Time Series Surface Deformation of Changbaishan Volcano Based on Sentinel-1B SAR Data and Its Geological Significance
Abstract
:1. Introduction
2. Study Area and Data
2.1. Regional Geology
2.2. Sentinel-1B SAR Data
3. Data Processing
3.1. Subsection
3.2. Mean Deformation Velocity (MDV) in Changbaishan Volcano
3.3. Reliability Analysis
4. Discussion
4.1. Spatial Distributions of Surface Deformation Fields
- (1)
- The uplift is locally distributed.
- (2)
- There occurs abundant regions with subsidence.
4.2. Temporal Changes of Surface Deformation Fields
- (1)
- The time series cumulative surface deformation is seasonal.
- (2)
- The time series cumulative surface deformation is probably correlated with the tectonic activity.
4.3. Re-Evaluating Deep Pressure Source of Changbaishan Volcano
4.3.1. Model Selection
4.3.2. Inversion of Volcanic Deep Pressure Source
4.3.3. Inversion Results
5. Conclusions
- (1)
- The MDV in the Changbaishan volcano is uplifted as a whole. The uplifted extent is relatively high in the east part, relatively low in the middle region, located in the eastern and southern slopes, but highest in the western and northern slopes.
- (2)
- There exists a seasonal fluctuation in the time series CSD of the Changbaishan volcano. It shows subsidence mainly from October to February or March of the following year and uplift from April to August or September.
- (3)
- The CSD shows a strong correlation with the maximal magnitude and the number of annual earthquakes. After comparison, combined with the previous results, the CSD in the Changbaishan volcano is likely dominated by the maximal magnitude of the earthquakes in the corresponding year.
- (4)
- There is a strong correlation between surface deformation and the faults in Tianchi Volcano. Fault f2 plays a controlling role on the surface deformation in the Changbaishan volcano, followed by faults f6 and f1.
- (5)
- After comparison, the single Mogi source model is appropriate for evaluating the deep pressure source in the Changbaishan volcano, constrained by the calculated surface deformation in this study. The results show that the optimal estimated depth of the magma chamber is 6.2 km, and the volume increase is 3.2 × 106 m3. Additionally, it is inferred that the tectonic activity in the Changbaishan volcano is in an active state.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No. | Acquisition Time | Absolute Orbit | Path | Perpendicular Baseline (m) | No. | Acquisition Time | Absolute Orbit | Path | Perpendicular Baseline (m) |
---|---|---|---|---|---|---|---|---|---|
0 | 26 November 2016 | 003135 | 134 | 93.8761 | 38 | 24 August 2018 | 012410 | 134 | 49.3319 |
1 | 8 December 2016 | 003310 | 134 | 74.4027 | 39 | 5 September 2018 | 012585 | 134 | 53.1985 |
2 | 20 December 2016 | 003485 | 134 | 93.3301 | 40 | 29 September 2018 | 012935 | 134 | 49.6745 |
3 | 1 January 2017 | 003360 | 134 | 144.857 | 41 | 11 October 2018 | 013110 | 134 | 134.333 |
4 | 25 January 2017 | 004010 | 134 | 106.654 | 42 | 23 October 2018 | 013285 | 134 | 144.707 |
5 | 18 February 2017 | 004360 | 134 | 42.798 | 43 | 4 November 2018 | 013460 | 134 | 91.89 |
6 | 2 March 2017 | 004535 | 134 | −24.2414 | 44 | 16 November 2018 | 013635 | 134 | 78.573 |
7 | 14 March 2017 | 004710 | 134 | 107.537 | 45 | 10 December 2018 | 013985 | 134 | 101.761 |
