An Intercomparison of Satellite Derived Arctic Sea Ice Motion Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sea Ice Motion Products
2.1.1. OSI SAF Sea Ice Motion Products
2.1.2. NSIDC Sea Ice Motion Products
2.1.3. Ifremer Sea Ice Motion Products
2.2. Buoy Data
2.3. Validation Methods
2.3.1. Error Estimation
2.3.2. Trajectory Reconstruction
3. Results
3.1. Overall Error Analysis
3.2. Trajectory Reconstruction Results
3.3. Seasonal and Spatial Variations of The Product Accuracy
3.4. Impact of Data Source, Retrieval Algorithm, and Time Interval on Accuracy
4. Discussion
5. Conclusions
- (1)
- Among the eleven products, NSIDC_Pathfinder, Ifremer_AMSR2, and OSI-405-c_Merged performed well. NSIDC_Pathfinder had the highest angle accuracy among all products but its speed MAE was large. Compared with other products, it had higher temporal (i.e., daily) and spatial resolution (i.e., 25 km) and wider spatial coverage. Ifremer_ASMR2 had the highest speed accuracy, but its angle accuracy and trajectory reconstruction results performed relatively poorly. The spatial resolution of this product is 31.25 km. OSI-405-c_Merged showed the best ability in trajectory reconstruction. Its angle MAE is about 0.1° larger than that of NSIDC_Pathfinder and its speed MAE is 0.2 km/d greater than that of Ifremer_AMSR2. The spatial resolution of this product is 62.5 km, i.e., the lowest of these three products.
- (2)
- In terms of seasonal and spatial variations of the product accuracy, the accuracy of the freezing season was significantly better than that of the melting season for most products derived by microwave sensors. However, the freezing season accuracy of the optical-sensor product (i.e., OSI-407-a) was slightly lower than its melting season accuracy. In addition, the speed MAEs in regions where ice moves faster (i.e., KBS and EG) were greater. The angle MAEs of CBS and EG were higher as ice movements are complex in these regions. Overall, most products performed worst in EG.
- (3)
- Product accuracy can be affected by the data sources, extraction algorithms, and time intervals. The accuracy achieved by different data sources, from good to bad, may be ordered as follows: AMSR2 > ASCAT > SSMIS_V > SSMIS_H. Merging from single-sensor products may not improve accuracy. Moreover, CMCC is superior to MCC in speed and angle accuracy, especially in angle. Furthermore, the accuracies of the products with long-time resolution are better than those with short-time resolution.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Farooq, U.; Rack, W.; McDonald, A.; Howell, S. Long-Term Analysis of Sea Ice Drift in the Western Ross Sea, Antarctica, at High and Low Spatial Resolution. Remote Sens. 2020, 12, 1402. [Google Scholar] [CrossRef]
- Krumpen, T.; Belter, H.J.; Boetius, A.; Damm, E.; Haas, C.; Hendricks, S.; Nicolaus, M.; Nothig, E.M.; Paul, S.; Peeken, I.; et al. Arctic warming interrupts the Transpolar Drift and affects long-range transport of sea ice and ice-rafted matter. Sci. Rep. 2019, 9, 5459. [Google Scholar] [CrossRef] [Green Version]
- Meredith, M.; Sommerkorn, M.; Cassotta, S.; Derksen, C.; Ekaykin, A.; Hollowed, A.; Kofinas, G.; Mackintosh, A.; Melbourne-Thomas, J.; Muelbert, M.M.C.; et al. Polar Regions. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; 2019; in press. [Google Scholar]
- Rampal, P.; Weiss, J.; Dubois, C.; Campin, J.M. IPCC climate models do not capture Arctic sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline. J. Geophys. Res. 2011, 116, 1–17. [Google Scholar] [CrossRef]
- Screen, J.A.; Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 2010, 464, 1334–1337. [Google Scholar] [CrossRef] [Green Version]
- Antje, B.; Sebastian, A.; Karel, B.; Christina, B.; Janine, F.; Mar, F.-M.; Stefan, H.; Christian, K.; Catherine, L.; Thomas, K.; et al. Export of Algal Biomass from the Melting Arctic Sea Ice. Science 2013, 339, 1430–1432. [Google Scholar] [CrossRef]
- Haarpaintner, J. Arctic-wide operational sea ice drift from enhanced-resolution QuikScat/SeaWinds scatterometry and its validation. IEEE Trans. Geosci. Remote Sens. 2005, 44, 102–107. [Google Scholar] [CrossRef]
- Kwok, R.; Spreen, G.; Pang, S. Arctic sea ice circulation and drift speed: Decadal trends and ocean currents. J. Geophys. Res. Ocean. 2013, 118, 2408–2425. [Google Scholar] [CrossRef]
- Dybkjaer, G. Medium Resolution Sea Ice Drift Product User Manual; Version 2.0; The Ocean and Sea Ice Satellite Application Facility (OSI SAF). 2018. Available online: https://osisaf-hl.met.no/sites/osisaf-hl/files/user_manuals/osisaf_ss2_pum_sea-ice-drift-mr_v2p0.pdf (accessed on 17 February 2022).
