Marine Oil Pollution in an Area of High Economic Use: Statistical Analyses of SAR Data from the Western Java Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Region of Interest
2.2. SAR images
2.3. Statistical Analyses
2.4. Different Operators
3. Results
3.1. Spatial Distributions of Oil Spills
3.2. Comparison of Oil Spill Statistics from Different Operators
3.2.1. First Case: Sentinel-1 Data
3.2.2. Second Case: ENVISAT Data
3.3. Influence of Weather Conditions
3.3.1. Wind Speed Range
3.3.2. Heavy Rain Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrews, N.; Bennett, N.J.; Le Billon, P.; Green, S.J.; Cisneros-Montemayor, A.M.; Amongin, S.; Gray, N.J.; Sumaila, U.R. Oil, fisheries and coastal communities: A review of impacts on the environment, livelihoods, space and governance. Energy Res. Soc. Sci. 2021, 75, 102009. [Google Scholar] [CrossRef]
- BP. BP Statistical Review of World Energy 68th Edition. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf (accessed on 13 January 2020).
- Ferraro, G.; Meyer-Roux, S.; Muellenhoff, O.; Pavliha, M.; Svetak, J.; Tarchi, D.; Topouzelis, K. Long term monitoring of oil spills in European seas. Int. J. Remote Sens. 2009, 30, 627–645. [Google Scholar] [CrossRef]
- Wahl, T.; Skøelv, Å.; Pedersen, J.P.; Seljelv, L.-G.; Andersen, J.H.; Follum, O.A.; Anderssen, T.; Strøm, G.D.; Bern, T.-I.; Espedal, H.H.; et al. Radar satellites: A new tool for pollution monitoring in coastal waters. Coast. Manag. 1996, 24, 61–71. [Google Scholar] [CrossRef]
- ESA. Oil Pollution Monitoring. In ESA Brochure BR-128/I: ERS and its Applications: Marine; Calabresi, G., Bellini, A., Battrick, B., Eds.; 1998; p. 64. Available online: https://www.esa.int/esapub/br/br128/br128_1.pdf (accessed on 10 February 2022).
- Fingas, M.; Brown, C.E. A Review of Oil Spill Remote Sensing. Sensors 2018, 18, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.; Li, X.; Xu, Q.; Garcia-Pineda, O.; Andersen, O.B.; Pichel, W.G. SAR observation and model tracking of an oil spill event in coastal waters. Mar. Pollut. Bull. 2011, 62, 350–362. [Google Scholar] [CrossRef]
- Brekke, C.; Solberg, A.H.S. Oil spill detection by satellite remote sensing. Remote Sens. Environ. 2005, 95, 1–13. [Google Scholar] [CrossRef]
- Gade, M. On the imaging of biogenic and anthropogenic surface films on the sea by radar sensors. In Marine Surface Films: Chemical Characteristics, Influence on Air-Sea Inter-actions and Remote Sensing; Gade, M., Hühnerfuss, H., Korenowski, G.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 189–204. [Google Scholar]
- Migliaccio, M.; Gambardella, A.; Tranfaglia, M. SAR Polarimetry to Observe Oil Spills. IEEE Trans. Geosci. Remote Sens. 2007, 45, 506–511. [Google Scholar] [CrossRef]
- Espedal, H. Detection of oil spill and natural film in the marine environment by spaceborne SAR. In Proceedings of the International Symposium on Geoscience and Remote Sensing (IGARSS) 1999, Hamburg, Germany, 28 June– 2 July 1999; pp. 1478–1480. [Google Scholar]
- Fiscella, B.; Giancaspro, A.; Nirchio, F.; Pavese, P.; Trivero, P. Oil Spill detection using marine SAR images. Int. J. Remote Sens. 2000, 21, 3561–3566. [Google Scholar] [CrossRef]
- Leifer, I.; Lehr, W.J.; Simecek-Beatty, D.; Bradley, E.; Clark, R.; Dennison, P.; Hu, Y.; Matheson, S.; Jones, C.E.; Holt, B.; et al. State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill. Remote Sens. Environ. 2012, 124, 185–209. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; An, C.; Lee, K.; Owens, E.; Chen, Z.; Boufadel, M.; Taylor, E.; Feng, O. Factors influencing the fate of oil spilled on shorelines: A review. Environ. Chem. Lett. 2021, 19, 1611–1628. [Google Scholar] [CrossRef]