8 | 26 March 2017 | 004885 | 134 | 110.998 | 46 | 22 December 2018 | 014160 | 134 | 174.279 |
9 | 7 April 2017 | 005060 | 134 | 66.7698 | 47 | 15 January 2019 | 014510 | 134 | 354.1653 |
10 | 19 April 2017 | 005235 | 134 | 35.2373 | 48 | 8 February 2019 | 014860 | 134 | 119.087 |
11 | 1 May 2017 | 005410 | 134 | 57.174 | 49 | 20 February 2019 | 01 5035 | 134 | 153.503 |
12 | 6 June 2017 | 005935 | 134 | 99.3488 | 50 | 4 March 2019 | 015210 | 134 | 138.687 |
13 | 18 June 2017 | 006110 | 134 | 24.6913 | 51 | 16 March 2019 | 015385 | 134 | 9.10079 |
14 | 30 June 2017 | 006285 | 134 | −11.1132 | 52 | 9 April 2019 | 015735 | 134 | 44.1878 |
15 | 24 July 2017 | 006635 | 134 | 56.8439 | 53 | 21 April 2019 | 015910 | 134 | 98.6213 |
16 | 5 August 2017 | 006810 | 134 | 110.937 | 54 | 3 May 2019 | 016085 | 134 | 167.254 |
17 | 17 August 2017 | 006985 | 134 | −11.6751 | 55 | 27 May 2019 | 016435 | 134 | 68.9393 |
18 | 29 August 2017 | 007160 | 134 | 24.4308 | 56 | 8 June 2019 | 016610 | 134 | −14.0697 |
19 | 10 September 2017 | 007335 | 134 | 55.7565 | 57 | 20 June 2019 | 016785 | 134 | 60.5642 |
20 | 22 September 2017 | 007510 | 134 | 112.695 | 58 | 14 July 2019 | 017135 | 134 | 97.993 |
21 | 4 October 2017 | 007685 | 134 | 87.7212 | 59 | 26 July 2019 | 017310 | 134 | 25.8509 |
22 | 28 October 2017 | 008035 | 134 | 69.9597 | 60 | 7 August 2019 | 017485 | 134 | 12.6419 |
23 | 21 November 2017 | 008385 | 134 | 106.174 | 61 | 31 August 2019 | 017835 | 134 | 72.3225 |
24 | 15 December 2017 | 008735 | 134 | 133.51 | 62 | 12 September 2019 | 018010 | 134 | 77.0498 |
25 | 8 January 2018 | 009085 | 134 | 79.7278 | 63 | 24 September 2019 | 018185 | 134 | 86.2929 |
26 | 1 February 2018 | 009435 | 134 | 145.222 | 64 | 6 October 2019 | 018360 | 134 | 27.5584 |
27 | 13 February 2018 | 009610 | 134 | 147.873 | 65 | 18 October 2019 | 018535 | 134 | 77.5763 |
28 | 25 February 2018 | 009785 | 134 | 24.2284 | 66 | 11 November 2019 | 018885 | 134 | 114.73 |
29 | 21 March 2018 | 010135 | 134 | −57.343 | 67 | 17 December 2019 | 019410 | 134 | 86.3005 |
30 | 2 April 2018 | 010310 | 134 | 104.749 | 68 | 29 December 2019 | 019585 | 134 | 142.613 |
31 | 8 May 2018 | 010835 | 134 | 17.6941 | 69 | 10 January 2020 | 019760 | 134 | 161.581 |
32 | 20 May 2018 | 011010 | 134 | −10.57 | 70 | 22 January 2020 | 019935 | 134 | 125.07 |
33 | 1 June 2018 | 011185 | 134 | −24.3215 | 71 | 3 February 2020 | 020110 | 134 | 79.863 |
34 | 25 June 2018 | 011535 | 134 | 69.2929 | 72 | 15 February 2020 | 020285 | 134 | 37.91 |
35 | 7 July 2018 | 011710 | 134 | 40.1216 | 73 | 10 March 2020 | 020635 | 134 | 138.783 |
36 | 31 July 2018 | 012060 | 134 | 0 | 74 | 22 March 2020 | 020810 | 134 | 121.937 |
37 | 12 August 2018 | 012235 | 134 | 53.4225 | - | - | - | - | - |
References
- Iacovino, K.; Ju-Song, K.; Sisson, T.; Lowenstern, J.; Kuk-Hun, R.; Jong-Nam, J.; Kun-Ho, S.; Song-Hwan, H.; Oppenheimer, C.; Hammond, J.O.S.; et al. Quantifying gas emissions from the “Millennium Eruption” of Paektu volcano, Democratic People’s Republic of Korea/China. Sci. Adv. 2016, 2, e1600913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Chen, S.; Guo, W.; Sun, C.; Zhang, M.; Guo, Z. Research advances in the Mt. Changbai Volcano. Bull. Miner. Pet. Geochem. 2015, 34, 710–723. [Google Scholar] [CrossRef]
