An Adaptively Attention-Driven Cascade Part-Based Graph Embedding Framework for UAV Object Re-Identification
Abstract
:1. Introduction
2. Related Work
3. Proposed Method
3.1. Part-Based Feature Extraction Using the Pre-Trained CNN Model
3.2. Part-Based Multi-Scale Graph Construction
4. Graph Embedding on Features and Topology Spaces of Hierarchical Graphs
4.1. Graph Embedding in Feature and Topology Spaces
4.2. Attention-Driven Embedded Features Fusion in the Uniform Latent Spaces
4.3. Objective Functions
5. Experiments and Results
5.1. Datasets and Evaluation Metrics
5.2. Implementation Details
5.3. Comparisons with State-of-the-Art Re-ID Approaches on Different Datasets
5.3.1. Comparisons on the UAV-ReID Dataset
5.3.2. Comparisons on the VeRi-776 Dataset
5.3.3. Comparisons on the PRAI-1581 Dataset
5.4. Object Re-ID Comparisons under Different Configurations of AAD-CPGE
5.4.1. Re-ID Performance Using Different Configurations on the UAV-ReID
5.4.2. Re-ID Performance Using Different Configurations on the VeRi-776
5.4.3. Re-ID Performance Using Different Configurations on the PRAI-1581
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Jiang, J.; Yu, Y.; Satoh, S. Incremental re-identification by cross-direction and cross-ranking adaption. IEEE Trans. Multimed. 2019, 21, 2376–2386. [Google Scholar] [CrossRef]
- Qin, J.; Wang, B.; Wu, Y.; Lu, Q.; Zhu, H. Identifying Pine Wood Nematode Disease Using UAV Images and Deep Learning Algorithms. Remote Sens. 2021, 13, 162. [Google Scholar] [CrossRef]
- Byun, S.; Shin, I.K.; Moon, J.; Kang, J.; Choi, S.I. Road Traffic Monitoring from UAV Images Using Deep Learning Networks. Remote Sens. 2021, 13, 4027. [Google Scholar] [CrossRef]
- Deng, C.; He, S.; Han, Y.; Zhao, B. Learning Dynamic Spatial-Temporal Regularization for UAV Object Tracking. IEEE Signal Process. Lett. 2021, 28, 1230–1234. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, H.; Wang, Q.; Shukla, M.K.; Imran, M. Unmanned aerial vehicle for internet of everything: Opportunities and challenges. Comput. Commun. 2020, 155, 66–83. [Google Scholar] [CrossRef] [Green Version]
- Walambe, R.; Marathe, A.; Kotecha, K. Multiscale object detection from drone imagery using ensemble transfer learning. Drones 2021, 5, 66. [Google Scholar] [CrossRef]
- Zhao, Y.; Shen, C.; Wang, H.; Chen, S. Structural analysis of attributes for vehicle re-identification and retrieval. IEEE Trans. Intell. Transp. Syst. 2019, 21, 723–734. [Google Scholar] [CrossRef]
- Teng, S.; Zhang, S.; Huang, Q.; Sebe, N. Viewpoint and scale consistency reinforcement for UAV vehicle re-identification. Int. J. Comput. Vis. 2021, 129, 719–735. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Q.; Chu, L.; Zhou, Y.; Xu, C. Real-time detection and spatial localization of insulators for UAV inspection based on binocular stereo vision. Remote Sens. 2021, 13, 230. [Google Scholar] [CrossRef]
- Jiang, S.; Jiang, W.; Huang, W.; Yang, L. UAV-based oblique photogrammetry for outdoor data acquisition and offsite visual inspection of transmission line. Remote Sens. 2017, 9, 278. [Google Scholar] [CrossRef] [Green Version]
- Min, B.; Chala Urgessa, G.; Xing, M.; Han, L.; Chen, R. Toward More Robust and Real-Time Unmanned Aerial Vehicle Detection and Tracking via Cross-Scale Feature Aggregation Based on the Center Keypoint. Remote Sens. 2021, 13, 1416. [Google Scholar]
- Fan, S.; Lin, M.; Jiang, J.; Kuo, Y. A Few-Shot Learning Method Using Feature Reparameterization and Dual-Distance Metric Learning for Object Re-Identification. IEEE Access 2021, 9, 133650–133662. [Google Scholar] [CrossRef]
