ASTER and GF-5 Satellite Data for Mapping Hydrothermal Alteration Minerals in the Longtoushan Pb-Zn Deposit, SW China
Abstract
:1. Introduction
2. Geological Setting of the Study Area
3. Materials and Methods
3.1. Remote Sensing Data
3.2. Pre-Processing of Remote Sensing Data
3.3. Hydrothermal Alteration Mineral Mapping Methods
3.3.1. Selective Principal Component Analysis (SPCA)
3.3.2. Mixture Tuned Matched Filtering (MTMF)
3.4. Field Survey and Laboratory Analysis
4. Results
4.1. Hydrothermal Alteration Minerals Mapping Using SPCA Method with ASTER Data
4.2. Hydrothermal AlterationMinerals Mapping Using MTMF Method with GF-5 Data
4.3. Results of Field Survey and Laboratory Analysis
5. Discussion
5.1. Extraction Efficiency Analysis of Hydrothermal Alteration Minerals Based on ASTER and GF5 Data
5.2. Analysis of Corresponding Relationship between Extracted Hydrothermal Alteration Minerals and Lithology
5.3. Analysis of the Influence of Vegetation on Alteration Mineral Extraction from GF-5 Satellite Data
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, P. A test study on alteration mapping using Landsat TM data and geographic information system. In Methodology and Practice of Remote Sensing for Mineral Exploration; Science Press: Beijing, China, 1995; pp. 24–28. [Google Scholar]
- Sabins, F.F. Remote sensing for mineral exploration. Ore Geol. Rev. 1999, 14, 157–183. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M.; van Genderen, J. Detection of hydrothermal alteration zones in a tropical region using satellite remote sensing data: Bau gold field, Sarawak, Malaysia. Ore Geol. Rev. 2013, 54, 181–196. [Google Scholar] [CrossRef]
- Salehi, T.; Tangestani, M.H. Large-scale mapping of iron oxide and hydroxide minerals of Zefreh porphyry copper deposit, using Worldview-3 VNIR data in the Northeastern Isfahan, Iran. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 156–169. [Google Scholar] [CrossRef]
- Pour, A.B.; Park, T.S.; Park, Y.; Hong, J.K.; Zoheir, B.; Pradhan, B.; Ayoobi, I.; Hashim, M. Application of multi-sensor satellite data for exploration of Zn-Pb sulfide mineralization in the Franklinian Basin, North Greenland. Remote Sens. 2018, 10, 1186. [Google Scholar] [CrossRef] [Green Version]
- Pour, A.B.; Park, T.-Y.S.; Park, Y.; Hong, J.K.; Muslim, A.M.; Läufer, A.; Crispini, L.; Pradhan, B.; Zoheir, B.; Rahmani, O.; et al. Landsat-8, advanced spaceborne thermal emission and reflection radiometer, and WorldView-3 multispectral satellite imagery for prospecting copper-gold mineralization in the northeastern Inglefield Mobile Belt (IMB), Northwest Greenland. Remote Sens. 2019, 11, 2430. [Google Scholar] [CrossRef] [Green Version]
- Guha, A.; Yamaguchi, Y.; Chatterjee, S.; Rani, K.; Vinod Kumar, K. Emittance spectroscopy and broadband thermal remote sensing applied to phosphorite and its utility in geoexploration: A study in the parts of Rajasthan, India. Remote Sens. 2019, 11, 1003. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Zhao, Z.; Zhou, J.; Zeng, M.; Xia, J.; Sun, T.; Zhao, X. New insights into the Pulang porphyry copper deposit in southwest China: Indication of alteration minerals detected using ASTER and WorldView-3 data. Remote Sens. 2021, 13, 2798. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B.; Dietz, J.B. Expert System-based Mineral Mapping in Northern Death Valley, California/Nevada, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ. 1993, 44, 309–336. [Google Scholar] [CrossRef]