- Liu, R.; Li, J.; Wei, H.; Xu, D.-M.; Zhen, X. Volcano at Tianchi lake, Changbaishan Mt.--A modern volcano with potential danger of eruption. Chin. J. Geophys. 1992, 35, 661–664. (In Chinese) [Google Scholar]
- Oppenheimer, C.; Wacker, L.; Xu, J.D.; Galvan, J.D.; Stoffel, M.; Guillet, S.; Corona, C.; Sigl, M.; Di Cosmo, N.; Hajdas, I.; et al. Multi-proxy dating the ’Millennium Eruption’ of Changbaishan to late 946 CE. Quat. Sci Rev. 2017, 158, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Liu, G.; Gill, J. Review of eruptive activity at Tianchi volcano, Changbaishan, northeast China: Implications for possible future eruptions. Bull. Volcanol. 2013, 75, 706. [Google Scholar] [CrossRef]
- Cheng, X.; Chen, Z.; Bai, W. A numerical simulation of magma migration in crust fracture-an application to Changbaishan Tianchi volcano. Chin. J. Geophys. 2014, 57, 1522–1533. (In Chinese) [Google Scholar] [CrossRef]
- Fan, X.; Chen, Q.; Guo, Z. High-resolution Rayleigh-wave phase velocity structure beneath the Changbaishan volcanic field associated with its magmatic system. Acta Pet. Sin. 2020, 36, 2081–2091. [Google Scholar] [CrossRef]
- Guan, Y.; Chol, S.; Yang, G.; Liu, J.; Lee, Y.; Oh, C.; Jin, X.; Wu, Y. Changbaishan Tianchi volcano crustal magma chambers modeling with gravity profile. Acta Pet. Sin. 2020, 36, 3840–3852. [Google Scholar] [CrossRef]
- Huang, L.; Cheng, H.; Zhang, H.; Gao, R.; Shi, Y. Numerical inversion of deformation caused by a pressurized magma chamber: An example from the Changbaishan volcano. Chin. J. Geophys. 2020, 63, 4050–4064. (In Chinese) [Google Scholar] [CrossRef]
- Kim, Y.W.; Chang, S.J.; Witek, M.; Ning, J.; Wen, J. S-velocity mantle structure of East Asia from teleseismic traveltime tomography: Inferred mechanisms for the Cenozoic intraplate volcanoes. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020345. [Google Scholar] [CrossRef]
- Kyong-Song, R.; Hammond, J.O.; Chol-Nam, K.; Hyok, K.; Yong-Gun, Y.; Gil-Jong, P.; Chong-Song, R.; Oppenheimer, C.; Liu, K.W.; Iacovino, K. Evidence for partial melt in the crust beneath Mt. Paektu (Changbaishan), Democratic People’s Republic of Korea and China. Sci. Adv. 2016, 2, e1501513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Obayashi, M.; Niu, F.; Grand, S.; Chen, Y.; Kawakatsu, H.; Tanaka, S.; Ning, J.; Ni, J. Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling. Nat. Geosci. 2014, 7, 470–475. [Google Scholar] [CrossRef]
- Tian, Y.; Zhu, H.; Zhao, D.; Liu, C.; Feng, X.; Liu, T.; Ma, J. Mantle transition zone structure beneath the Changbai volcano: Insight into deep slab dehydration and hot upwelling near the 410km discontinuity. J. Geophys. Res. Solid Earth 2016, 121, 5794–5808. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Faccenda, M. Intraplate volcanism originating from upwelling hydrous mantle transition zone. Nature 2020, 579, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wu, M.; Zhang, C.; Liao, C.; Miao, Z. Measurement of present-day stress and analysis of stress state in the Changbaishan mountains of Jilin province. Chin. J. Geophys. 2016, 59, 922–930. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, Q.; Li, Y.; Zhang, R. The seismic evidence of velocity variation for Changbaishan volcanism in Northeast China. Geophys. J. Int. 2019, 218, 283–294. [Google Scholar] [CrossRef]