- Zhu, J.; Zeng, H.; Huang, J.; Liao, S.; Lei, Z.; Cai, C.; Zheng, L. Vehicle re-identification using quadruple directional deep learning features. IEEE Trans. Intell. Transp. Syst. 2019, 21, 410–420. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Zeng, H.; Huang, J.; Liao, S.; Lei, Z.; Cai, C.; Zheng, L. A dual-path model with adaptive attention for vehicle re-identification. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 20–26 October 2019; pp. 6132–6141. [Google Scholar]
- Liu, X.; Zhang, X.; Wang, R.; Tian, Q. Group-group loss-based global-regional feature learning for vehicle re-identification. IEEE Trans. Image Process. 2019, 29, 2638–2652. [Google Scholar] [CrossRef]
- Zhu, J.; Zeng, H.; Huang, J.; Liao, S.; Lei, Z.; Cai, C.; Zheng, L. Multiview image generation for vehicle reidentification. Appl. Intell. 2021, 51, 5665–5682. [Google Scholar]
- Zhang, S.; Zhang, Q.; Yang, Y.; Xing, W.; Wang, P.; Jiao, B.; Zhang, Y. Person re-identification in aerial imagery. IEEE Trans. Multimed. 2020, 23, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Wu, A.; Zheng, W. Unsupervised person re-identification by deep asymmetric metric embedding. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 42, 956–973. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Pang, Z.; Yu, M.; Xie, P.; Liu, D. A Novel Pedestrian Reidentification Method Based on a Multiview Generative Adversarial Network. IEEE Access 2020, 8, 181943–181954. [Google Scholar] [CrossRef]
- Mueller, M.; Smith, N.; Ghanem, B. A benchmark and simulator for uav tracking. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Volume 8, pp. 445–461. [Google Scholar]
- Robicquet, A.; Sadeghian, A.; Alahi, A.; Savarese, S. Learning social etiquette: Human trajectory prediction in crowded scenes. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020; pp. 549–565. [Google Scholar]
- Zhu, P.; Wen, L.; Bian, X.; Ling, H.; Hu, Q. Vision meets drones: A challenge. arXiv 2018, arXiv:1804.07437. [Google Scholar]
- Madeline, I.; Mygdalis, V.; Nikolaidis, N.; Montagnuolo, M.; Maurizio, N.; Negro, F.; Messina, A.; Pitas, I. High-level multiple-UAV cinematography tools for covering outdoor events. IEEE Trans. Broadcast. 2019, 65, 627–635. [Google Scholar]
- Du, D.; Qi, Y.; Yu, H.; Yang, Y.; Duan, K.; Li, G.; Zhang, W.; Huang, Q.; Tian, Q. The unmanned aerial vehicle benchmark: Object detection and tracking. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 370–386. [Google Scholar]
- Kalra, I.; Singh, M.; Nagpal, S.; Singh, R.; Vatsa, M.; Li, G.; Sujit, P. Dronesurf: Benchmark dataset for drone-based face recognition. In Proceedings of the 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), Lille, France, 14–18 May 2019; pp. 1–7. [Google Scholar]
- Chao, D.; Liu, J.; Xu, F.; Liu, C. Ship detection from optical remote sensing images using multi-scale analysis and Fourier HOG descriptor. Remote Sens. 2019, 13, 1529. [Google Scholar]
- Chao, D.; Liu, J.; Xu, F. Ship detection in optical remote sensing images based on saliency and a rotation-invariant descriptor. Remote Sens. 2018, 10, 400. [Google Scholar]
- Wang, X.; Liu, M.; Raychaudhuri, D.; Paul, S.; Wang, Y.; Roy, C.; Amit, K. Learning Person Re-Identification Models From Videos With Weak Supervision. IEEE Trans. Image Process. 2021, 30, 3017–3028. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Li, J.; Ma, A.; Zheng, L.; Yuen, P. Dynamic graph co-matching for unsupervised video-based person re-identification. IEEE Trans. Image Process. 2019, 29, 2976–2990. [Google Scholar] [CrossRef]
- Deng, W.; Zheng, L.; Ye, Q.; Kang, G.; Yang, Y.; Jiao, J. Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 994–1003. [Google Scholar]