- van der Meer, F.; Bakker, W. Cross correlogram spectral matching: Application to surface mineralogical mapping by using AVIRIS data from Cuprite, Nevada. Remote Sens. Environ. 1997, 61, 371–382. [Google Scholar] [CrossRef]
- Crósta, A.P.; Sabine, C.; Taranik, J.V. Hydrothermal alteration mapping at Bodie, California, using AVIRIS hyperspectral data. Remote Sens. Environ. 1998, 65, 309–319. [Google Scholar] [CrossRef]
- Swayze, G.A.; Clark, R.N.; Goetz, A.F.H.; Livo, K.E.; Breit, G.N.; Kruse, F.A.; Sutley, S.J.; Snee, L.W.; Lowers, H.A.; Post, J.L.; et al. Mapping Advanced Argillic Alteration at Cuprite, Nevada, Using Imaging Spectroscopy. Econ. Geol. 2014, 109, 1179–1221. [Google Scholar] [CrossRef]
- Liu, L.; Feng, J.L.; Rivard, B.; Xu, X.L.; Zhou, J.; Han, L.; Yang, J.L.; Ren, G.L. Mapping alteration using imagery from the Tiangong-1 hyperspectral spaceborne system: Example for the Jintanzi gold province, China. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 275–286. [Google Scholar] [CrossRef]
- Amer, R.; El Mezayen, A.; Hasanein, M. ASTER spectral analysis for alteration minerals associated with gold mineralization. Ore Geol. Rev. 2016, 75, 239–251. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M.; Park, Y.; Hong, J.K. Mapping alteration mineral zones and lithological units in Antarctic regions using spectral bands of ASTER remote sensing data. Geocarto Int. 2018, 33, 1281–1306. [Google Scholar] [CrossRef]
- Testa, F.J.; Villanueva, C.; Cooke, D.R.; Zhang, L. Lithological and hydrothermal alteration mapping of epithermal, porphyry and tourmaline breccia districts in the Argentine Andes using ASTER imagery. Remote Sens. 2018, 10, 203. [Google Scholar] [CrossRef] [Green Version]
- Askari, G.; Pour, A.B.; Pradhan, B.; Sarfi, M.; Nazemnejad, F. Band ratios matrix transformation (BRMT): A sedimentary mithology mapping approach using ASTER satellite sensor. Sensors 2018, 18, 3213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pour, A.B.; Park, Y.; Crispini, L.; Läufer, A.; Hong, J.K.; Park, T.-Y.S.; Zoheir, B.; Pradhan, B.; Muslim, A.M.; Hossain, M.S.; et al. Mapping listvenite occurrences in the damage zones of Northern Victoria Land, Antarctica using ASTER satellite remote sensing data. Remote Sens. 2019, 11, 1408. [Google Scholar] [CrossRef] [Green Version]
- Sheikhrahimi, A.; Pour, B.A.; Pradhan, B.; Zoheir, B. Mapping hydrothermal alteration zones and lineaments associated with orogenic gold mineralization using ASTER remote sensing data: A case study from the Sanandaj-Sirjan Zone, Iran. Adv. Space Res. 2019, 63, 3315–3332. [Google Scholar] [CrossRef]
- Noori, L.; Pour, B.A.; Askari, G.; Taghipour, N.; Pradhan, B.; Lee, C.-W.; Honarmand, M. Comparison of different algorithms to map hydrothermal alteration zones using ASTER remote sensing data for polymetallic vein-type ore exploration: Toroud–Chahshirin Magmatic Belt (TCMB), North Iran. Remote Sens. 2019, 11, 495. [Google Scholar] [CrossRef] [Green Version]
- Hunt, G.R.; Ashley, R.P. Spectra of altered rocks in the visible and near-infrared. Econ. Geol. 1979, 74, 1613–1629. [Google Scholar] [CrossRef]
- Clark, R.N. Spectroscopy of rocks and minerals, and principles of spectroscopy. In Manual of Remote Sensing; Rencz, A., Ed.; Wiley and Sons Inc.: New York, NY, USA, 1999; Volume 3, pp. 3–58. [Google Scholar]