- Lemarchand, N.; Grasso, J.R. Interactions between earthquakes and volcano activity. Geophys. Res. Lett. 2007, 34, L24303. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Li, C.; Peng, Z.; Liu, Y.; Zhang, Y.; Liu, D.; Zhang, M.; Pan, B. The 2002–2005 Changbaishan Volcanic Unrest Triggered by the 2002 M 7.2 Wangqing Deep Focus Earthquake. Front. Earth Sci. 2021, 8, 599329. [Google Scholar] [CrossRef]
- Walter, T.R.; Amelung, F. Volcano-earthquake interaction at Mauna Loa volcano, Hawaii. J. Geophys. Res. Solid Earth 2006, 111, B05204. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Ming, Y.; Zhang, H.; Liu, G.; Fang, L.; Su, W.; Wang, W. Earthquake swarm activity in Changbaishan Tianchi volcano. Chin. J. Geophys. 2007, 50, 938–946. [Google Scholar] [CrossRef]
- Wu, J.; Ming, Y.; Zhang, H.; Su, W.; Liu, Y. Seismic activity at the Chanbaishan Tianchi volcano in the summer of 2002. Chin. J. Geophys. 2005, 48, 684–691. [Google Scholar] [CrossRef]
- Zhang, M.; Wen, L. Earthquake characteristics before eruptions of Japan’s Ontake volcano in 2007 and 2014. Geophys. Res. Lett. 2015, 42, 6982–6988. [Google Scholar] [CrossRef]
- Bayindir, C. Enhancements to Synthetic Aperture Radar Chirp Waveforms and Non-Coherent SAR Change Detection Following Large Scale Disasters; Georgia Institute of Technology: Atlanta, GA, USA, 2013. [Google Scholar]
- Bayındır, C.; Frost, J.D.; Barnes, C.F. Assessment and enhancement of sar noncoherent change detection of sea-surface oil spills. IEEE J. Ocean. Eng. 2017, 43, 211–220. [Google Scholar] [CrossRef]
- Papageorgiou, E.; Foumelis, M.; Trasatti, E.; Ventura, G.; Raucoules, D.; Mouratidis, A. Multi-sensor SAR geodetic imaging and modelling of santorini volcano post-unrest response. Remote Sens. 2019, 11, 259. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, L.N.; Di Traglia, F.; Chaussard, E.; Lu, Z.; Nolesini, T.; Casagli, N. Monitoring volcano slope instability with Synthetic Aperture Radar: A review and new data from Pacaya (Guatemala) and Stromboli (Italy) volcanoes. Earth-Sci. Rev. 2019, 192, 236–257. [Google Scholar] [CrossRef]
- Baker, S.; Amelung, F. Top-down inflation and deflation at the summit of Kīlauea Volcano, Hawai ‘i observed with InSAR. J. Geophys. Res. Solid Earth 2012, 117, B12406. [Google Scholar] [CrossRef] [Green Version]
- Neri, M.; Casu, F.; Acocella, V.; Solaro, G.; Pepe, S.; Berardino, P.; Sansosti, E.; Caltabiano, T.; Lundgren, P.; Lanari, R. Deformation and eruptions at Mt. Etna (Italy): A lesson from 15 years of observations. Geophys. Res. Lett. 2009, 36, L02309. [Google Scholar] [CrossRef]
- Vilardo, G.; Isaia, R.; Ventura, G.; De Martino, P.; Terranova, C. InSAR Permanent Scatterer analysis reveals fault re-activation during inflation and deflation episodes at Campi Flegrei caldera. Remote Sens. Environ. 2010, 114, 2373–2383. [Google Scholar] [CrossRef]
- Chen, G.; Shan, X.; Moon, W.; Kim, K. A modeling of the magma chamber beneath the Changbai Mountains volcanic area constrained by InSAR and GPS derived deformation. Chin. J. Geophys. 2008, 51, 765–773. [Google Scholar] [CrossRef]
- Han, Y.; Song, X.; Shan, X.; Qu, C.; Wang, C.; Guo, L.; Zhang, G.; Liu, Y. Deformation monitoring of Changbaishan Tianchi volcano using D-InSAR technique and error analysis. Chin. J. Geophys. 2010, 53, 1571–1579. (In Chinese) [Google Scholar] [CrossRef]