- Wang, J.; Zhu, X.; Gong, S.; Li, W. Transferable joint attribute-identity deep learning for unsupervised person re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 2275–2284. [Google Scholar]
- Yu, H.; Zheng, W.; Wu, A.; Guo, S.; Lai, J. Unsupervised person re-identification by soft multilabel learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 2148–2157. [Google Scholar]
- Wu, F.; Yan, S.; Smith, J.; Zhang, B. vehicle re-identification in still images: Application of semi-supervised learning and re-ranking. Signal Process. Image Commun. 2019, 76, 261–271. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, Y.; Hu, H.; Chen, D.; Su, T. Deeply associative two-stage representations learning based on labels interval extension loss and group loss for person re-identification. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 4526–4539. [Google Scholar] [CrossRef]
- Wang, H.; Hou, J.; Chen, N. A survey of vehicle re-identification based on deep learning. IEEE Access 2019, 7, 172443–172469. [Google Scholar] [CrossRef]
- Cui, C.; Sang, N.; Gao, C.; Zou, L. Vehicle re-identification by fusing multiple deep neural networks. In Proceedings of the 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), Montreal, QC, Canada, 28 November–1 December 2017; pp. 1–6. [Google Scholar]
- Bai, Y.; Lou, Y.; Gao, F.; Wang, S.; Wu, Y.; Duan, L. Group-sensitive triplet embedding for vehicle reidentification. IEEE Trans. Multimed. 2018, 20, 2385–2399. [Google Scholar] [CrossRef]
- Zhang, Y.; Lou, D.; Zha, Z. Improving triplet-wise training of convolutional neural network for vehicle re-identification. In Proceedings of the 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, China, 10–14 July 2017; pp. 1386–1391. [Google Scholar]
- Zhang, W.; He, X.; Yu, X.; Lu, W.; Zha, Z.; Tian, Q. A multi-scale spatial-temporal attention model for person re-identification in videos. IEEE Trans. Image Process. 2019, 29, 3365–3373. [Google Scholar] [CrossRef]
- Yao, A.; Huang, M.; Qi, J.; Zhong, P. Attention Mask-Based Network with Simple Color Annotation for UAV Vehicle Re-Identification. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Guo, H.; Zhu, K.; Tang, M.; Wang, J. Two-level attention network with multi-grain ranking loss for vehicle re-identification. IEEE Trans. Image Process. 2019, 28, 4328–4338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Cui, Z.; Neumann, M.; Chen, Y. An end-to-end deep learning architecture for graph classification. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32, pp. 1–8. [Google Scholar]
- Chen, Z.; Wei, X.; Wang, P.; Guo, Y.; Wu, J. Multi-label image recognition with graph convolutional networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 5177–5186. [Google Scholar]
- Shi, L.; Zhang, Y.; Cheng, J.; Lu, H. Two-stream adaptive graph convolutional networks for skeleton-based action recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 12026–12035. [Google Scholar]
- Shen, Y.; Li, H.; Yi, S.; Chen, D.; Wang, X. Masked graph attention network for person re-identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–20 June 2019; pp. 1496–1505. [Google Scholar]
- Yang, J.; Zheng, W.; Yang, Q.; Chen, Y.; Tian, Q. Spatial-temporal graph convolutional network for video-based person re-identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 3289–3299. [Google Scholar]
