Injection of High Chlorophyll-a Waters by a Branch of Kuroshio Current into the Nutrient-Poor North Pacific Subtropical Gyre
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Advection of Chl-a by Ocean Flow along 21°N
3.2. Injection of Fresher Waters by Ocean Flow along 21°N into the High-Salinity NPSG
3.3. Mechanisms Driving the ECKB
4. Discussion and Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagai, T.; Saito, H.; Suzuki, K.; Takahashi, M. Kuroshio Current: Physical, Biogeochemical, and Ecosystem Dynamic; American Geophysical Union, Wiley: Washington, DC, USA, 2019; pp. 1–336. [Google Scholar] [CrossRef]
- Chen, C.T.A.; Huang, T.H.; Wu, C.H.; Yang, H.; Guo, X. Variability of the nutrient stream near Kuroshio’s origin. Sci. Rep. 2021, 11, 5080. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B. Seasonal eddy field modulation of the North Pacific subtropical countercurrent: TOPEX/Poseidon observations and theory. J. Phys. Oceanogr. 1999, 29, 2471–2486. [Google Scholar] [CrossRef]
- Chu, P.C.; Li, R.; You, X. Northwest Pacific subtropical countercurrent on isopycnal surface in summer. Geophys. Res. Lett. 2002, 29, 1842. [Google Scholar] [CrossRef] [Green Version]
- Qiu, B.; Chen, S. Interannual variability of the North Pacific Subtropical Countercurrent and its associated mesoscale eddy field. J. Phys. Oceanogr. 2010, 40, 213–225. [Google Scholar] [CrossRef]
- Uda, M.; Hasunuma, K. The eastward subtropical countercurrent in the western North Pacific Ocean. J. Oceanogr. Soc. Japan 1969, 25, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Kobashi, F.; Xie, S.-P. Interannual variability of the North Pacific Subtropical Countercurrent: Role of local ocean–atmosphere interaction. J. Oceanogr. 2012, 68, 113. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.-C.; Wang, J.; Lee, C.M.; Ma, B.; Lien, R.-C.; Jan, S.; Yang, Y.J.; Chang, M.-H. Two mechanisms cause dual velocity maxima in the Kuroshio east of Taiwan. Oceanography 2015, 28, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Shih, Y.-Y.; Hung, C.-C.; Gong, G.-C.; Chung, W.C.; Wang, Y.-H.; Lee, I.-H.; Chen, K.-S.; Ho, C.-Y. Enhanced Particulate Organic Carbon Export at Eddy Edges in the Oligotrophic Western North Pacific Ocean. PLoS ONE 2015, 10, e0131538. [Google Scholar] [CrossRef] [Green Version]
- Hsu, P.C.; Lin, C.C.; Huang, S.J.; Ho, C.R. Effects of cold eddy on Kuroshio meander and its surface properties, east of Taiwan. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5055–5063. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Chang, M.-H.; Ko, D.S.; Jan, S.; Andres, M.; Kirincich, A.; Yang, Y.J.; Tai, J.-H. Submesoscale eddy and frontal instabilities in the Kuroshio interacting with a cape south of Taiwan. J. Geophys. Res. Ocean. 2020, 124, e2020JC016123. [Google Scholar] [CrossRef]
- Tseng, Y.-H.; Lu, C.-Y.; Zheng, Q.; Ho, C.-R. Characteristic Analysis of Sea Surface Currents around Taiwan Island from CODAR Observations. Remote Sens. 2021, 13, 3025. [Google Scholar] [CrossRef]
- Chang, Y.; Oey, L. Instability of the North Pacific Subtropical Countercurrent. J. Phys. Oceanogr. 2014, 44, 818–833. [Google Scholar] [CrossRef]
- Yasuda, T.; Hanawa, K. Decadal changes in the mode waters in the midlatitude North Pacific. J. Phys. Oceanogr. 1997, 27, 858–870. [Google Scholar] [CrossRef]
- Kobashi, F.; Mitsudera, H.; Xie, S.-P. Three subtropical fronts in the North Pacific: Observational evidence for mode water-induced subsurface frontogenesis. J. Geophys. Res. 2006, 111, C09033. [Google Scholar] [CrossRef]
- Qiu, B.; Chen, S. Decadal variability in the formation of the North Pacific Subtropical Mode Water: Oceanic versus atmospheric control. J. Phys. Oceanogr. 2006, 36, 1365–1380. [Google Scholar] [CrossRef]