- He, P.; Xu, C.; Wen, Y. Estimating the Magma Activity of the Changbaishan Vocano with PALSAR Data. Geomat. Inf. Sci. Wuhan Univ. 2015, 40, 214–221. [Google Scholar] [CrossRef]
- Kim, J.R.; Lin, S.Y.; Hong, S.w.; Choi, Y.S.; Yun, H.W. Ground deformation tracking over Mt. Baekdu: A pre-evaluation of possible magma recharge by D-InSAR analysis. KSCE J. Civ. Eng. 2014, 18, 1505–1510. [Google Scholar] [CrossRef]
- Kim, J.R.; Lin, S.Y.; Yun, H.W.; Tsai, Y.L.; Seo, H.J.; Hong, S.; Choi, Y. Investigation of Potential Volcanic Risk from Mt. Baekdu by DInSAR Time Series Analysis and Atmospheric Correction. Remote Sens. 2017, 9, 138. [Google Scholar] [CrossRef] [Green Version]
- Tang, P.; Shan, X.; Wang, C. Research on the deformation monitoring of Changbaishan volcano based on PsinSar technique. Seismol. Geol. 2014, 36, 177–185. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Q.; Cui, D.; Wang, W.; Li, K.; Chen, H. Application of Mogi model at Changbaishan Tianchi volcano. Seismol. Geol. 2007, 29, 144–149. [Google Scholar]
- Albino, F.; Biggs, J.; Yu, C.; Li, Z. Automated Methods for Detecting Volcanic Deformation Using Sentinel-1 InSAR Time Series Illustrated by the 2017–2018 Unrest at Agung, Indonesia. J. Geophys. Res. Solid Earth 2020, 125, e2019JB017908. [Google Scholar] [CrossRef] [Green Version]
- Babu, A.; Kumar, S. SBAS interferometric analysis for volcanic eruption of Hawaii island. J. Volcanol. Geotherm. Res. 2019, 370, 31–50. [Google Scholar] [CrossRef]
- Pavez, A.; Remy, D.; Bonvalot, S.; Diament, M.; Gabalda, G.; Froger, J.-L.; Julien, P.; Legrand, D.; Moisset, D. Insight into ground deformations at Lascar volcano (Chile) from SAR interferometry, photogrammetry and GPS data: Implications on volcano dynamics and future space monitoring. Remote Sens. Environ. 2006, 100, 307–320. [Google Scholar] [CrossRef] [Green Version]
- Solaro, G.; Acocella, V.; Pepe, S.; Ruch, J.; Neri, M.; Sansosti, E. Anatomy of an unstable volcano from InSAR: Multiple processes affecting flank instability at Mt. Etna, 1994–2008. J. Geophys. Res. Solid Earth 2010, 115, B10405. [Google Scholar] [CrossRef]
- Kim, S.W.; Won, J.S. Slow deformation of Mt. Baekdu stratovolcano observed by satellite radar interferometry. In Proceedings of the FRINGE 2003 Workshop (ESA SP-550): 2004, Frascati, Italy, 1–5 December 2003. [Google Scholar]
- Trasatti, E.; Tolomei, C.; Wei, L.; Ventura, G. Upward Magma Migration within the Multi-level Plumbing System of the Changbaishan Volcano (China/North Korea) Revealed by the Modeling of 2018–2020 SAR Data. Front. Earth Sci. 2021, 9, 741287. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Ai, Y.; Chen, Y. Overview of deep structures under the Changbaishan volcanic area in Northeast China. Sci. China Earth Sci. 2019, 62, 935–952. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Zhang, Y. Analysis of tectonic setting of Changbaishan Tianchi volcano. Seismol. Geomagn. Obs. Res. 2006, 27, 43–49. [Google Scholar]
- Chen, H. Volcaniclastic Ejecta, Volcano Stratigraphy and Volcanic Geological Mapping in Changbaishan Tianchi Volcanoes. Master’s Thesis, Jilin University, Changchun, China, 2020. [Google Scholar]