- Ezraty, R.; Girard-Ardhuin, F.; Piollé, J.F.; Kaleschke, L.; Heygster, G. Arctic and Antarctic Sea-Ice Concentration and Arctic Sea Ice Drift Estimated from Special Sensor Microwave Imager Data. User’s Manual, Version 2.1, French Research Institute for the Exploitation of the Seas (Ifremer), February 2007. Available online: ftp://ftp.ifremer.fr/ifremer/cersat/products/gridded/psi-drift/documentation/ssmi.pdf (accessed on 17 February 2022).
- Ezraty, R.; Girard-Ardhuin, F.; Piollé, J.F. Sea-Ice Drift in the Central Arctic Estimated from SeaWinds/QuikSCAT Backscatter Maps. User’s Manual, Version 2.2, French Research Institute for the Exploitation of the Seas (Ifremer), February 2007. Available online: ftp://ftp.ifremer.fr/ifremer/cersat/products/gridded/psi-drift/documentation/quikscat.pdf (accessed on 17 February 2022).
- Ezraty, R.; Girard-Ardhuin, F.; Croizé-Fillon, D. Sea-Ice Drift in the Central Arctic Using the 89 GHz Brightness Temperatures of the Advanced Microwave Scanning Radiometer. User’s Manual, Version 2.0, French Research Institute for the Exploitation of the Seas (Ifremer), February 2007. Available online: ftp://ftp.ifremer.fr/ifremer/cersat/products/gridded/psi-drift/documentation/amsr.pdf (accessed on 17 February 2022).
- Girard-Ardhuin, F.; Ezraty, R.; Croizé-Fillon, D.; Piolle, J. Sea Ice Drift in the Central Arctic Combining QuikSCAT and SSM/I Sea Ice Drift Data. User’s Manual, Version 3.0, French Research Institute for the Exploitation of the Seas (Ifremer). 2008. Available online: ftp://ftp.ifremer.fr/ifremer/cersat/products/gridded/psi-drift/documentation/merged.pdf (accessed on 17 February 2022).
- Lavergne, T. Low Resolution Sea Ice Drift. Product User’s Manual; Version 1.8; The Ocean and Sea Ice Satellite Application Facility (OSI SAF) 2016. Available online: https://osisaf-hl.met.no/sites/osisaf-hl.met.no/files/user_manuals/osisaf_cdop2_ss2_pum_sea-ice-drift-lr_v1p8.pdf (accessed on 17 February 2022).
- Meier, W.N.; Markus, T.; Comiso, J.C. AMSR-E/AMSR2 Unified L3 Daily 12.5 km Brightness Temperatures, Sea Ice Concentration, Motion and Snow Depth Polar Grids; Version 1. [The Arctic Region]; NASA National Snow and Ice Data Center Distributed. Active Archive Center: Boulder, CO, USA, 2018; Available online: https://doi.org/10.5067/RA1MIJOYPK3P (accessed on 17 February 2022).
- Saldo, R.; Hackett, B. Product User Manual for Global High Resolution SAR Sea Ice Drift SEAICE_GLO_SEAICE_L4_NRT_OBSERVATIONS_011_006; Issue 2.12, Space Department/Institute at the Technical University of Denmark (DTU Space). 2020. Available online: https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-SI-PUM-011-006.pdf (accessed on 17 February 2022).
