Evaluating Groundwater Storage Change and Recharge Using GRACE Data: A Case Study of Aquifers in Niger, West Africa
Abstract
:1. Introduction
1.1. Groundwater and Study Motivation
1.2. GRACE Mission and Applications
1.3. Groundwater Storage Change Estimation Using GRACE
1.4. Groundwater Recharge Estimation
1.5. Causes of Groundwater Storage Change
1.6. Study Objectives and Goals
2. Study Area and Background
2.1. Aquifers and Geology
2.2. Aquifers Selected for Analysis
2.3. Previous West African Studies
2.4. West Africa Groundwater Development and Regional Water Management
3. Methods
3.1. GRACE Data
3.2. Regional Groundwater Storage Analysis Using GRACE
3.3. Imputation of Missing Groundwater Storage Anomaly Data
3.4. Estimating Annual Recharge Using GRACE-Derived Groundwater Datasets
4. Results
4.1. GRACE-Derived Groundwater Storage Analysis
4.1.1. Iullemeden Basin Aquifer Cumulative Storage Change
4.1.2. Chad Basin Aquifers Cumulative Storage Change
4.2. Uncertainty of Storage Change Estimates
4.3. Correlation with Precipitation Data
4.4. Annual Recharge Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Abbreviation | Full Form |
CAN | canopy storage |
CANa | canopy storage anomaly |
CMB | chloride mass balance |
CI | Continental Intercalaire |
CSR | University of Texas at Austin Center for Space Research |
CT | Continental Terminal |
DLR | German Aerospace Center |
GLDAS | Global Land Data Assimilation System |
GRACE | NASA Gravity Recovery and Climate Experiment |
GRACE-FO | GRACE Follow-On |
GFZ | German Research Center for Geosciences |
GGST | GRACE Groundwater Subsetting tool |
GWS | groundwater storage |
GWSa | groundwater storage anomaly |
JPL | NASA Jet Propulsion Laboratory |
LWE | liquid water equivalent |
MCM | millions of cubic meters |
SMa | soil moisture anomaly |
SWEa | snow-water equivalent anomaly |
Sy | Specific yield |
TWSa | total water storage anomaly |
WTF | water table fluctuation |
References
- Shiklomanov, I.A. World Freshwater Resources. Water in Crisis: A Guide to the World’s Fresh Water Resources. Clim. Chang. 1993, 45, 379–382. [Google Scholar]
- Purdy, A.J.; David, C.H.; Sikder, M.; Reager, J.T.; Chandanpurkar, H.A.; Jones, N.L.; Matin, M.A. An Open-Source Tool to Facilitate the Processing of GRACE Observations and GLDAS Outputs: An Evaluation in Bangladesh. Front. Environ. Sci. 2019, 7, 155. [Google Scholar] [CrossRef]
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater Use for Irrigation—A Global Inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Lo, M.; Ho, S.L.; Bethune, J.; Anderson, K.J.; Syed, T.H.; Swenson, S.C.; de Linage, C.R.; Rodell, M. Satellites Measure Recent Rates of Groundwater Depletion in California’s Central Valley. Geophys. Res. Lett. 2011, 38, L03403. [Google Scholar] [CrossRef]
- McStraw, T.C.; Pulla, S.T.; Jones, N.L.; Williams, G.P.; David, C.H.; Nelson, J.E.; Ames, D.P. An Open-Source Web Application for Regional Analysis of GRACE Groundwater Data and Engaging Stakeholders in Groundwater Management. JAWRA J. Am. Water Resour. Assoc. 2021, 1–15. [Google Scholar] [CrossRef]
- Wada, Y.; Wisser, D.; Bierkens, M.F.P. Global Modeling of Withdrawal, Allocation and Consumptive Use of Surface Water and Groundwater Resources. Earth Syst. Dyn. 2014, 5, 15–40. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M. Ground Water and Climate Change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef]
- Famiglietti, J.S. The Global Groundwater Crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-Based Estimates of Groundwater Depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Famiglietti, J.S.; Rodell, M. Water in the Balance. Science 2013, 340, 1300–1301. [Google Scholar] [CrossRef] [PubMed]
- Villholth, K.G. Groundwater Assessment and Management: Implications and Opportunities of Globalization. Hydrogeol. J. 2006, 14, 330–339. [Google Scholar] [CrossRef]
- Shah, T.; Bhatt, S.; Shah, R.K.; Talati, J. Groundwater Governance through Electricity Supply Management: Assessing an Innovative Intervention in Gujarat, Western India. Agric. Water Manag. 2008, 95, 1233–1242. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE Measurements of Mass Variability in the Earth System. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, B. “GRACE Mission”. Spacecraft. Available online: http://www.nasa.gov/mission_pages/Grace/spacecraft/index.html (accessed on 4 January 2022).