- Sugimoto, S.; Hanawa, K. Impact of Aleutian Low activity on the STMW formation in the Kuroshio recirculation gyre region. Geophys. Res. Lett. 2010, 37, L03606. [Google Scholar] [CrossRef]
- Takeuchi, K. Numerical study of the seasonal variations of the Subtropical Front and the Subtropical Countercurrent. J. Phys. Oceanogr. 1986, 16, 919–926. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Xue, H. The possible formation mechanism of the Subtropical Countercurrent in the Pacific Ocean. In Proceedings of the EGU General Assembly 2020, Online, 4–8 May 2020. EGU2020-6635. [Google Scholar] [CrossRef]
- Talley, L.; Pickard, G.; Emery, W.; Swift, J. Descriptive Physical Oceanography, 6th ed.; Elsevier: San Diefo, CA, USA, 2011; pp. 308–311. [Google Scholar] [CrossRef]
- Nan, F.; Xue, H.; Yu, F. Kuroshio intrusion into the South China Sea: A review. Prog. Oceanogr. 2015, 137 Pt A, 314–333. [Google Scholar] [CrossRef] [Green Version]
- Trott, C.B.; Metzger, E.J.; Yu, Z. Investigating mesoscale eddy characteristics in the Luzon Strait region using altimetry. Ocean Dyn. 2021, 71, 679–698. [Google Scholar] [CrossRef]
- Saulquin, B.; Gohin, F.; d’Andon, O.F. Interpolated fields of satellite-derived multi-algorithm chlorophyll-a estimates at global and European scales in the frame of the European Copernicus-Marine Environment Monitoring Service. J. Oper. Oceanogr. 2019, 12, 47–57. [Google Scholar] [CrossRef]
- Good, S.; Fiedler, E.; Mao, C.; Martin, M.J.; Maycock, A.; Reid, R.; Roberts-Jones, J.; Searle, T.; Waters, J.; While, J.; et al. The Current Configuration of the OSTIA System for Operational Production of Foundation Sea Surface Temperature and Ice Concentration Analyses. Remote Sens. 2020, 12, 720. [Google Scholar] [CrossRef] [Green Version]
- Oka, E.; Ishii, M.; Nakano, T.; Suga, T.; Kouketsu, S.; Miyamoto, M.; Nakano, H.; Qiu, B.; Sugimoto, S.; Takatani, Y. Fifty years of the 137°E repeat hydrographic section in the western North Pacific Ocean. J. Oceanogr. 2018, 74, 115–145. [Google Scholar] [CrossRef] [Green Version]
- Large, W.G.; Pond, S. Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr. 1982, 12, 464–482. [Google Scholar] [CrossRef] [Green Version]
- Pedlosky, J. The dynamics of the oceanic subtropical gyres. Science 1990, 248, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Xu, D.; Qi, Y.; Gan, J. Observations of Freshening in the Northwest Pacific Subtropical Gyre near Luzon Strait. Atmos.-Ocean 2012, 50 (Suppl. 1), 92–102. [Google Scholar] [CrossRef]
- Xu, L.; Li, P.; Xie, S.-P.; Liu, Q.; Liu, C.; Gao, W. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific. Nat. Commun. 2016, 7, 10505. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chow, C.-H.; Lin, Y.-C.; Cheah, W.; Tai, J.-H. Injection of High Chlorophyll-a Waters by a Branch of Kuroshio Current into the Nutrient-Poor North Pacific Subtropical Gyre. Remote Sens. 2022, 14, 1531. https://doi.org/10.3390/rs14071531
Chow C-H, Lin Y-C, Cheah W, Tai J-H. Injection of High Chlorophyll-a Waters by a Branch of Kuroshio Current into the Nutrient-Poor North Pacific Subtropical Gyre. Remote Sensing. 2022; 14(7):1531. https://doi.org/10.3390/rs14071531
Chicago/Turabian StyleChow, Chun-Hoe, Yi-Chen Lin, Wee Cheah, and Jen-Hua Tai. 2022. "Injection of High Chlorophyll-a Waters by a Branch of Kuroshio Current into the Nutrient-Poor North Pacific Subtropical Gyre" Remote Sensing 14, no. 7: 1531. https://doi.org/10.3390/rs14071531
APA StyleChow, C. -H., Lin, Y. -C., Cheah, W., & Tai, J. -H. (2022). Injection of High Chlorophyll-a Waters by a Branch of Kuroshio Current into the Nutrient-Poor North Pacific Subtropical Gyre. Remote Sensing, 14(7), 1531. https://doi.org/10.3390/rs14071531