary Impact on GNSS Satellite Ultra-Rapid Orbit Determination. Remote Sens. 2020, 12, 3584. [Google Scholar] [CrossRef]
- CSNO Satellite Information of BDS. China Satellite Navigation Office. Available online: https://en.beidou.gov.cn/SYSTEMS/Officialdocument/201912/P020200103556125703019.rar (accessed on 20 November 2021).
- Montenbruck, O.; Steigenberger, P.; Prange, L.; Deng, Z.; Zhao, Q.; Perosanz, F.; Romero, I.; Noll, C.; Stürze, A.; Weber, G.; et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)—Achievements, prospects and challenges. Adv. Space Res. 2017, 59, 1671–1697. [Google Scholar] [CrossRef]
- Springer, T.A.; Beutler, G.; Rothacher, M. A New Solar Radiation Pressure Model for GPS Satellites. GPS Solut. 1999, 2, 50–62. [Google Scholar] [CrossRef]
- Fliegel, H.F.; Gallini, T.E. Solar force modeling of block IIR Global Positioning System satellites. J. Spacecr. Rockets 1996, 33, 863–866. [Google Scholar] [CrossRef]
- Rodriguez-Solano, C.; Hugentobler, U.; Steigenberger, P.; Lutz, S. Impact of Earth radiation pressure on GPS position estimates. J. Geod. 2012, 86, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Prange, L.; Villiger, A.; Sidorov, D.; Schaer, S.; Beutler, G.; Dach, R.; Jäggi, A. Overview of CODE’s MGEX solution with the focus on Galileo. Adv. Space Res. 2020, 66, 2786–2798. [Google Scholar] [CrossRef]
- Rodriguez-Solano, C.; Hugentobler, U.; Steigenberger, P. Adjustable box-wing model for solar radiation pressure impacting GPS satellites. Adv. Space Res. 2012, 49, 1113–1128. [Google Scholar] [CrossRef]
- Dudok De Wit, T.; Kopp, G.; Fröhlich, C.; Schöll, M. Methodology to create a new total solar irradiance record: Making a composite out of multiple data records. Geophys. Res. Lett. 2017, 44, 1196–1203. [Google Scholar] [CrossRef] [Green Version]
- Ziebart, M.; Adhya, S.; Sibthorpe, A.; Edwards, S.; Cross, P. Combined radiation pressure and thermal modelling of complex satellites: Algorithms and on-orbit tests. Adv. Space Res. 2005, 36, 424–430. [Google Scholar] [CrossRef]
- Adhya, S. Thermal Re-Radiation Modelling for the Precise Prediction and Determination of Spacecraft Orbits. Ph.D. Disertation, University College London, London, UK, 2015. [Google Scholar]
- Sidorov, D.; Dach, R.; Polle, B.; Prange, L.; Jäggi, A. Adopting the empirical CODE orbit model to Galileo satellites. Adv. Space Res. 2020, 66, 2799–2811. [Google Scholar] [CrossRef]
- Duan, B.; Hugentobler, U.; Hofacker, M.; Selmke, I. Improving solar radiation pressure modeling for GLONASS satellites. J. Geod. 2020, 94, 72. [Google Scholar] [CrossRef]
- Deng, Z.; Mathias, F.; Uhlemann, M.; Wickert, J.; Schuh, H. Reprocessing of GFZ Multi-GNSS Product GBM. IGS Workshop, Sydney, Australia. Available online: http://acc.igs.org/workshop2016/presentations/Plenary_01_06.pdf (accessed on 20 November 2021).
- Guo, J.; Xu, X.; Zhao, Q.; Liu, J. Precise orbit determination for quad-constellation satellites at Wuhan University: Strategy, result validation, and comparison. J. Geod. 2016, 90, 143–159. [Google Scholar] [CrossRef]
- Pearlman, M.R.; Degnan, J.J.; Bosworth, J.M. The International Laser Ranging Service. Adv. Space Res. 2002, 30, 135–143. [Google Scholar] [CrossRef]
- Jiao, W.; Ding, Q.; Li, J.; Lu, X.; Feng, L.; Ma, J.; Chen, G. Monitoring and Assessment of GNSS Open Services. J. Navig. 2011, 64, S19–S29. [Google Scholar] [CrossRef]
- Liu, J.-N.; Ge, M.-R. PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ. J. Nat. Sci. 2003, 8, 603–609. [Google Scholar] [CrossRef]
- Steigenberger, P.; Thoelert, S.; Montenbruck, O. GNSS satellite transmit power and its impact on orbit determination. J. Geodesy 2018, 92, 609–624. [Google Scholar] [CrossRef]
- Petit, G.; Luzum, B. IERS Conventions 2010; Technical Report; IERS Convention Center: Frankfurt am Main, Germany, 2010. [Google Scholar]