- Tschudi, M.; Meier, W.N.; Stewart, J.S.; Fowler, C.; Maslanik, J. Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors; Version 4. [The Arctic Region]; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2019; Available online: https://doi.org/10.5067/INAWUWO7QH7B (accessed on 17 February 2022).
- Kwok, R.; Schweiger, A.; Rothrock, D.A.; Pang, S.; Kottmeier, C. Sea ice motion from satellite passive microwave imagery assessed with ERS SAR and buoy motions. J. Geophys. Res. Ocean. 1998, 103, 8191–8214. [Google Scholar] [CrossRef]
- Lavergne, T.; Eastwood, S.; Teffah, Z.; Schyberg, H.; Breivik, L.A. Sea ice motion from low-resolution satellite sensors: An alternative method and its validation in the Arctic. J. Geophys. Res. Ocean. 2010, 115, 1–14. [Google Scholar] [CrossRef]
- Sumata, H.; Kwok, R.; Gerdes, R.; Kauker, F.; Karcher, M. Uncertainty of Arctic summer ice drift assessed by high-resolution SAR data. J. Geophys. Res. Ocean. 2015, 120, 5285–5301. [Google Scholar] [CrossRef] [Green Version]
- Lavergne, T. Validation and Monitoring of the OSI SAF Low Resolution Sea Ice Drift Product; Version 5.0; The Ocean and Sea Ice Satellite Application Facility (OSI SAF). 2016. Available online: https://osisaf-hl.met.no/sites/osisaf-hl.met.no/files/validation_reports/osisaf_cdop2_ss2_valrep_sea-ice-drift-lr_v5p0.pdf (accessed on 17 February 2022).
- Dybkjaer, G. Validation and Monitoring Document for OSISAF Medium Resolution Sea Ice Drift; Version 2.0; The Ocean and Sea Ice Satellite Application Facility (OSI SAF). 2018. Available online: https://osisaf-hl.met.no/sites/osisaf-hl.met.no/files/validation_reports/osisaf_ss2_valrep_sea-ice-drift-mr_v2p0.pdf (accessed on 17 February 2022).
- Tschudi, M.A.; Meier, W.N.; Stewart, J.S. An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC). Cryosphere 2020, 14, 1519–1536. [Google Scholar] [CrossRef]
- Girard-Ardhuin, F.; Ezraty, R. Enhanced Arctic sea ice drift estimation merging radiometer and scatterometer data. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2639–2648. [Google Scholar] [CrossRef] [Green Version]
- Rozman, P.; Hölemann, J.A.; Krumpen, T.; Gerdes, R.; Köberle, C.; Lavergne, T.; Adams, S.; Girard-Ardhuin, F. Validating satellite derived and modelled sea-ice drift in the Laptev Sea with in situ measurements from the winter of 2007/2008. Polar Res. 2011, 30, 7218. [Google Scholar] [CrossRef] [Green Version]
- Hwang, B. Inter-comparison of satellite sea ice motion with drifting buoy data. Int. J. Remote Sens. 2013, 34, 8741–8763. [Google Scholar] [CrossRef]
- Sumata, H.; Lavergne, T.; Girard-Ardhuin, F.; Kimura, N.; Tschudi, M.A.; Kauker, F.; Karcher, M.; Gerdes, R. An intercomparison of Arctic ice drift products to deduce uncertainty estimates. J. Geophys. Res. Ocean. 2014, 119, 4887–4921. [Google Scholar] [CrossRef] [Green Version]
- Gui, D.; Lei, R.; Pang, X.; Hutchings, J.K.; Zuo, G.; Zhai, M. Validation of remote-sensing products of sea-ice motion: A case study in the western Arctic Ocean. J. Glaciol. 2020, 66, 807–821. [Google Scholar] [CrossRef]