- Mahanta, P.; Maiti, S. Regional scale demarcation of alteration zone using ASTER imageries in South Purulia Shear Zone, East India: Implication for mineral exploration in vegetated regions. Ore Geol. Rev. 2018, 102, 846–861. [Google Scholar] [CrossRef]
- Ahmadirouhani, R.; Rahimi, B.; Karimpour, M.H.; Malekzadeh Shafaroudi, A.; Pour, A.B.; Pradhan, B. Integration of SPOT-5 and ASTER satellite data for structural tracing and hydrothermal alteration mineral mapping: Implications for Cu–Au prospecting. Int. J. Image Data Fusion 2018, 9, 237–262. [Google Scholar] [CrossRef]
- Salisbury, J.W.; Walter, L.S. Thermal infrared (2.5–13.5 µm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces. J. Geophys. Res. 1989, 94, 9192–9202. [Google Scholar] [CrossRef]
- Salisbury, J.W.; D’Aria, D.M. Emissivity of terrestrial material in the 8–14 µm atmospheric window. Remote Sens. Environ. 1992, 42, 83–106. [Google Scholar] [CrossRef]
- Ninomiya, Y. Quantitative estimation of SiO2 content in igneous rocks using thermal infrared spectra with a neural network approach. IEEE Trans. Geosci. Remote. Sens. 1995, 33, 684–691. [Google Scholar] [CrossRef]
- Ninomiya, Y.; Fu, B. Regional lithological mapping using ASTER-TIR data: Case study for the Tibetan Plateau and the surrounding area. Geosciences 2016, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Ninomiya, Y.; Fu, B. Thermal infrared multispectral remote sensing of lithology and mineralogy based on spectral properties of materials. Ore Geol. Rev. 2019, 108, 54–72. [Google Scholar] [CrossRef]
- Van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; van der Meijde, M.; Carranza, E.J.M.; de Smeth, J.B.; Woldai, T. Multi-and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [Google Scholar] [CrossRef]
- Goetz, A.F.H. Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sens. Environ. 2009, 113, S5–S16. [Google Scholar] [CrossRef]
- Fan, Y.H.; Wan, Y.Q.; Wang, H.; Yang, X.K.; Liang, M.; Pan, C.J.; Zhang, S.P.L.; Wang, W.B.; Tan, F.R. Application of an airborne hyper-spectral survey system CASI/SASI in the gold-silver-lead-zinc ore district of Huaniushan, Gansu, China. Geol. Croat. 2021, 74, 73–83. [Google Scholar] [CrossRef]
- Dong, X.F.; Gan, F.P.; Li, N.; Yan, B.K.; Zhang, L.; Zhao, J.Q.; Yu, J.C.; Liu, R.Y.; Ma, Y.N. Fine mineral identification of GF-5 hyperspectral image. J. Remote Sens. 2020, 24, 454–464. [Google Scholar]
- Ye, X.; Ren, H.; Liu, R.; Qin, Q.; Liu, Y.; Dong, J. Land surface temperature estimate from Chinese Gaofen-5 satellite data using split-window algorithm. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5877–5888. [Google Scholar] [CrossRef]
- Ren, H.; Ye, X.; Liu, R.; Dong, J.; Qin, Q. Improving land surface temperature and emissivity retrieval from the Chinese Gaofen-5 satellite using a hybrid algorithm. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1080–1090. [Google Scholar] [CrossRef]
- Ye, B.; Tian, S.; Cheng, Q.; Ge, Y. Application of lithological mapping based on Advanced Hyperspectral Imager (AHSI) imagery onboard Gaofen-5 (GF-5) satellite. Remote Sens. 2020, 12, 3990. [Google Scholar] [CrossRef]
- Liu, L.; Shang, K. Mineral information extraction based on Gaofen-5′s thermal infrared data. ISPRS 2018, 42, 1157–1160. [Google Scholar] [CrossRef] [Green Version]