- Zhong, Z.; Zheng, L.; Luo, Z.; Li, S.; Yang, Y. Learning to adapt invariance in memory for person re-identification. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 2723–2738. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Li, H.; Yi, S.; Chen, D.; Wang, X. Person re-identification with deep similarity-guided graph neural network. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 486–504. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Wang, X.; Zheng, A.; Tang, J.; Luo, B. Ph-GCN: Person retrieval with part-based hierarchical graph convolutional network. IEEE Trans. Multimed. 2021, early access. [Google Scholar] [CrossRef]
- Wang, X.; Gupta, A. Videos as space-time region graphs. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 399–417. [Google Scholar]
- Hammond, D.K.; Vandergheynst, P.; Gribonval, R. Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 2011, 30, 129–150. [Google Scholar] [CrossRef] [Green Version]
- Kopf, T.N.; Welling, X. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Hoang, N.; Takanori, M. Revisiting graph neural networks: All we have is low-pass filters. arXiv 2019, arXiv:1609.02907. [Google Scholar]
- Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying graph convolutional networks. In Proceedings of the International Conference on Machine Learning (ICML), Long Beach, CA, USA, 9–15 June 2019; pp. 6861–6871. [Google Scholar]
- Wang, X.; Zhu, M.; Bo, D.; Cui, P.; Shi, C.; Pei, J. Am-GCN: Adaptive multi-channel graph convolutional networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual, 6–10 July 2020; pp. 1243–1253. [Google Scholar]
- Liu, X.; Liu, W.; Mei, T.; Ma, H. A deep learning-based approach to progressive vehicle re-identification for urban surveillance. In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016; pp. 869–884. [Google Scholar]
- Liu, X.; Liu, W.; Ma, H.; Fu, H. Large-scale vehicle re-identification in urban surveillance videos. In Proceedings of the 2016 IEEE International Conference on Multimedia and Expo (ICME), Seattle, WA, USA, 11–15 July 2016; pp. 1–6. [Google Scholar]
- Liu, X.; Liu, W.; Mei, T.; Ma, H. Provid: Progressive and multimodal vehicle reidentification for large-scale urban surveillance. IEEE Trans. Multimed. 2017, 20, 645–658. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, S.; Zhou, W.; Tian, Q. Bayes merging of multiple vocabularies for scalable image retrieval. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 20–23 June 2014; pp. 1955–1962. [Google Scholar]
- Zheng, L.; Shen, L.; Tian, L.; Wang, S.; Wang, J.; Tian, Q. Scalable person re-identification: A benchmark. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 13–16 December 2015; pp. 1116–1124. [Google Scholar]
- He, B.; Li, J.; Zhao, Y.; Tian, Y. Part-regularized near-duplicate vehicle re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 3997–4005. [Google Scholar]
- Khorramshahi, P.; Peri, N.; Chen, J.; Chellappa, R. The devil is in the details: Self-supervised attention for vehicle re-identification. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland, 2020; pp. 369–386. [Google Scholar]
- Zhu, X.; Luo, Z.; Fu, P.; Ji, X. VOC-ReID: Vehicle re-identification based on vehicle-orientation-camera. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 602–603. [Google Scholar]
- Meng, D.; Li, L.; Liu, X.; Li, Y.; Yang, S.; Zha, Z.; Gao, X.; Wang, S.; Huang, Q. Parsing-based view-aware embedding network for vehicle re-identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 7103–7112. [Google Scholar]
- Shen, F.; Zhu, J.; Zhu, X.; Xie, Y.; Huang, J. Exploring spatial significance via hybrid pyramidal graph network for vehicle re-identification. IEEE Trans. Intell. Transp. Syst. 2020, 1–12. [Google Scholar] [CrossRef]
Dataset | Cameras | Viewpoint | Total Image Number | Object Identities | Training Images | Testing Image |
---|---|---|---|---|---|---|
UAV-VeID | ||||||