- Shi, Q.; Su, J. Assessment and Analysis of Three Mainstream International Arctic Satellite Remote Sensing Ice Speed Products. J. Remote Sens. 2020, 24, 867–882. [Google Scholar] [CrossRef]
- Bi, H.; Zhang, Z.; Wang, Y.; Xu, X.; Liang, Y.; Huang, J.; Fu, M. Baffin Bay sea ice inflow and outflow: 1978–1979 to 2016–2017. Cryosphere 2019, 13, 1025–1042. [Google Scholar] [CrossRef] [Green Version]
- Barton, N.; Metzger, E.J.; Reynolds, C.A.; Ruston, B.; Rowley, C.; Smedstad, O.M.; Phelps, M. The Navy’s Earth System Prediction Capability: A new global coupled atmosphere-ocean-sea ice prediction system designed for daily to subseasonal forecasting. Earth Space Sci. 2021, 8, e2020EA001199. [Google Scholar] [CrossRef]
- Hao, G.; Su, J.; Vihma, T.; Huang, F. Trends, abrupt shifts and interannual variability of the Arctic Wintertime Seasonal Sea Ice from 1979 to 2019. Ann. Glaciol. 2020, 61, 441–453. [Google Scholar] [CrossRef]
- Lei, R.; Gui, D.; Hutchings, J.K.; Wang, J.; Pang, X. Backward and forward drift trajectories of sea ice in the northwestern Arctic Ocean in response to changing atmospheric circulation. Int. J. Climatol. 2019, 39, 4372–4391. [Google Scholar] [CrossRef] [Green Version]
- Vincent, C.; McConnell, B.J.; Ridoux, V.; Fedak, M.A. Assessment of Argos Location Accuracy From Satellite Tags Deployed on Captive Gray Seal. Mar. Mammal Sci. 2002, 18, 156–166. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Z.; Shokr, M.; Hui, F.; Cheng, X.; Chi, Z.; Heil, P.; Chen, Z. Automatically Extracted Antarctic Coastline Using Remotely-Sensed Data: An Update. Remote Sens. 2019, 11, 1844. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yu, Y.; Shokr, M.; Li, X.; Ye, Y.; Cheng, X.; Chen, Z.; Hui, F. Intercomparison of Arctic Sea Ice Backscatter and Ice Type Classification Using Ku-Band and C-Band Scatterometers. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–18. [Google Scholar] [CrossRef]
- Magdy, N.; Sakr, M.; Mostafa, T.; El-Bahnasy, K. Review on trajectory similarity measures. In Proceedings of the IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt, 12–14 December 2015; pp. 613–619. [Google Scholar] [CrossRef]
- Spreen, G.; Kwok, R.; Menemenlis, D. Trends in Arctic sea ice drift and role of wind forcing: 1992–2009. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Sandven, S. Sea Ice Climate Change Initiative: Phase 1. User Requirement Document (URD); Version 1.0; European Space Agency: Paris, France, 2012. [Google Scholar]
- Sandven, S. Sea Ice Climate Change Initiative: Phase 2. User Requirement Document (URD); Version 2.1; European Space Agency: Paris, France, 2018. [Google Scholar]
- Global Climate Observing System (GCOS). Systematic Observation Requirements for Satellite-based Products for Climate Supplemental Details to the Satellite-Based Component of the Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC: 2011 Update; World Meteorological Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Global Climate Observing System (GCOS). In The Global Observing System for Climate: Implementation Needs, GCOS-200; World Meteorological Organization: Geneva, Switzerland, 2016.