- Jin, B.; Zhang, X. Study on Volcanic Geology of Changbai Mountain; Korean National Education Press in Northeast China: Yanji, China, 1994. [Google Scholar]
- Liu, M.; Gu, M.; Sun, Z.; Wei, H.; Jin, B. Activity of main faults and hydrothermal alteration zone at the Tianchi volcano. Changbaishan Earthq. Res. China 2004, 20, 64–72. [Google Scholar]
- Raspini, F.; Bianchini, S.; Ciampalini, A.; Del Soldato, M.; Solari, L.; Novali, F.; Del Conte, S.; Rucci, A.; Ferretti, A.; Casagli, N. Continuous, semi-automatic monitoring of ground deformation using Sentinel-1 satellites. Sci. Rep. 2018, 8, 7253. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Wang, R.; Deng, Y.; Ma, P.; Lin, H.; Wang, J. Mapping the Yellow River Delta land subsidence with multitemporal SAR interferometry by exploiting both persistent and distributed scatterers. ISPRS J. Photogramm. Remote Sens. 2019, 148, 157–173. [Google Scholar] [CrossRef]
- Hu, L.; Dai, K.; Xing, C.; Li, Z.; Tomás, R.; Clark, B.; Shi, X.; Chen, M.; Zhang, R.; Qiu, Q. Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel-1 InSAR observations. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101886. [Google Scholar] [CrossRef]
- Qu, F.; Lu, Z.; Zhang, Q.; Bawden, G.W.; Kim, J.W.; Zhao, C.; Qu, W. Mapping ground deformation over Houston–Galveston, Texas using multi-temporal InSAR. Remote Sens. Environ. 2015, 169, 290–306. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Pepe, A.; Lanari, R. On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms. IEEE Trans. Geosci. Remote 2006, 44, 2374–2383. [Google Scholar] [CrossRef]
- Wu, Q.; Jia, C.; Chen, S.; Li, H. SBAS-InSAR based deformation detection of urban land, created from mega-scale mountain excavating and valley filling in the Loess Plateau: The case study of Yan’an City. Remote Sens. 2019, 11, 1673. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Lv, J.; Wang, J.; Cai, H.; Liu, B. Assessments of risk and hazards of pyroclastic flow in Tianchi volcano, Changbaishan. Seism. Res. Northeast. China 1999, 27, 43–49. [Google Scholar]
- Syarifuddin, M.; Oishi, S.; Legono, D.; Hapsari, R.I.; Iguchi, M. Integrating X-MP radar data to estimate rainfall induced debris flow in the Merapi volcanic area. Adv. Water Resour. 2017, 110, 249–262. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Q.; Cui, D.; Li, K.; Zheng, C. Influences on surface deformation by the three different stress source models in volcanic area. Seism. Res. Northeast. China 2005, 21, 33–38. [Google Scholar]
- Zhu, G.; Wang, Q.; Shi, Y.; Cui, D. Modelling pressurized deformation source for Changbaishan volcano with homogenous expansion point source. Chin. J. Geophys. 2008, 51, 89–96. [Google Scholar] [CrossRef]
- Mogi, K. Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Earthq. Res. Inst. 1958, 36, 99–134. [Google Scholar]
- Fialko, Y.; Khazan, Y.; Simons, M. Deformation due to a pressurized horizontal circular crack in an elastic half-space, with applications to volcano geodesy. Geophys. J. Int. 2001, 146, 181–190. [Google Scholar] [CrossRef] [Green Version]
- McTigue, D. Elastic stress and deformation near a finite spherical magma body: Resolution of the point source paradox. J. Geophys. Res. Solid Earth 1987, 92, 12931–12940. [Google Scholar] [CrossRef]