- Solberg, A.; Storvik, G.; Solberg, R.; Volden, E. Automatic detection of oil spills in ERS SAR images. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1916–1924. [Google Scholar] [CrossRef] [Green Version]
- Topouzelis, K.; Psyllos, A. Oil spill feature selection and classification using decision tree forest on SAR image data. ISPRS J. Photogramm. Remote Sens. 2012, 68, 135–143. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, L.; Clausi, D. Exploring the Potential of Active Learning for Automatic Identification of Marine Oil Spills Using 10-Year (2004–2013) RADARSAT Data. Remote Sens. 2017, 9, 1041. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, Y.; Liang, X.S.; Tsou, J. Comparison of Oil Spill Classifications Using Fully and Compact Polarimetric SAR Images. Appl. Sci. 2017, 7, 193. [Google Scholar] [CrossRef] [Green Version]
- Solberg, A.S. Automatic Detection and Estimating Confidence for Oil Spill Detection in SAR Images. In Proceedings of the 21st International Symposium on Remote Sensing of Environment (ISRSE), St. Petersburg, Russian, 20–24 June 2005. [Google Scholar]
- Meier, C. Untersuchungen zur Detektion von Mariner Ölverschmutzung in Indonesischen Seegebieten mit Satellitengestützten Radarsensoren. Bachelor’s Thesis, Universität Hamburg, Fachbereich Geowissenschaften, Hamburg, Germany, 2016. [Google Scholar]
- Gade, M.; Mayer, B.; Meier, C.; Pohlmann, T.; Putri, M.; Setiawan, A. An assessment of marine oil pollution in Indonesia based on SAR imagery. In Proceedings of the IEEE Intern. Geosci. Remote Sens. Sympos. (IGARSS) 2017, Fort Worth, TX, USA, 23–28 July 2017; pp. 1534–1537. [Google Scholar]
- Lu, J. Marine oil spill detection, statistics and mapping with ERS SAR imagery in south-east Asia. Int. J. Remote Sens. 2003, 24, 3013–3032. [Google Scholar] [CrossRef]
- Ivanov, A.; He, M.-X.; Fang, M. Oil spill detection with the RADARSAT SAR in the waters of the Yellow and East China Sea: A case study. In Proceedings of the 23rd Asian Conference on Remote Sensing, Kathmandu, Nepal, 25–29 November 2002; pp. 25–29. [Google Scholar]
- Mohr, V. Satellitengestützte Radar-Fernerkundung mariner Ölverschmutzung in der Javasee. Bachelor’s Thesis, Universität Hamburg, Fachbereich Geowissenschaften, Hamburg, Germany, 2019. [Google Scholar]
- Setiawan, A.; Putri, M.R.; Gade, M.; Pohlmann, T.; Mayer, B. Combining ocean numerical model and SAR imagery to investigate the occurrence of oil pollution, a case study for the Java Sea. IOP Conf. Ser. Earth Environ. Sci. 2017, 54, 12080. [Google Scholar] [CrossRef] [Green Version]
- Barale, V.; Gade, M. Remote Sensing of the Asian Seas; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-319-94065-6. [Google Scholar]
- Durand, J.-R.; Petit, D. The Java Sea Environment. In Biodynex: Biology, Dynamics, Exploitation of the Small Pelagic Fishes in the Java Sea; Potier, M., Nurhakim, S., Eds.; Agency for Agricultural Research and Development: Jakarta, Indonesia, 1995. [Google Scholar]
- Alaska Satellite Facility Distributed Active Archive Center (ASF DAAC). Available online: https://search.asf.alaska.edu (accessed on 4 August 2019).
- Copernicus Marine Environment Monitoring Service (CMEMS). Available online: https://marine.copernicus.eu (accessed on 4 August 2019).