Product | Temporal Resolution | Institution | Overall Errors | References | |
---|---|---|---|---|---|
Speed Error | Angle Error | ||||
OSI-405-c_AMSR2 | 2 d | OSI SAF | — | [22] | |
OSI-405-c_SSMIS | 2 d | — | |||
OSI-405-c_ASCAT | 2 d | — | |||
OSI-405-c_Merged | 2 d | — | |||
OSI-407-a | 1 d | — | [23] | ||
NSIDC_Pathfinder | 1 d | NSIDC | — | [18,24] | |
Ifremer_AMSR-E | 2 d | Ifremer | 2.2 km/d | 30.6° | [13] |
Ifremer_Merged | 3 d | 2.5 km/d | 39.2° | [25] | |
Ifremer_SSM/I | 3 d | 2.4 km/d | — | [11] |
Product Abbreviation | Institution | Source Data | Extraction Algorithm | Spatial Resolution | Temporal Resolution | Data Period |
---|---|---|---|---|---|---|
OSI-405-c_Merged | OSI SAF | Merged (AMSR-2 37 GHz and 18.7 GHz H and V pol./SSMIS 91GHz H and V pol./Metop-B ASCAT C band) | CMCC | 62.5 km | 2 d | 2018–2020 |
OSI-405-c_AMSR2 | OSI SAF | AMSR-2 37 GHz and 18.7GHz H and V pol. | CMCC | 62.5 km | 2 d | January to April and October to December of 2018–2020 |
OSI-405-c_ASCAT | OSI SAF | Metop-B ASCAT C band | CMCC | 62.5 km | 2 d | January to April and October to December of 2018–2020 |
OSI-407-a | OSI SAF | AVHRR (band 2 and 4, band 2 used in May to September) | MCC | 20 km | 1 d | 2018–2020 |
NSIDC _Pathfinder | NSIDC | Merged (SSMIS 37GHz and 91 GHz H and V pol./NCEP-NCAR wind/IABP buoys) | MCC | 25 km | 1 d | 2018–2020 |
NSIDC _AMSR2 | NSIDC | AMSR-2 36.5GHz V pol. | MCC | 75 km | 1 d | 2018–2020 |
Ifremer _AMSR2 | Ifremer | AMSR-2 89GHz H and V pol. | MCC | 31.25 km | 2/3/6 d | 2018–2020 |
Ifremer _Merged | Ifremer | Merged (SSMIS 91GHz H and V pol./Metop-B ASCAT C band) | MCC | 62.5 km | 3/6 d | 2018–2020 |
Ifremer _SSMIS_H | Ifremer | SSMIS 91GHz H pol. | MCC | 62.5km | 3 d | 2018–2020 |
Ifremer _SSMIS_V | Ifremer | SSMIS 91GHz V pol. | MCC | 62.5 km | 3 d | 2018–2020 |
Ifremer _ASCAT | Ifremer | Metop-B ASCAT C band | MCC | 62.5 km | 3 d | 2018–2020 |
Product | |||
---|---|---|---|
OSI-405-c_Merged | 1.38 | 15.07 | 12.25 |
OSI-407-a | 1.29 | 19.31 | 16.93 |
NSIDC_Pathifinder | 1.85 | 14.93 | 10.22 |
NSIDC_AMSR2 | 2.26 | 23.19 | 14.67 |
Ifremer_AMSR2 | 1.15 | 17.09 | 8.82 |
Ifremer_Merged | 1.34 | 20.15 | 11.78 |
Ifremer_SSMIS_H | 1.34 | 19.32 | 11.57 |
Ifremer_SSMIS_V | 1.27 | 19.21 | 11.06 |
Ifremer_ASCAT | 1.27 | 19.13 | 11.07 |
Product | The Freezing Period | The Melting Period |
---|---|---|
OSI-405-c_Merged | 7.38 | 4.78 |
OSI-405-c_AMSR2 | 6.27 | / |
OSI-405-c_ASCAT | 5.87 | / |
OSI-407-a | 1.08 | 0.75 |
NSIDC_Pathfinder | 8.89 | 6.30 |
NSIDC_AMSR2 | 4.50 | 1.93 |
Ifremer_AMSR2 | 5.30 | 1.10 |
Ifremer_Merged | 6.02 | 2.60 |
Ifremer_SSMIS_H | 4.66 | 1.19 |
Ifremer_SSMIS_V | 5.04 | 1.23 |
Ifremer_ASCAT | 4.89 | 2.22 |
Product | 1 October 2018–29 April 2019 | 1 October 2019–29 April 2020 | ||
---|---|---|---|---|
Euclidean Distance (km) | Cosine Distance (10−3) | Euclidean Distance (km) | Cosine Distance (10−3) | |
Ifremer_Merged | 56.7 | 2.75 | 60.9 | 1.84 |