- Yang, X.; Davis, P.M.; Dieterich, J.H. Deformation from inflation of a dipping finite prolate spheroid in an elastic half-space as a model for volcanic stressing. J. Geophys. Res. Solid Earth 1988, 93, 4249–4257. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, X.; Zhao, J.; Yang, J.; Duan, Y.; Wang, S. Tomographic imaging of 3-D crustal structure beneath Changbaishan-Tianchi volcano region. Chin. J. Geophys. 2005, 48, 107–115. [Google Scholar] [CrossRef]
- Bagnardi, M.; Hooper, A. Inversion of Surface Deformation Data for Rapid Estimates of Source Parameters and Uncertainties: A Bayesian Approach. Geochem. Geophy. Geosyst. 2018, 19, 2194–2211. [Google Scholar] [CrossRef]
Period | Dataset | Quantity of Datasets | Method | Maximum Surface Deformation | Pressure Source Inversion | |
---|---|---|---|---|---|---|
Kim and Won [41] | 1992–1998 | ERS-1/2 and JERS-1 | 10/41 | DInSAR | 3 mm/year | - |
Chen et al. [30] | 1995–1998 | JERS-1 | 2 | DInSAR | almost no deformation | Double Mogi source |
Han et al. [31] | 1994–1998 | JERS-1 | 4 | DInSAR | 5 mm/year | - |
Tang P. et al. [35] | 1992–1998 | JERS-1 | 19 | PS-InSAR | 6 mm/year | - |
2007–2010 | ENVISAT ASAR | 14 | PS-InSAR | 3 mm/year | - | |
Kim et al. [34] | 2007–2010 | ENVISAT ASAR/ALOS PALSAR | 19/4 | StaMPS/DInSAR | 30 mm/year | Single Mogi source/Okada dislocation |
He et al. [32] | 2006–2011 | ALOS PALSAR | 24 | PS-InSAR | 10 mm/year | Single Mogi source |
Trasatti et al. [42] | 2018–2020 | ALOS-2 | 19 | PS-InSAR | 20 mm/year | Prolate spheroid |
Model | Depth (km) | ΔV | Strike (°) | Plunge (°) | |
---|---|---|---|---|---|
Hu et al. [58] | Double Mogi source | 3.2791 (2002–2003) | 0.004 | - | - |
4.1968 | 0.015 | - | - | ||
Hu et al. [36] | Single Mogi source | 6.854 (2002~2003) | 16.980 | - | - |
7.653 (2003~2004) | 10.620 | - | - | ||
3.1515 (2004~2005) | 3.390 | - | - | ||
Zhu et al. [59] | Okada dislocation | 9.2 (2002–2003) | 5.220 | 337.7 | 14.0 |
9.2 | 7.0 | 34.4 | 82.2 | ||
9.2 | 6.598 | 302.8 | 78.5 | ||
Chen et al. [30] | Double Mogi source | 7.9 (2002–2003) | 6.3 | - | - |
5.5 | 1.6 | - | - | ||
He et al. [32] | Single Mogi source | 5.3 (2006–2009) | 2.475 * | - | - |
6.9 (2009–2011) | 2.093 * | - | - | ||
Kim et al. [34] | Single Mogi source | 11.465 (2007.8–2007.12) | 3.756 | - | - |
11.094 (2008.3–2008.5) | 1.579 | - | - | ||
10.013 (2010.0–2010.4) | −1.557 | - | - | ||
Huang et al. [9] | Finite Element | 6.86 (2002–2003) | - | 77.5 | 44.3 |
- | 324.5 | 69.1 | |||
- | 217.9 | 53.1 | |||
Trasatti et al. [42] | Prolate spheroid | 7.7 | 7.3 (±2.4) | 140 | 0 |
Tabular reservoir (2018–2020) | 14.0 | −14 (±4) | 50 | 0 | |
Single Mogi source (2002–2005) | 4.40 | 4.6 (±1.53) | - | - | |
Single Mogi source (2009–2011) | 6.70 | −1.4 (±0.2) | - | - |
Model | Parameter | Start | Step | Lower | Upper |
---|---|---|---|---|---|
Single Mogi and double Mogi | X (m) | 0 | 50 | −15,000 | 15,000 |
Y (m) | 0 | 50 | −15,000 | 15,000 | |
Depth (m) | 3000 | 100 | 100 | 10,000 | |
DV (m3) | 1 × 105 | 1 × 105 | −1 × 107 | 1 × 109 | |
Penny-shaped sill-like | X (m) | 0 | 100 | −20,000 | 20,000 |
Y (m) | 0 | 100 | −20,000 | 20,000 | |
Depth (m) | 2000 | 50 | 100 | 20,000 | |
Radius (m) | 1000 | 100 | 100 | 2000 | |
ΔP/μ | −1 × 10−3 | 1 × 10−4 | −1 × 103 | 1 × 103 | |
Finite spherical | X (m) | −1000 | 100 | −20,000 | 20,000 |
Y (m) | 1000 | 1000 | −20,000 | 20,000 | |
Depth (m) | 3000 | 100 | 1000 | 15,000 | |