- Gade, M.; Alpers, W. Using ERS-2 SAR images for routine observation of marine pollution in European coastal waters. Sci. Total Environ. 1999, 237–238, 441–448. [Google Scholar] [CrossRef]
- Gade, M.; Alpers, W.; Hühnerfuss, H.; Masuko, H.; Kobayashi, T. The imaging of biogenic and anthropogenic surface films by a multi-frequency multi-polarization synthetic aperture radar measured during the SIR-C/X-SAR missions. J. Geophys. Res. 1998, 103, 18851–18866. [Google Scholar] [CrossRef]
- Marine Traffic. Available online: http://marinetraffic.com (accessed on 16 October 2019).
- Mande. Offshore North West Java (ONWJ). Mande Blog on wordpress.com. Available online: https://ngsuyasa.wordpress.com/2014/03/13/offshore-north-west-java-onwj-block-at-java-sea/ (accessed on 17 October 2019).
- Burr, I.W. Cumulative frequency functions. Ann. Math. Stat. 1942, 13, 215–232. [Google Scholar] [CrossRef]
- Chinchor, N. MUC-4 Evaluation Metrics. In Proceedings of the Fourth Mess. Underst. Conf. (MUC-4), McLean, VA, USA, 16–18 June 1992; pp. 22–29. [Google Scholar]
- Gade, M.; Byfield, V.; Ermakov, S.; Lavrova, O.; Mitnik, L. Slicks as Indicators for Marine Processes. Oceanography 2013, 26, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Espedal, H.A. Satellite SAR oil spill detection using wind history information. Int. J. Remote Sens. 1999, 20, 49–65. [Google Scholar] [CrossRef]
- Green, T.; Houk, D.F. The removal of organic surface films by rain. Limnol. Ocean. 1979, 24, 966–970. [Google Scholar] [CrossRef]
- Copernicus Climate Data Storage (CDS). Available online: https://cds.climate.copernicus.eu (accessed on 9 October 2019).
- Holt, B. SAR Imaging of the Ocean Surface. In SAR Marine User’s Manual; Jackson, C.R., Apel, J.R., Eds.; NOAA: Washington, DC, USA, 2004; pp. 25–80. [Google Scholar]
Operator 2 | ||||
---|---|---|---|---|
Number of Spills | Detected | Not Detected | ∑ | |
Operator 1 | Detected | 432 | 369 | 801 |
Not detected | 262 | - | 262 | |
∑ | 694 | 369 | 1063 |
Operator 2 | ||||
---|---|---|---|---|
Number of Spills | Detected | Not Detected | ∑ | |
Operator 1 | Detected | 148 | 32 | 180 |
Not detected | 114 | - | 114 | |
∑ | 262 | 32 | 294 |
Wind Speed Range (m/s) | Percentage of Spills Found by Both Operators | Mean Area of Spills Missed by One Operator (km2) |
---|---|---|
2–10 | 41 | 1.08 |
5–10 | 50 | 0.94 |
Wind Speed Range (m/s) | Percentage of Spills Found by Both Operators | Mean Area of Spills Missed by One Operator (km2) |
---|---|---|
2–10 | 48 | 1.81 |
5–10 | 63 | 4.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohr, V.; Gade, M. Marine Oil Pollution in an Area of High Economic Use: Statistical Analyses of SAR Data from the Western Java Sea. Remote Sens. 2022, 14, 880. https://doi.org/10.3390/rs14040880
Mohr V, Gade M. Marine Oil Pollution in an Area of High Economic Use: Statistical Analyses of SAR Data from the Western Java Sea. Remote Sensing. 2022; 14(4):880. https://doi.org/10.3390/rs14040880
Chicago/Turabian StyleMohr, Veronika, and Martin Gade. 2022. "Marine Oil Pollution in an Area of High Economic Use: Statistical Analyses of SAR Data from the Western Java Sea" Remote Sensing 14, no. 4: 880. https://doi.org/10.3390/rs14040880
APA StyleMohr, V., & Gade, M. (2022). Marine Oil Pollution in an Area of High Economic Use: Statistical Analyses of SAR Data from the Western Java Sea. Remote Sensing, 14(4), 880. https://doi.org/10.3390/rs14040880