- Dunbar, B. “GRACE Mission” Mission Overview. Available online: http://www.nasa.gov/mission_pages/Grace/overview/index.html (accessed on 29 January 2022).
- Nelson, J. Prolific Earth Gravity Satellites End Science Mission. Available online: https://www.jpl.nasa.gov/news/prolific-earth-gravity-satellites-end-science-mission (accessed on 4 March 2020).
- Landerer, F.W.; Flechtner, F.M.; Save, H.; Webb, F.H.; Bandikova, T.; Bertiger, W.I.; Bettadpur, S.V.; Byun, S.H.; Dahle, C.; Dobslaw, H. Extending the Global Mass Change Data Record: GRACE Follow-On Instrument and Science Data Performance. Geophys. Res. Lett. 2020, 47, e2020GL088306. [Google Scholar] [CrossRef]
- Callery, S. GRACE-FO Launches Aboard a SpaceX Falcon 9. Available online: https://gracefo.jpl.nasa.gov/resources/77/grace-fo-launches-aboard-a-spacex-falcon-9 (accessed on 4 March 2020).
- Wahr, J.; Molenaar, M.; Bryan, F. Time Variability of the Earth’s Gravity Field: Hydrological and Oceanic Effects and Their Possible Detection Using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Nelson, E.J.; Pulla, S.T.; Matin, M.A.; Shakya, K.; Jones, N.; Ames, D.P.; Ellenburg, W.L.; Markert, K.N.; David, C.H.; Zaitchik, B.F.; et al. Enabling Stakeholder Decision-Making with Earth Observation and Modeling Data Using Tethys Platform. Front. Environ. Sci. 2019, 7, 148. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Save, H.; Wiese, D.N.; Landerer, F.W.; Long, D.; Longuevergne, L.; Chen, J. Global Evaluation of New GRACE Mascon Products for Hydrologic Applications. Water Resour. Res. 2016, 52, 9412–9429. [Google Scholar] [CrossRef]
- Leblanc, M.J.; Tregoning, P.; Ramillien, G.; Tweed, S.O.; Fakes, A. Basin-Scale, Integrated Observations of the Early 21st Century Multiyear Drought in Southeast Australia. Water Resour. Res. 2009, 45, W04408. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D.; Longuevergne, L.; Yang, Z.L.; Scanlon, B.R. Recent La Plata Basin Drought Conditions Observed by Satellite Gravimetry. J. Geophys. Res. Atmos. 2010, 115, D22108. [Google Scholar] [CrossRef]
- Paredes-Trejo, F.; Barbosa, H.A.; Giovannettone, J.; Kumar, T.V.; Thakur, M.K.; Buriti, C.d.O.; Uzcátegui-Briceño, C. Drought Assessment in the São Francisco River Basin Using Satellite-Based and Ground-Based Indices. Remote Sens. 2021, 13, 3921. [Google Scholar] [CrossRef]
- Tian, K.; Wang, Z.; Li, F.; Gao, Y.; Xiao, Y.; Liu, C. Drought Events over the Amazon River Basin (1993–2019) as Detected by the Climate-Driven Total Water Storage Change. Remote Sens. 2021, 13, 1124. [Google Scholar] [CrossRef]
- Shahzaman, M.; Zhu, W.; Ullah, I.; Mustafa, F.; Bilal, M.; Ishfaq, S.; Nisar, S.; Arshad, M.; Iqbal, R.; Aslam, R.W. Comparison of Multi-Year Reanalysis, Models, and Satellite Remote Sensing Products for Agricultural Drought Monitoring over South Asian Countries. Remote Sens. 2021, 13, 3294. [Google Scholar] [CrossRef]
- Wang, W.; Shen, Y.; Wang, F.; Li, W. Two Severe Prolonged Hydrological Droughts Analysis over Mainland Australia Using GRACE Satellite Data. Remote Sens. 2021, 13, 1432. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D. The 2009 Exceptional Amazon Flood and Interannual Terrestrial Water Storage Change Observed by GRACE. Water Resour. Res. 2010, 46, 12526. [Google Scholar] [CrossRef]
- Reager, J.T.; Famiglietti, J.S. Characteristic Mega-Basin Water Storage Behavior Using GRACE. Water Resour. Res. 2013, 49, 3314–3329. [Google Scholar] [CrossRef] [PubMed]
