Ground Maneuvering Target Focusing via High-Order Phase Correction in High-Squint Synthetic Aperture Radar
Abstract
:1. Introduction
2. Moving Target Signal Model in High-Squint SAR
3. The Proposed HPC-GMTIm Algorithm
3.1. Moving Target Detection
3.2. Subaperture Processing
3.3. Whole Aperture Processing
3.4. Simulation Experiment
3.5. Practical Considerations
- (1)
- Platform motion errors: For high-squint SAR mounted on an unmanned aerial vehicle (UAV) [24,27,28,29] or missile [30], platform motion errors are usually inevitable. If the platform is equipped with a high-precision inertial measurement unit (IMU), motion compensation (MOCO) can be performed using the IMU data. Otherwise, an autofocus technique is needed [3,31,32]. For autofocusing, the stationary scene should be selected to estimate the motion error. Then, MOCO is performed, and the moving target can be processed by the proposed HPC-GMTIm method;
- (2)
- High resolution imaging: The higher resolution one desires, the larger the CPI it takes. This means that the target motion becomes more complicated for high-resolution applications. Besides the high-order phase, high-order range cell migration may be induced in the recorded data. In such a condition, the proposed HPC-GMTIm algorithm was still effective, and for that, the assumption of subaperture constant velocity still can be guaranteed by decreasing the subaperture length, while the polynomial order can be set flexibly for high-order range cell migration and phase correction. In addition, more motion vectors, such as rotation and rotation rate [33,34], become non-negligible for high-resolution imaging, which will be considered in our future work;
- (3)
- Motion parameters estimation: In HPC-GMTIm processing, all Q polynomial coefficients are determined, but the target parameters (i.e., velocity, acceleration, acceleration rate, and position) cannot be obtained. This is because the target motion parameters are coupled together, and they cannot be estimated accurately from the undetermined system of equations. Since the motion parameter estimation is a technical obstacle for high-squint SAR GMTIm at present, this paper paid more attention to target focusing.
4. Real Data Experiments
4.1. T1
4.2. T2
4.3. T3
4.4. T4
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cumming, G.; Wong, F.H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation; Artech House: Norwood, MA, USA, 2005. [Google Scholar]
- Ran, L.; Xie, R.; Liu, Z.; Zhang, L.; Li, T.; Wang, J. Simultaneous Range and Cross-Range Variant Phase Error Estimation and Compensation for Highly Squinted SAR Imaging. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4448–4463. [Google Scholar] [CrossRef]
- Ran, L.; Liu, Z.; Xie, R.; Zhang, L. Focusing High-Squint Synthetic Aperture Radar Data Based on Factorized Back-Projection and Precise Spectrum Fusion. Remote Sens. 2019, 11, 2885. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Huang, C.; Sun, Z.; An, H.; Wu, J.; Yang, J. BeiDou-Based Passive Multistatic Radar Maritime Moving Target Detection Technique via Space–Time Hybrid Integration Processing. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5802313. [Google Scholar] [CrossRef]
- Devoreand, M.D.; Sullivan, J.A.O. Performance complexity study of several approaches to automatic target recognition from SAR images. IEEE Trans. Aerosp. Electron. Syst. 2002, 38, 632–648. [Google Scholar]
- Noviello, C.; Fornaro, G.; Martorella, M. Focused SAR Image Formation of Moving Targets Based on Doppler Parameter Estimation. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3460–3470. [Google Scholar] [CrossRef]
- Kirscht, M.; Mietzner, J.; Bickert, B.; Dallinger, A.; Hippler, J.; Meyer-Hilberg, J.; Zahn, R.; Boukamp, J. An Airborne Radar Sensor for Maritime and Ground Surveillance and Reconnaissance–Algorithmic Issues and Exemplary Results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 9, 971–979. [Google Scholar] [CrossRef]
