MODIS Land Surface Temperature Product Reconstruction Based on the SSA-BiLSTM Model
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data and Data Preprocessing
2.2.1. Research Data
2.2.2. Data Preprocessing
3. LST Reconstruction Method
3.1. Rough LST Reconstruction Based on the SSA Model
3.1.1. SSA Algorithm
3.1.2. Rough LST Reconstruction Method Based on the SSA Model
3.2. Refined LST Reconstruction Based on the BiLSTM Model
3.2.1. Principle of the BiLSTM Model
3.2.2. Refined LST Reconstruction Method Based on the BiLSTM Model
3.3. Evaluation Criteria
- (1)
- Root Mean Square Error (RMSE):
- (2)
- Mean Absolute Percentage Error (MAPE):
- (3)
- Correlation Coefficient (R2):
4. Results and Discussion
4.1. Quantitative Analysis
4.2. Qualitative Analysis
4.3. Limitations of the Proposed Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BiLSTM | Bidirectional Long Short-Term Memory |
EMD | Empirical Mode Decomposition |
LST | Land Surface Temperature |
LSTM | Long Short-Term Memory |
MAPE | Mean Absolute Percentage Error |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MRT | MODIS Projection Tool |
R2 | Correlation Coefficient |
RMSE | Root Mean Square error |
RNN | Recurrent Neural Network |
SG | Savitzky Golay |
SSA | Singular Spectrum Analysis |
References
- Zhao, B.; Mao, K.; Cai, Y.; Shi, J.; Li, Z.; Qin, Z.; Meng, X.; Shen, X.; Guo, Z. A combined Terra and Aqua MODIS land surface temperature and meteorological station data product for China from 2003 to 2017. Earth Syst. Sci. Data 2020, 12, 2555–2577. [Google Scholar] [CrossRef]
- Mao, K.; Yuan, Z.; Zuo, Z.; Xu, T.; Shen, X.; Gao, C. Changes in global cloud cover based on remote sensing data from 2003 to 2012. Chin. Geogr. Sci. 2019, 29, 306–315. [Google Scholar] [CrossRef] [Green Version]
- Neteler, M. Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data. Remote Sens. 2010, 2, 333–351. [Google Scholar] [CrossRef] [Green Version]
- Kilibarda, M.; Hengl, T.; Heuvelink, G.B.M.; Gräler, B.; Pebesma, E.; Tadić, M.P.; Bajat, B. Spatio-temporal interpolation of daily temperatures for global land areas at 1km resolution. J. Geophys. Res. Atmos. 2014, 119, 2294–2313. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.-M.; Liu, H.-G.; Liu, G.-H.; Li, S.-B. Reconstruction of MODIS land-surface temperature in a flat terrain and fragmented landscape. Int. J. Remote Sens. 2014, 35, 7857–7877. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Liang, S.; Wang, D. A practical reanalysis data and thermal infrared remote sensing data merging (RTM) method for reconstruction of a 1-km all-weather land surface temperature. Remote Sens. Environ. 2021, 260, 112437. [Google Scholar] [CrossRef]
- Van Nguyen, O.; Kawamura, K.; Trong, D.P.; Gong, Z.; Suwandana, E. Temporal change and its spatial variety on land surface temperature and land use changes in the Red River Delta, Vietnam, using MODIS time-series imagery. Environ. Monit. Assess. 2015, 187, 464. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Long, D.; Shen, H.; Wu, P.; Cui, Y.; Hong, Y. A two-step framework for reconstructing remotely sensed land surface temperatures contaminated by cloud. ISPRS J. Photogramm. Remote Sens. 2018, 141, 30–45. [Google Scholar] [CrossRef]
- Malamiri, H.R.G.; Rousta, I.; Olafsson, H.; Zare, H.; Zhang, H. Gap-filling of MODIS time series land surface temperature (LST) products using singular spectrum analysis (SSA). Atmosphere 2018, 9, 334. [Google Scholar] [CrossRef] [Green Version]
- Fu, P.; Xie, Y.; Weng, Q.; Myint, S.; Meacham-Hensold, K.; Bernacchi, C. A physical model-based method for retrieving urban land surface temperatures under cloudy conditions. Remote Sens. Environ. 2019, 230, 111191. [Google Scholar] [CrossRef]
- Wu, D.; Chen, J.; Shi, M.; Qin, B.; Li, S. Reconstruction of land surface temperature time-series datasets of FY-2F based on Savitzky-Golay filter. Remote Sens. Land Resour. 2019, 31, 59–65. [Google Scholar]
- Tan, J.; Che, T.; Wang, J.; Liang, J.; Zhang, Y.; Ren, Z. Reconstruction of the daily MODIS land surface temperature product using the two-step improved similar pixels method. Remote Sens. 2021, 13, 1671. [Google Scholar] [CrossRef]