- Crosta, A.P.; Desouza Filho, C.; Azevedo, F.B. Targeting key alteration mineral in epithermal deposits in Patagonia, Argentin, using ASTER imagery and principal component Analysis. Int. J. Remote Sens. 2003, 24, 4233–4240. [Google Scholar] [CrossRef]
- Loughlin, W.P. Principal Components Analysis for alteration mapping. Photogramm. Eng. Remote Sens. 1991, 57, 1163–1169. [Google Scholar]
- Boardman, J.W. Leveraging the high dimensionality od AVIRIS data for improved sub-pixel target unmixing and rejection of false positives: Mixture Tuned Matched filtering. In Proceedings of the Summaries Workshop Seventh Annual JPL Airborne Geoscience Workshop, Pasadena, CA, USA, 12–16 January 1998; Green, R.O., Ed.; JPL Publication: La Cañada Flintridge, CA, USA, 1998; pp. 55–56. [Google Scholar]
- Harsanyi, J.C.; Farrand, W.H.; Chang, C.I. Detection of Subpixel Signatures in hyperspectral image sequences. In Proceedings of the 1994 ASPRS Annual Conference, Reno, NV, USA, 25–28 April 1994; pp. 236–247. [Google Scholar]
- Boardman, J.W.; Green, R.O. Exploring the spectral variability of the Earth as Measured by AVIRIS in 1999. In Proceedings of the Summaries of the Ninth Annual JPL Airborne Geosciences Workshop; Jet Propulsion Special Publication: Pasadena, CA, USA, 2000; Volume 8, p. 10. [Google Scholar]
- Fujisada, H. Design and performance of ASTER instrument. In Advanced and Next-Generation Satellites; Breckinridge, J.B., Ed.; International Society for Optics and Photonics: Bellingham, WA, USA, 1995; Volume 2583, pp. 16–25. [Google Scholar]
- Abrams, M. The Advanced Spaceborne Thermal Emission and Reflaction Radiometer (ASTER). Data Products for the high spatial resolution imager on NASA Terra Platform. Int. J. Remote Sens. 2000, 21, 847–859. [Google Scholar] [CrossRef]
- Liu, Y.N.; Zhang, J.; Zhang, Y.; Sun, W.W.; Jiao, L.L.; Sun, D.X.; Hu, X.N.; Ye, X.; Li, Y.D.; Liu, S.F.; et al. The Advanced Hyperspectral Imager: Aboard China’s GaoFen-5 Satellite. IEEE Geosci. Remote Sens. Mag. 2019, 7, 23–32. [Google Scholar] [CrossRef]
- Crosta, A.; Moore, J. Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minais Gerais State, Brazil: A prospecting case history in Greenstone belt terrain. In Proceedings of the 7th ERIM Thematic Conference: Remote Sensing for Exploration Geology, Calgary, AB, Canada, 2–6 October 1989; pp. 1173–1187. [Google Scholar]
- Rowan, L.C.; Goetz, A.F.H.; Ashley, R.P. Discrimination of hydrothermaly altered rocks and unaltered rocks in visible and near infrared multispectral images. Geophysics 1977, 42, 522–535. [Google Scholar] [CrossRef]
- Singh, A.; Harrison, A. Standardized principal components. Int. J. Remote Sens. 1985, 6, 883–896. [Google Scholar] [CrossRef]
- Eklundh, L.; Singh, A. A comparative analysis of standardized and unstandardized principal component analysis in remote sensing. Int. J. Remote Sens. 1993, 14, 1359–1370. [Google Scholar] [CrossRef]
- Pour, B.A.; Hashim, M. Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. J. Asian Earth Sci. 2011, 42, 1309–1323. [Google Scholar] [CrossRef]
- Pour, B.A.; Hashim, M. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geol. Rev. 2012, 44, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Pour, B.A.; Hashim, M. Identifying areas of high economic-potential copper mineralization using ASTER data in Orumieh–Dokhtar Volcanic Belt, Iran. Adv. Spaceborn Res. 2012, 49, 753–769. [Google Scholar] [CrossRef]