Ifremer_AMSR2 | 27.0 | 5.13 | 51.4 | 1.94 |
NSIDC _Pathfinder | 59.4 | 1.45 | 48.3 | 0.67 |
OSI-405-c _Merged | 10.6 | 0.15 | 37.3 | 0.97 |
OSI-405-c _AMSR2 | 20.1 | 0.15 | 38.6 | 0.95 |
OSI-405-c _ASCAT | 36.5 | 5.32 | 61.1 | 3.22 |
Product | The Freezing Season | The Melting Season | ||
---|---|---|---|---|
OSI-405-c _Merged | 1.04 | 11.93 | 1.86 | 20.62 |
OSI-407-a | 1.25 | 18.89 | 1.13 | 14.41 |
NSIDC _Pathfinder | 1.71 | 15.00 | 2.09 | 14.83 |
NSIDC_AMSR2 | 1.96 | 22.41 | 3.90 | 27.41 |
Ifremer_AMSR2 | 1.15 | 17.29 | 1.16 | 14.76 |
Ifremer_Merged | 1.23 | 19.24 | 1.93 | 24.99 |
Product | |||||
---|---|---|---|---|---|
CA | CBS | LESS | KBS | EG | |
OSI-405-c_Merged | 1.37 | 1.36 | 1.34 | 2.38 | 3.75 |
OSI-407-a | 1.27 | 1.32 | 1.25 | 0.77 | 10.40 |
NSIDC_Pathfinder | 1.65 | 1.69 | 2.02 | 3.99 | 6.62 |
NSIDC_AMSR2 | 2.05 | 1.94 | 3.27 | 9.24 | 7.69 |
Ifremer_AMSR2 | 1.16 | 1.07 | 1.18 | 2.11 | 1.39 |
Ifremer_Merged | 1.26 | 1.33 | 1.42 | 2.70 | 6.20 |
Product | |||||
---|---|---|---|---|---|
CA | CBS | LESS | KBS | EG | |
OSI-405-c_Merged | 14.82 | 15.59 | 15.42 | 17.38 | 22.31 |
OSI-407-a | 19.26 | 19.69 | 22.36 | 8.97 | 17.21 |
NSIDC_Pathfinder | 13.92 | 16.22 | 15.76 | 15.07 | 25.48 |
NSIDC_AMSR2 | 21.32 | 25.38 | 32.85 | 26.53 | 55.77 |
Ifremer_AMSR2 | 16.51 | 18.84 | 17.48 | 20.16 | 22.12 |
Ifremer_Merged | 19.27 | 21.42 | 20.72 | 18.95 | 43.40 |
Compared Group | Product | ||
---|---|---|---|
1 | OSI-405-c_merged | 1.04 | 11.93 |
OSI-405-c_AMSR2 | 1.01 | 11.91 | |
OSI-405-c_ASCAT | 1.42 | 17.98 | |
2 | Ifremer_AMSR2(3d) | 0.78 | 12.41 |
Ifremer_Merged | 1.34 | 20.15 | |
Ifremer_SSMIS_H | 1.34 | 19.32 | |
Ifremer_SSMIS_V | 1.27 | 19.21 | |
Ifremer_ASCAT | 1.27 | 19.13 |
Product | Temporal Resolution | ||
---|---|---|---|
Ifremer_Merged | 3 d | 1.34 | 20.15 |
6 d | 0.67 | 11.62 | |
Ifremer_AMSR2 | 2 d | 1.15 | 17.09 |
3 d | 0.78 | 12.41 | |
6 d | 0.41 | 7.62 | |
NSIDC _Pathfinder | 1 d | 1.85 | 14.93 |
2 d | 1.44 | 11.34 | |
NSIDC_AMSR2 | 1 d | 2.26 | 23.19 |
2 d | 2.15 | 18.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Chen, R.; Li, C.; Chen, Z.; Hui, F.; Cheng, X. An Intercomparison of Satellite Derived Arctic Sea Ice Motion Products. Remote Sens. 2022, 14, 1261. https://doi.org/10.3390/rs14051261
Wang X, Chen R, Li C, Chen Z, Hui F, Cheng X. An Intercomparison of Satellite Derived Arctic Sea Ice Motion Products. Remote Sensing. 2022; 14(5):1261. https://doi.org/10.3390/rs14051261
Chicago/Turabian StyleWang, Xue, Runtong Chen, Chao Li, Zhuoqi Chen, Fengming Hui, and Xiao Cheng. 2022. "An Intercomparison of Satellite Derived Arctic Sea Ice Motion Products" Remote Sensing 14, no. 5: 1261. https://doi.org/10.3390/rs14051261
APA StyleWang, X., Chen, R., Li, C., Chen, Z., Hui, F., & Cheng, X. (2022). An Intercomparison of Satellite Derived Arctic Sea Ice Motion Products. Remote Sensing, 14(5), 1261. https://doi.org/10.3390/rs14051261