- Idowu, D.; Zhou, W. Performance Evaluation of a Potential Component of an Early Flood Warning System—A Case Study of the 2012 Flood, Lower Niger River Basin, Nigeria. Remote Sens. 2019, 11, 1970. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, J.; Li, H. Drought and Flood Monitoring of the Liao River Basin in Northeast China Using Extended GRACE Data. Remote Sens. 2018, 10, 1168. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, X.; Pan, Y.; Zhang, J. Assessing Terrestrial Water Storage and Flood Potential Using GRACE Data in the Yangtze River Basin, China. Remote Sens. 2017, 9, 1011. [Google Scholar] [CrossRef]
- Kalu, I.; Ndehedehe, C.E.; Okwuashi, O.; Eyoh, A.E. Assessing Freshwater Changes over Southern and Central Africa (2002–2017). Remote Sens. 2021, 13, 2543. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, X.; Chen, J. Monitoring Terrestrial Water Storage Changes with the Tongji-Grace2018 Model in the Nine Major River Basins of the Chinese Mainland. Remote Sens. 2021, 13, 1851. [Google Scholar] [CrossRef]
- Nicolas, J.; Verdun, J.; Boy, J.-P.; Bonhomme, L.; Asri, A.; Corbeau, A.; Berthier, A.; Durand, F.; Clarke, P. Improved Hydrological Loading Models in South America: Analysis of GPS Displacements Using M-SSA. Remote Sens. 2021, 13, 1605. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S. The Potential for Satellite-Based Monitoring of Groundwater Storage Changes Using GRACE: The High Plains Aquifer, Central US. J. Hydrol. 2002, 263, 245–256. [Google Scholar] [CrossRef]
- Mehrnegar, N.; Jones, O.; Singer, M.B.; Schumacher, M.; Jagdhuber, T.; Scanlon, B.R.; Rateb, A.; Forootan, E. Exploring Groundwater and Soil Water Storage Changes across the CONUS at 12.5 Km Resolution by a Bayesian Integration of GRACE Data into W3RA. Sci. Total Environ. 2021, 758, 143579. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.Y.; Green, R.; Swenson, S.; Rodell, M. Toward Calibration of Regional Groundwater Models Using GRACE Data. J. Hydrol. 2012, 422–423, 1–9. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Longuevergne, L.; Long, D. Ground Referencing GRACE Satellite Estimates of Groundwater Storage Changes in the California Central Valley, USA. Water Resour. Res. 2012, 48, W04520. [Google Scholar] [CrossRef]
- Voss, K.A.; Famiglietti, J.S.; Lo, M.; De Linage, C.; Rodell, M.; Swenson, S.C. Groundwater Depletion in the Middle East from GRACE with Implications for Transboundary Water Management in the Tigris-Euphrates-Western Iran Region. Water Resour. Res. 2013, 49, 904–914. [Google Scholar] [CrossRef]
- Strassberg, G.; Scanlon, B.R.; Chambers, D. Evaluation of Groundwater Storage Monitoring with the GRACE Satellite: Case Study of the High Plains Aquifer, Central United States. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Syed, T.H.; Famiglietti, J.S.; Rodell, M.; Chen, J.; Wilson, C.R. Analysis of Terrestrial Water Storage Changes from GRACE and GLDAS. Water Resour. Res. 2008, 44, W02433. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.E.A.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Richey, A.S.; Thomas, B.F.; Lo, M.-H.; Reager, J.T.; Famiglietti, J.S.; Voss, K.; Swenson, S.; Rodell, M. Quantifying Renewable Groundwater Stress with GRACE. Water Resour. Res. 2015, 51, 5217–5238. [Google Scholar] [CrossRef]