- Rodriguez-Solano, C.J. Impact of the Albedo Modeling on GPS Orbits. Master’s Thesis, Technische Universität München (TUM), Munich, Germany, 2009. [Google Scholar]
- Wang, C. Solar Radiation Pressure Modelling for BeiDou Navigation Satellites. Ph.D. Dissertation, GNSS Research Center, Wuhan University, Wuhan, China, 2019. [Google Scholar] [CrossRef]
- Duan, B.; Hugentobler, U.; Selmke, I.; Marz, S.; Killian, M.; Rott, M. BeiDou satellite radiation force models for precise orbit determination and geodetic applications. IEEE Trans. Aerosp. Electron. Syst. 2022. [Google Scholar] [CrossRef]
Solutions | C08 | C10 | C13 | C11 |
---|---|---|---|---|
CODE | −7.0 | −13.6 | −16.8 | −2.3 |
GFZ | −9.1 | −9.6 | −15.2 | −5.4 |
WHU | −6.3 | −6.1 | −13.9 | −3.2 |
Models | Description |
---|---|
Geopotential (static) | EGM2008 with 12 × 12 |
N-body | Sun, Moon, Jupiter, Venus, Mars, Mercury, Uranus, Neptune, Saturn, Pluto, Charon as point mass JPL DE405 ephemeris used |
Solid Earth tides | IERS conventions 2010 [39] |
Solid Earth pole tides | IERS conventions 2010 [39] |
Ocean tides | None |
Ocean pole tides | None |
Relativistic effects | IERS conventions 2010 [39] |
Solar radiation pressure | See Table 3 |
Antenna thrust | Applied. [38] |
Earth radiation pressure | Applied. [40] |
Solution | SRP Model | Estimated Parameters |
---|---|---|
ECOM | The 5-parameter ECOM model | . |
ABW | The standard ABW | . |
ABW + TRR | The modified ABW with TRR parameter | . |
ECOM + TRR | ECOM with additional TRR parameter as the a prior | . |
IGSOs | C06 | C07 | C08 | C09 | C10 | C13 |
---|---|---|---|---|---|---|
Value | 1.5 | 1.6 | 1.2 | 2.3 | 1.8 | 2.6 |
MEOs | C11 | C12 | C14 | |||
Value | 1.6 | 1.5 | 0.9 |
ECOM | ABW | ABW + TRR | ECOM + TRR | |||||
---|---|---|---|---|---|---|---|---|
Mean | RMS | Mean | RMS | Mean | RMS | Mean | RMS | |
C08 | 1.7 | 5.7 | 4.0 | 7.8 | 1.3 | 6.1 | −0.1 | 5.2 |
C10 | 3.2 | 5.6 | 3.2 | 7.8 | 2.0 | 7.5 | 0.1 | 4.4 |
C11 | 0.0 | 3.4 | 0.1 | 3.9 | 0.0 | 3.2 | 0.0 | 2.9 |
C13 | 1.9 | 6.4 | 2.1 | 8.9 | 0.1 | 6.6 | 0.1 | 4.3 |
ECOM | ABW | ABW + TRR | ECOM + TRR | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | C | R | A | C | R | A | C | R | A | C | R | ||
IGSO | C06 | 127.5 | 8.0 | 29.6 | 158.6 | 9.5 | 35.5 | 137.5 | 9.0 | 30.7 | 113.6 | 7.6 | 28.0 |
C07 | 84.5 | 10.1 | 25.5 | 136.8 | 10.9 | 30.2 | 123.5 | 9.7 | 25.4 | 95.6 | 10.3 | 25.7 | |
C08 | 126.0 | 8.7 | 31.3 | 156.7 | 10.8 | 33.2 | 153.1 | 10.7 | 37.3 | 134.3 | 10.0 | 25.7 | |
C09 | 95.8 | 8.8 | 25.1 | 222.4 | 8.9 | 40.0 | 175.3 | 9.0 | 36.6 | 108.9 | 9.2 | 24.5 | |
C10 | 85.9 | 10.6 | 19.4 | 104.1 | 8.8 | 29.7 | 123.3 | 9.1 | 28.5 | 117.8 | 10.2 | 18.5 | |
C13 | 171.6 | 7.8 | 36.6 | 107.1 | 7.5 | 28.3 | 95.9 | 6.6 | 25.3 | 160.8 | 9.0 | 36.1 | |
MEO | C11 | 19.7 | 5.7 | 4.4 | 20.0 | 4.3 | 4.3 | 21.5 | 5.2 | 4.5 | 21.7 | 5.6 | 4.3 |
C12 | 23.5 | 4.9 | 6.0 | 30.4 | 5.4 | 6.1 | 20.6 | 5.8 | 5.7 | 23.0 | 4.9 | 5.7 | |
C14 | 26.8 | 5.0 | 5.3 | 26.9 | 4.8 | 5.1 | 24.4 | 5.1 | 4.8 | 26.9 | 5.0 | 5.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Guo, J.; Zhao, Q.; Ge, M. Improving the Orbits of the BDS-2 IGSO and MEO Satellites with Compensating Thermal Radiation Pressure Parameters. Remote Sens. 2022, 14, 641. https://doi.org/10.3390/rs14030641
Wang C, Guo J, Zhao Q, Ge M. Improving the Orbits of the BDS-2 IGSO and MEO Satellites with Compensating Thermal Radiation Pressure Parameters. Remote Sensing. 2022; 14(3):641. https://doi.org/10.3390/rs14030641
Chicago/Turabian StyleWang, Chen, Jing Guo, Qile Zhao, and Maorong Ge. 2022. "Improving the Orbits of the BDS-2 IGSO and MEO Satellites with Compensating Thermal Radiation Pressure Parameters" Remote Sensing 14, no. 3: 641. https://doi.org/10.3390/rs14030641
APA StyleWang, C., Guo, J., Zhao, Q., & Ge, M. (2022). Improving the Orbits of the BDS-2 IGSO and MEO Satellites with Compensating Thermal Radiation Pressure Parameters. Remote Sensing, 14(3), 641. https://doi.org/10.3390/rs14030641