- Eldosouky, A.M.; Sehsah, H.; Elkhateeb, S.O.; Pour, A.B. Integrating aeromagnetic data and Landsat-8 imagery for detection of post-accretionary shear zones controlling hydrothermal alterations: The Allaqi-Heiani Suture zone, South Eastern Desert, Egypt. Adv. Space Res. 2019, 65, 1008–1024. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, Z.F.; Jiang, Q.G.; Tan, S.C.; Tian, Y.G. Identification of metamorphic rocks in Wuliangshan Mountains (Southwest China) using ASTER data. Arab. J. Geosci. 2018, 11, 311. [Google Scholar] [CrossRef] [Green Version]
- Zoheir, B.; El-Wahed, M.A.; Pour, A.B.; Abdelnasser, A. Orogenic gold in transpression and transtension zones: Field and remote sensing studies of the Barramiya-Mueilha Sector, Egypt. Remote Sens. 2019, 11, 2122. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Zhao, Z.F.; Jiang, Q.G.; Zhou, J.X.; Tian, Y.G.; Zeng, S.H.; Wang, J.L. Detecting subtle alteration information from ASTER data using a multifractal-based method: A case study from Wuliang Mountain, SW China. Ore Geol. Rev. 2019, 115, 103182. [Google Scholar] [CrossRef]
- Siljestrom, P.; Moreno, A.; Vikgren, K.; Cáceres Puro, L. The application of selective principal components analysis (SPCA) to a Thematic Mapper (TM) image for the recognition of geomorphologic configuration. Int. J. Remote Sens. 1997, 18, 3843–3852. [Google Scholar] [CrossRef] [Green Version]
- Abdelsalam, M.; Stern, R. Mapping gossan in arid regions with landsat TM and SIR-C images, the Beddaho Alteration Zone in northern Eritrea. J. Afr. Earth Sci. 2000, 30, 903–916. [Google Scholar] [CrossRef]
- Mars, J.C.; Rowan, L.C. Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere 2006, 2, 161–186. [Google Scholar] [CrossRef]
- Ninomiya, Y.; Fu, B.; Cudahy, T.J. Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared radiance-at-sensor data. Remote Sens Environ. 2005, 99, 127–139. [Google Scholar] [CrossRef]
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Boardman, J.W.; Kruse, F.A. Automated Spectra Analysis: A Geologic Example Using AVIRIS Data, North Grapevine on Geologic Remote Sensing; Environmental Research Institute of Michigan: Arbor, MI, USA, 17 February 1994; pp. 1407–1418.
- Boardman, J.W.; Kruse, F.A.; Green, R.O. Mapping target signatures via partial unmixing of AVIRIS data. In Summaries, Fifth JPL Airborne Earth Science Workshop; JPL Publication: La Cañada Flintridge, CA, USA, 1995; Volume 1, pp. 23–26. [Google Scholar]
- Boardman, J.W. Automated spectral unmixing of AVIRIS data using convex geometry concepts. In Summaries, Fourth JPL Airborne Geoscience Workshop; JPL Publication: La Cañada Flintridge, CA, USA, 1993; Volume 1, pp. 11–14. [Google Scholar]
- Rockwell, B.W.; Hofstra, A.H. Identification of quartz and carbonate minerals across Northern Nevada using ASTER thermal infrared emissivity data, implications for geologic mapping and mineral resource investigations in well-studied and frontier areas. Geosphere 2008, 4, 218–246. [Google Scholar] [CrossRef] [Green Version]
- Askari, G.; Li, Y.; Moezzi Nasab, R. An adaptive polygonal centroidal voronoi tessellation algorithm for segmentation of noisy SAR images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL-2/W3, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Rowan, L.C.; Mars, J.C. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sens. Environ. 2003, 84, 350–366. [Google Scholar] [CrossRef]