- Shuai, T.; Zhang, X.; Wang, S.; Zhang, L.; Shang, K.; Chen, X.; Wang, J. A Spectral Angle Distance-Weighting Reconstruction Method for Filled Pixels of the MODIS Land Surface Temperature Product. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1514–1518. [Google Scholar] [CrossRef]
- Sun, L.; Chen, Z.; Gao, F.; Anderson, M.; Song, L.; Wang, L.; Yang, Y. Reconstructing daily clear-sky land surface temperature for cloudy regions from MODIS data. Comput. Geosci. 2017, 105, 10–20. [Google Scholar] [CrossRef]
- Arslan, N.; Sekertekin, A. Application of Long Short-Term Memory neural network model for the reconstruction of MODIS land surface temperature images. J. Atmos. Sol. -Terr. Phys. 2019, 194, 105100. [Google Scholar] [CrossRef]
- Wu, P.; Yin, Z.; Yang, H.; Wu, Y.; Ma, X. Reconstructing geostationary satellite land surface temperature imagery based on a multiscale feature connected convolutional neural network. Remote Sens. 2019, 11, 300. [Google Scholar] [CrossRef] [Green Version]
- Senyurek, V.Y.; Imtiaz, M.H.; Belsare, P.; Tiffany, S.; Sazonov, E. A CNN-LSTM neural network for recognition of puffing in smoking episodes using wearable sensors. Biomed. Eng. Lett. 2020, 10, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Akpinar, M.; Adak, M.F.; Yumusak, N. Day-ahead natural gas demand forecasting using optimized ABC-based neural network with sliding window technique: The case study of regional basis in Turkey. Energies 2017, 10, 781–801. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.J. Research on Application of Singular Spectrum Analysis in Data Processing and Analysis of Crustal Deformation; Institute of Seismology China Earthquake Administration: Beijing, China, 2017. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural computation. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
Rate of Missing Values | First 3 Items | First 5 Items | First 7 Items | First 9 Items | First 11 Items | First 13 Items | First 15 Items | First 20 Items | |
---|---|---|---|---|---|---|---|---|---|
10% | data1 | 0.9483 | 0.9800 | 0.9870 | 0.9923 | 0.9966 | 0.9977 | 0.9979 | 0.9979 |
data2 | 0.9490 | 0.9800 | 0.9867 | 0.9919 | 0.9972 | 0.9983 | 0.9987 | 0.9987 | |
20% | data1 | 0.9485 | 0.9800 | 0.9867 | 0.9917 | 0.9961 | 0.9972 | 0.9972 | 0.9972 |
data2 | 0.9489 | 0.9796 | 0.9862 | 0.9914 | 0.9961 | 0.9972 | 0.9975 | 0.9975 | |
30% | data1 | 0.9484 | 0.9788 | 0.9857 | 0.9903 | 0.9954 | 0.9963 | 0.9963 | 0.9963 |
data2 | 0.9478 | 0.9778 | 0.9842 | 0.9883 | 0.9926 | 0.9933 | 0.9931 | 0.9927 | |
40% | data1 | 0.9291 | 0.9162 | 0.9340 | 0.9356 | 0.9378 | 0.9365 | 0.9362 | 0.9354 |
data2 | 0.9466 | 0.9775 | 0.9834 | 0.9870 | 0.9904 | 0.9910 | 0.9907 | 0.9900 | |
50% | data1 | 0.8925 | 0.8199 | 0.8124 | 0.8196 | 0.8174 | 0.8199 | 0.8199 | 0.8181 |
data2 | 0.9383 | 0.9491 | 0.9403 | 0.9397 | 0.9326 | 0.9325 | 0.9319 | 0.9319 |
Number of LSTM Layers | Number of Training Cycles | Number of Nodes in Hidden Layers | Learning Rate | Ratio of Input Parameters to Output Parameters |
---|---|---|---|---|
2 | 100 | 20 | 0.005 | 10:1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.; Zhang, M.; Song, D.; Shan, X.; Wang, B. MODIS Land Surface Temperature Product Reconstruction Based on the SSA-BiLSTM Model. Remote Sens. 2022, 14, 958. https://doi.org/10.3390/rs14040958
Cui J, Zhang M, Song D, Shan X, Wang B. MODIS Land Surface Temperature Product Reconstruction Based on the SSA-BiLSTM Model. Remote Sensing. 2022; 14(4):958. https://doi.org/10.3390/rs14040958
Chicago/Turabian StyleCui, Jianyong, Manyu Zhang, Dongmei Song, Xinjian Shan, and Bin Wang. 2022. "MODIS Land Surface Temperature Product Reconstruction Based on the SSA-BiLSTM Model" Remote Sensing 14, no. 4: 958. https://doi.org/10.3390/rs14040958
APA StyleCui, J., Zhang, M., Song, D., Shan, X., & Wang, B. (2022). MODIS Land Surface Temperature Product Reconstruction Based on the SSA-BiLSTM Model. Remote Sensing, 14(4), 958. https://doi.org/10.3390/rs14040958