- Pelich, R.-M.; Longepe, N.; Mercier, G.; Hajduch, G.; Garello, R. Vessel Refocusing and Velocity Estimation on SAR Imagery Using the Fractional Fourier Transform. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1670–1684. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Yang, Q.; Xiao, Y.; An, H.; Yang, H.; Wu, J.; Yang, J. Hybrid SAR-ISAR Image Formation via Joint FrFT-WVD Processing for BFSAR Ship Target High-Resolution Imaging. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5215713. [Google Scholar] [CrossRef]
- Gorovyi, M.; Sharapov, D.S. A novel algorithm for estimation of moving target parameters with single-antenna SAR. In Proceedings of the 2016 International Conference on Mathematical Methods in Electromagnetic Theory, Lviv, Ukraine, 5–7 July 2016; pp. 188–191. [Google Scholar]
- Yang, J.; Liu, C.; Wang, Y. Imaging and parameter estimation of fast-moving targets with single-antenna SAR. IEEE Geosci. Remote Sens. Lett. 2014, 11, 529–533. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, Q.; Liu, H. Parameterized centroid frequency-chirp rate distribution for LFM signal analysis and mechanisms of constant delay introduction. IEEE Trans. Signal Process. 2017, 65, 6435–6447. [Google Scholar] [CrossRef]
- Huang, P.; Liao, G.; Yang, Z.; Xia, X.-G.; Ma, J.-T.; Ma, J. Long-Time Coherent Integration for Weak Maneuvering Target Detection and High-Order Motion Parameter Estimation Based on Keystone Transform. IEEE Trans. Signal Process. 2016, 64, 4013–4026. [Google Scholar] [CrossRef]
- Yang, J.; Liu, C.; Wang, Y. Detection and Imaging of Ground Moving Targets With Real SAR Data. IEEE Trans. Geosci. Remote Sens. 2015, 53, 920–932. [Google Scholar] [CrossRef]
- Zhu, D.; Li, Y.; Zhu, Z. A Keystone Transform Without Interpolation for SAR Ground Moving-Target Imaging. IEEE Geosci. Remote Sens. Lett. 2007, 4, 18–22. [Google Scholar] [CrossRef]
- Li, G.; Xia, X.-G.; Peng, Y.-N. Doppler Keystone Transform: An Approach Suitable for Parallel Implementation of SAR Moving Target Imaging. IEEE Geosci. Remote Sens. Lett. 2008, 5, 573–577. [Google Scholar] [CrossRef]
- Sun, G.; Xing, M.; Xia, X.-G.; Wu, Y.; Bao, Z. Robust Ground Moving-Target Imaging Using Deramp–Keystone Processing. IEEE Trans. Geosci. Remote Sens. 2013, 51, 966–982. [Google Scholar] [CrossRef]
- Huang, P.; Liao, G.; Yang, Z.; Xia, X.-G.; Ma, J.; Zheng, J. Ground Maneuvering Target Imaging and High-Order Motion Parameter Estimation Based on Second-Order Keystone and Generalized Hough-HAF Transform. IEEE Trans. Geosci. Remote Sens. 2016, 55, 320–335. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y. An Airborne SAR Moving Target Imaging and Motion Parameters Estimation Algorithm With Azimuth-Dechirping and the Second-Order Keystone Transform Applied. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3967–3976. [Google Scholar] [CrossRef]
- Almeida, B. The fractional fourier transform and time–frequency representations. IEEE Trans. Signal Process. 1994, 42, 3084–3091. [Google Scholar] [CrossRef]
- Ozaktas, H.M.; Ankan, O.; Alper Kutay, M.; Bozdavgi, G. Digital computation of the fractional fourier transform. IEEE Trans. Signal. Process. 1996, 44, 2141–2150. [Google Scholar] [CrossRef] [Green Version]
- Tao, R.; Li, Y.-L.; Wang, Y. Short-Time Fractional Fourier Transform and Its Applications. IEEE Trans. Signal. Process. 2010, 58, 2568–2580. [Google Scholar] [CrossRef]
- Liang, Y.; Li, Z.; Zeng, L.; Xing, M.; Bao, Z. A High-Order Phase Correction Approach for Focusing HS-SAR Small-Aperture Data of High-Speed Moving Platforms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4551–4561. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, R.; Yang, T.; Liu, X.; Liu, H.; Su, T.; Wan, L. An Efficient Strategy for Accurate Detection and Localization of UAV Swarms. IEEE Internet Things J. 2021, 8, 15372–15381. [Google Scholar] [CrossRef]
- Hirakawa, K.; Parks, T.W. Image denoising using total least squares. IEEE Trans. Image Process. 2006, 15, 2730–2742. [Google Scholar] [CrossRef] [PubMed]