(Experiment.1) | Mobile UAV | Flexible | 41,917 | 4061 | 18,709 | 3742 |
PRAI-1581 | ||||||
(Experiment.2) | Mobile UAV | Flexible | 39,461 | 1581 | 19,523 | 19,938 |
VeRi-776 | ||||||
(Experiment.3) | Fixed | 3 | 51,035 | 776 | 37,746 | 11,579 |
Methods | mAP | CMC-1 | CMC-5 | CMC-10 | CMC-20 |
---|---|---|---|---|---|
BoW-Shift | 27.69 | 30.56 | 36.87 | 40.12 | 50.14 |
BoW-CN | 30.34 | 35.64 | 39.75 | 46.68 | 56.32 |
PRM | 52.49 | 43.63 | 56.72 | 67.65 | 73.93 |
VOC-ReID | 54.24 | 46.78 | 59.89 | 68.94 | 75.03 |
SAVER | 66.95 | 62.37 | 69.85 | 71.74 | 77.86 |
PVEN | 67.43 | 68.35 | 70.64 | 75.34 | 78.19 |
AAVER | 70.45 | 71.21 | 74.16 | 78.95 | 84.57 |
SG-GCN | 72.45 | 70.14 | 85.24 | 87.56 | 94.32 |
ST-GCN | 78.97 | 80.19 | 84.67 | 88.46 | 96.34 |
HPGN | 81.13 | 95.68 | 96.12 | 97.87 | 98.04 |
Ours | 84.59 | 97.15 | 97.46 | 98.57 | 98.89 |
Methods | mAP | CMC-1 | CMC-5 | CMC-10 | CMC-20 |
---|---|---|---|---|---|
BoW-Shift | 31.37 | 37.09 | 44.91 | 48.57 | 60.86 |
BoW-CN | 32.29 | 43.98 | 46.52 | 50.68 | 62.15 |
PRM | 54.84 | 44.28 | 57.18 | 69.36 | 75.83 |
VOC-ReID | 59.98 | 46.97 | 60.12 | 70.37 | 76.18 |
PVEN | 68.79 | 52.65 | 62.83 | 75.47 | 80.56 |
AAVER | 71.39 | 63.27 | 71.34 | 79.56 | 85.12 |
SAVER | 75.96 | 73.57 | 86.79 | 88.24 | 95.43 |
SG-GCN | 79.48 | 89.08 | 82.19 | 89.37 | 97.21 |
ST-GCN | 79.60 | 92.43 | 97.08 | 97.35 | 98.01 |
HPGN | 80.18 | 96.72 | 97.64 | 97.87 | 98.19 |
Ours | 83.78 | 97.13 | 97.59 | 98.29 | 98.71 |
Methods | mAP | CMC-1 | CMC-5 | CMC-10 | CMC-20 |
---|---|---|---|---|---|
BoW-Shift | 52.34 | 44.64 | 57.75 | 68.86 | 71.23 |
BoW-CN | 54.94 | 48.98 | 56.65 | 70.32 | 74.15 |
PRM | 55.84 | 50.98 | 62.43 | 70.46 | 75.94 |
VOC-ReID | 62.98 | 52.97 | 63.42 | 74.56 | 77.16 |
PVEN | 69.78 | 64.65 | 73.76 | 76.91 | 83.18 |
AAVER | 78.45 | 64.76 | 78.39 | 84.36 | 86.19 |
SAVER | 80.76 | 84.76 | 92.12 | 92.56 | 94.01 |
SG-GCN | 83.70 | 89.95 | 96.41 | 97.06 | 97.48 |
ST-GCN | 84.64 | 90.23 | 96.78 | 97.54 | 97.96 |
HPGN | 85.12 | 92.45 | 97.32 | 97.65 | 98.21 |
Ours | 90.34 | 95.23 | 97.68 | 98.53 | 98.89 |
Configuration | UAV-ReID | ReVi-776 | PARI-1581 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | HP-SE | HP-SET | Atten | MAP | CMC-1 | CMC-5 | MAP | CMC-1 | CMC-5 | MAP | CMC-1 | CMC-5 | |
AAD -CPGE | ✓ | - | - | - | 80.57 | 85.92 | 89.36 | 80.16 | 87.95 | 90.45 | 82.64 | 86.39 | 91.45 |
✓ | ✓ | - | - | 82.76 | 89.43 | 92.19 | 81.54 | 90.39 | 92.77 | 83.35 | 90.41 | 93.26 | |
✓ | ✓ | - | ✓ | 83.45 | 92.13 | 94.42 | 82.12 | 92.94 | 94.18 | 85.17 | 91.52 | 93.89 | |
✓ | ✓ | ✓ | - | 83.81 | 94.24 | 96.38 | 82.76 | 94.59 | 96.09 | 86.74 | 92.34 | 94.75 | |
✓ | ✓ | ✓ | ✓ | 84.59 | 97.15 | 97.46 | 83.78 | 97.13 | 97.59 | 90.34 | 95.23 | 97.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, B.; Zhang, R.; Chen, H. An Adaptively Attention-Driven Cascade Part-Based Graph Embedding Framework for UAV Object Re-Identification. Remote Sens. 2022, 14, 1436. https://doi.org/10.3390/rs14061436
Shen B, Zhang R, Chen H. An Adaptively Attention-Driven Cascade Part-Based Graph Embedding Framework for UAV Object Re-Identification. Remote Sensing. 2022; 14(6):1436. https://doi.org/10.3390/rs14061436
Chicago/Turabian StyleShen, Bo, Rui Zhang, and Hao Chen. 2022. "An Adaptively Attention-Driven Cascade Part-Based Graph Embedding Framework for UAV Object Re-Identification" Remote Sensing 14, no. 6: 1436. https://doi.org/10.3390/rs14061436
APA StyleShen, B., Zhang, R., & Chen, H. (2022). An Adaptively Attention-Driven Cascade Part-Based Graph Embedding Framework for UAV Object Re-Identification. Remote Sensing, 14(6), 1436. https://doi.org/10.3390/rs14061436