- Ding, Y.L.; Zheng, X.M.; Zhao, K.; Xin, X.P.; Liu, H.J. Quantifying the impact of NDVIsoil determination methods and NDVIsoil variability on the estimation of fractional vegetation cover in northeast china. Remote Sens. 2016, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Prince, S.D. A model of regional primary production for use with coarse resolution satellite data. Int. J. Remote Sens. 1991, 12, 1313–1330. [Google Scholar] [CrossRef]
Mapping Method of Hydrothermal Alteration Minerals | Advantages | Disadvantages |
---|---|---|
SPCA | Simple operation, small calculation quantity | The mapping objects are mainly hydrothermal alteration groups, and the refined mapping ability of hydrothermal alteration minerals needs to be improved |
MTMF | High mapping accuracy of hydrothermal alteration minerals | Relatively complex operation procedure, high remote sensing data quality requirements |
Iron oxides/hydroxides | Eigenvector | Band 1 | Band 2 | Band 4 |
PC1 | −0.261966 | −0.317454 | −0.911371 | |
PC2 | −0.447280 | −0.796866 | 0.406136 | |
PC3 | −0.855169 | 0.514031 | 0.066761 |
Argillic | Eigenvector | Band 4 | Band 5 | Band 6 |
PC1 | 0.786880 | 0.428760 | 0.443830 | |
PC2 | 0.616036 | −0.503428 | −0.605855 | |
PC3 | 0.036330 | −0.750150 | 0.660269 |
Quartz | Eigenvector | Band 10 | Band 12 | Band 14 |
PC1 | −0.444519 | −0.535711 | −0.717925 | |
PC2 | −0.488973 | −0.526405 | 0.695559 | |
PC3 | −0.750538 | 0.660236 | −0.027952 |
Carbonates | Eigenvector | Band 10 | Band 13 | Band 14 |
PC1 | −0.412100 | −0.622114 | −0.665693 | |
PC2 | −0.828818 | −0.047524 | 0.557496 | |
PC3 | 0.378462 | −0.781483 | 0.496035 |
Ground Truth Sample | ||||
---|---|---|---|---|
Class | Iron Oxide/Hydroxide | Argillic | Quartz | Carbonate |
Unclassified | 2 | 4 | 2 | 2 |
Iron oxide/hydroxide | 30 | 0 | 3 | 5 |
Argillic | 3 | 26 | 1 | 0 |
Quartz | 0 | 1 | 32 | 3 |
Carbonate | 0 | 0 | 2 | 45 |
Overall accuracy (Percent) | kappa coefficient (Percent) | |||
82.6 | 0.78 |
Ground Truth Sample | ||||
---|---|---|---|---|
Class | Hematite | Kaolinite | Calcite | Dolomite |
Unclassified | 4 | 2 | 1 | 5 |
hematite | 38 | 0 | 0 | 0 |
kaolinite | 0 | 34 | 0 | 0 |
calcite | 0 | 0 | 20 | 0 |
dolomite | 0 | 0 | 0 | 65 |
Overall accuracy (Percent) | kappa coefficient (Percent) | |||
92.9 | 0.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Zhao, Z.; Zhou, J.; Zhu, R.; Xia, J.; Sun, T.; Zhao, X.; Chao, J. ASTER and GF-5 Satellite Data for Mapping Hydrothermal Alteration Minerals in the Longtoushan Pb-Zn Deposit, SW China. Remote Sens. 2022, 14, 1253. https://doi.org/10.3390/rs14051253
Chen Q, Zhao Z, Zhou J, Zhu R, Xia J, Sun T, Zhao X, Chao J. ASTER and GF-5 Satellite Data for Mapping Hydrothermal Alteration Minerals in the Longtoushan Pb-Zn Deposit, SW China. Remote Sensing. 2022; 14(5):1253. https://doi.org/10.3390/rs14051253
Chicago/Turabian StyleChen, Qi, Zhifang Zhao, Jiaxi Zhou, Ruifeng Zhu, Jisheng Xia, Tao Sun, Xin Zhao, and Jiangqin Chao. 2022. "ASTER and GF-5 Satellite Data for Mapping Hydrothermal Alteration Minerals in the Longtoushan Pb-Zn Deposit, SW China" Remote Sensing 14, no. 5: 1253. https://doi.org/10.3390/rs14051253
APA StyleChen, Q., Zhao, Z., Zhou, J., Zhu, R., Xia, J., Sun, T., Zhao, X., & Chao, J. (2022). ASTER and GF-5 Satellite Data for Mapping Hydrothermal Alteration Minerals in the Longtoushan Pb-Zn Deposit, SW China. Remote Sensing, 14(5), 1253. https://doi.org/10.3390/rs14051253