- Schaffrin, B.; Wieser, A. On weighted total least-squares adjustment for linear regression. J. Geodesy 2008, 82, 415–421. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, T.; Liu, H.; Su, T.; Wan, L. Accurate Detection and Localization of Unmanned Aerial Vehicle Swarms-Enabled Mobile Edge Computing System. IEEE Trans. Ind. Inform. 2021, 17, 5059–5067. [Google Scholar] [CrossRef]
- Kim, M.; Memon, S.A.; Shin, M.; Son, H. Dynamic based trajectory estimation and tracking in an uncertain environment. Expert Syst. Appl. 2021, 177, 114919. [Google Scholar] [CrossRef]
- Memon, S.A.; Ullah, I. Detection and tracking of the trajectories of dynamic UAVs in restricted and cluttered environment. Expert Syst. Appl. 2021, 183, 115309. [Google Scholar] [CrossRef]
- Asad, M.; Khan, S.; Mehmood, Z.; Shi, Y.; Memon, S.A.; Khan, U. A split target detection and tracking algorithm for ballistic missile tracking during the re-entry phase. Def. Technol. 2019, 16, 1142–1150. [Google Scholar] [CrossRef]
- Ran, L.; Liu, Z.; Zhang, L.; Li, T.; Xie, R. An Autofocus Algorithm for Estimating Residual Trajectory Deviations in Synthetic Aperture Radar. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3408–3425. [Google Scholar] [CrossRef]
- Ran, L.; Liu, Z.; Li, T.; Xie, R.; Zhang, L. Extension of Map-Drift Algorithm for Highly Squinted SAR Autofocus. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4032–4044. [Google Scholar] [CrossRef]
- Bai, X.; Tao, R.; Wang, Z.; Wang, Y. ISAR Imaging of a Ship Target Based on Parameter Estimation of Multicomponent Quadratic Frequency-Modulated Signals. IEEE Trans. Geosci. Remote Sens. 2013, 52, 1418–1429. [Google Scholar] [CrossRef]
- Noviello, C.; Fornaro, G.; Braca, P.; Martorella, M. Fast and Accurate ISAR Focusing Based on a Doppler Parameter Estimation Algorithm. IEEE Geosci. Remote Sens. Lett. 2017, 14, 349–353. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Operational band | Ku |
Squint angle | |
Platform velocity | 100 m/s |
Operational range | 10 km |
Subaperture CPI | 1 s |
Target 1 coordinate (range, cross-range) | (0, 1000) m |
Target 1 velocity (range, cross-range) | (30, 20) m/s |
Target 2 coordinate (range, cross-range) | (0, 1000) m |
Target 2 velocity (range, cross-range) | (0, 0) m/s |
Parameter | Value |
---|---|
Operational band | 17 GHz |
Squint angle | 70 |
Bandwidth | 200 MHz |
Sample rate | 250 MHz |
Platform velocity | 100 m/s |
Operational range | 10 km |
PRF | 1 kHz |
Whole CPI | 4 s |
Subaperture CPI | 0.5 s |
Resolution (range × cross-range) | 1 m × 1 m |
Target coordinate (range, cross-range) | (0, 1000) m |
Target velocity (range, cross-range) | (30, −20) m/s |
Target acceleration (range, cross-range) | (2, 2) |
Target acceleration rate (range, cross-range) | (0.5, 0.2) |
Methods | PSLR(dB) | ISLR(dB) | IRW(m) |
---|---|---|---|
HPC-GMTIm | −12.96 | −10.03 | 0.66 |
GHHAF | −1.93 | −1.89 | 2.11 |
Parameter | Dataset 1/Dataset 2 |
---|---|
Operational band | Ku |
Squint angle | / |
Operational range | 7.3 km |
Synthetic aperture length | 175 m |
Whole CPI | 4 s |
Subaperture CPI | 0.5 s |
Resolution (range×cross-range) | 1 m × 1 m/2 m × 2 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, L.; Liu, Z.; Xie, R. Ground Maneuvering Target Focusing via High-Order Phase Correction in High-Squint Synthetic Aperture Radar. Remote Sens. 2022, 14, 1514. https://doi.org/10.3390/rs14061514
Ran L, Liu Z, Xie R. Ground Maneuvering Target Focusing via High-Order Phase Correction in High-Squint Synthetic Aperture Radar. Remote Sensing. 2022; 14(6):1514. https://doi.org/10.3390/rs14061514
Chicago/Turabian StyleRan, Lei, Zheng Liu, and Rong Xie. 2022. "Ground Maneuvering Target Focusing via High-Order Phase Correction in High-Squint Synthetic Aperture Radar" Remote Sensing 14, no. 6: 1514. https://doi.org/10.3390/rs14061514
APA StyleRan, L., Liu, Z., & Xie, R. (2022). Ground Maneuvering Target Focusing via High-Order Phase Correction in High-Squint Synthetic Aperture Radar. Remote Sensing, 14(6), 1514. https://doi.org/10.3390/rs14061514