Radius (m) | 1000 | 50 | 100 | 5000 | |
ΔP/μ | −1 × 10−3 | 1 × 10−4 | −1 × 106 | 1 × 105 | |
Prolate spheroid | X (m) | 0 | 100 | −20,000 | 20,000 |
Y (m) | 0 | 100 | −20,000 | 20,000 | |
Depth (m) | 5000 | 50 | 1000 | 20,000 | |
Major semi axis (m) | 500 | 50 | 1 | 20,000 | |
Aspect ratio | 0.5 | 0.01 | 0.01 | 0.99 | |
ΔP/μ | −1 × 103 | 1 × 10−4 | −1 × 103 | 1 × 103 | |
Strike (°) | 270 | 1 | 1 | 359 | |
Plunge (°) | −30 | 1 | −89.9 | 89.9 |
Model | Parameter | Optimal | Mean | Median | 2.5% | 97.5% |
---|---|---|---|---|---|---|
Single Mogi | X (km) | −5.315 | −7.126 | −6.910 | −10.809 | −4.603 |
Y (km) | 3.172 | 5.946 | 5.899 | 2.126 | 9.967 | |
Depth (km) | 6.2 | 6.2 | 6.4 | 3.8 | 7.7 | |
106 m3) | 3.2 | 5.7 | 5.3 | 2.5 | 10.6 | |
Double Mogi1 | X (km) | −3.831 | −3.817 | −3.847 | −5.109 | −2.852 |
Y (km) | 1.447 | 1.913 | 1.689 | 0.745 | 4.330 | |
Depth (km) | 4. 7 | 4.7 | 4.8 | 3.0 | 6.3 | |
106 m3) | 1.8 | 2.0 | 2.0 | 0.9 | 3.8 | |
Double Mogi2 | X (km) | −7.088 | −7.192 | −7.124 | −7.412 | −7.075 |
Y (km) | −0.869 | −0.909 | −0.869 | −1.009 | −0.334 | |
Depth (km) | 0.012 | 0.106 | 0.042 | −0.004 | 0.334 | |
106 m3) | 0.0006 | 0.0171 | 0.0017 | 0.0007 | 0.0658 | |
Penny-shaped sill-like | X (km) | −0.741 | −0.931 | −0.938 | −1.180 | −0.677 |
Y (km) | −5.908 | −5.665 | −5.655 | −5.968 | −5.358 | |
Depth (km) | 1.4 | 1.9 | 1.9 | 1.3 | 2.1 | |
Radius (m) | 236.2 | 341.0 | 332.1 | 235.3 | 427.6 | |
ΔP/μ | −0.01 | −0.00 | −0.00 | −0.01 | −0.00 | |
Finite spherical | X (km) | 3.304 | 3.380 | 3.372 | 2.971 | 3.834 |
Y (km) | 2.428 | 2.491 | 2.476 | 1.966 | 3.098 | |
Depth (km) | 1.0 | 1.0 | 1.0 | 1.0 | 1.2 | |
Radius (m) | 149.5 | 227.3 | 170.2 | 102.0 | 686.1 | |
ΔP/μ | −0.56 | −0.60 | −0.39 | −1.86 | −0.01 | |
Prolate spheroid | X (km) | 0.618 | 0.687 | 0.685 | 0.382 | 1.041 |
Y (km) | −0.708 | −0.741 | −0.719 | −1.195 | −0.413 | |
Depth (km) | 1.0 | 1.1 | 1.0 | 1.0 | 1.3 | |
Aspect ratio | 0.04 | 0.04 | 0.02 | 0.01 | 0.13 | |
ΔP/μ | −0.04 | −0.18 | −0.11 | −0.67 | −0.00 | |
Major semi axis (m) | 2378.4 | 2355.7 | 2357.1 | 1879.0 | 2838.6 | |
Strike (°) | 291.18 | 291.57 | 291.64 | 281.12 | 312.12 | |
Plunge (°) | 53.18 | 53.19 | 53.51 | 46.29 | 57.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Z.; Shu, C.; Yang, Y.; Wu, C.; Dong, X.; Wang, D.; Zhang, Y. Time Series Surface Deformation of Changbaishan Volcano Based on Sentinel-1B SAR Data and Its Geological Significance. Remote Sens. 2022, 14, 1213. https://doi.org/10.3390/rs14051213
Meng Z, Shu C, Yang Y, Wu C, Dong X, Wang D, Zhang Y. Time Series Surface Deformation of Changbaishan Volcano Based on Sentinel-1B SAR Data and Its Geological Significance. Remote Sensing. 2022; 14(5):1213. https://doi.org/10.3390/rs14051213
Chicago/Turabian StyleMeng, Zhiguo, Chuanzeng Shu, Ying Yang, Chengzhi Wu, Xuegang Dong, Dongzhen Wang, and Yuanzhi Zhang. 2022. "Time Series Surface Deformation of Changbaishan Volcano Based on Sentinel-1B SAR Data and Its Geological Significance" Remote Sensing 14, no. 5: 1213. https://doi.org/10.3390/rs14051213
APA StyleMeng, Z., Shu, C., Yang, Y., Wu, C., Dong, X., Wang, D., & Zhang, Y. (2022). Time Series Surface Deformation of Changbaishan Volcano Based on Sentinel-1B SAR Data and Its Geological Significance. Remote Sensing, 14(5), 1213. https://doi.org/10.3390/rs14051213