- Khaki, M.; Forootan, E.; Kuhn, M.; Awange, J.; Papa, F.; Shum, C.K. A Study of Bangladesh’s Sub-Surface Water Storages Using Satellite Products and Data Assimilation Scheme. Sci. Total Environ. 2018, 625, 963–977. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; He, X.; Zhang, Y.; Ferreira, V.; Chang, L. Monitoring Groundwater Variations from Satellite Gravimetry and Hydrological Models: A Comparison with in-Situ Measurements in the Mid-Atlantic Region of the United States. Remote Sens. 2015, 7, 686–703. [Google Scholar] [CrossRef]
- Nanteza, J.; Reager, J.T.; Richey, A.S.; Liu, H.; Famiglietti, J.S.; Rodell, M. The Link between Surface and Groundwater Variations over East Africa Using GRACE and Altimetry Data. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 3–7 December 2012; p. H31F-1185. [Google Scholar]
- Joodaki, G.; Wahr, J.; Swenson, S. Estimating the Human Contribution to Groundwater Depletion in the Middle East, from GRACE Data, Land Surface Models, and Well Observations. Water Resour. Res. 2014, 50, 2679–2692. [Google Scholar] [CrossRef]
- Ali, S.; Liu, D.; Fu, Q.; Cheema, M.J.M.; Pham, Q.B.; Rahaman, M.; Dang, T.D.; Anh, D.T. Improving the Resolution of GRACE Data for Spatio-Temporal Groundwater Storage Assessment. Remote Sens. 2021, 13, 3513. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, K.; Wang, M. Seasonal and Interannual Variations in China’s Groundwater Based on GRACE Data and Multisource Hydrological Models. Remote Sens. 2020, 12, 845. [Google Scholar] [CrossRef]
- Tiwari, V.M.; Wahr, J.; Swenson, S. Dwindling Groundwater Resources in Northern India, from Satellite Gravity Observations. Geophys. Res. Lett. 2009, 36, L18401. [Google Scholar] [CrossRef]
- CU GRACE Data Portal—Documentation. Available online: http://geoid.colorado.edu/grace/documentation.html (accessed on 5 January 2022).
- Darbeheshti, N.; Zhou, L.; Tregoning, P.; McClusky, S.; Purcell, A. The ANU GRACE Visualisation Web Portal. Comput. Geosci. 2013, 52, 227–233. [Google Scholar] [CrossRef]
- Bruinsma, S.; Lemoine, J.-M.; Gegout, P.; Biancale, R.; Bourgogne, S. Updated Release 3 of the GRACE Gravity Solutions from CNES/GRGS. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 15–19 December 2014; Volume 2014, p. G33A-0410. [Google Scholar]
- Feng, W. GRAMAT: A Comprehensive Matlab Toolbox for Estimating Global Mass Variations from GRACE Satellite Data. Earth Sci. Inform. 2019, 12, 389–404. [Google Scholar] [CrossRef]
- Piretzidis, D.; Sideris, M.G. SHADE: A MATLAB Toolbox and Graphical User Interface for the Empirical de-Correlation of GRACE Monthly Solutions. Comput. Geosci. 2018, 119, 137–150. [Google Scholar] [CrossRef]
- Guiraud, R.; Bosworth, W.; Thierry, J.; Delplanque, A. Phanerozoic Geological Evolution of Northern and Central Africa: An Overview. J. Afr. Earth Sci. 2005, 43, 83–143. [Google Scholar] [CrossRef]
- Allison, G.B.; Gee, G.W.; Tyler, S.W. Vadose-Zone Techniques for Estimating Groundwater Recharge in Arid and Semiarid Regions. Soil Sci. Soc. Am. J. 1994, 58, 6–14. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I. Global Synthesis of Groundwater Recharge in Semiarid and Arid Regions. Hydrol. Process. 2006, 20, 3335–3370. [Google Scholar] [CrossRef]
- Wu, Q.; Si, B.; He, H.; Wu, P. Determining Regional-Scale Groundwater Recharge with GRACE and GLDAS. Remote Sens. 2019, 11, 154. [Google Scholar] [CrossRef]
- Healy, R.W.; Cook, P.G. Using Groundwater Levels to Estimate Recharge. Hydrogeol. J. 2002, 10, 91–109. [Google Scholar] [CrossRef]
- Nimmo, J.R.; Horowitz, C.; Mitchell, L. Discrete-Storm Water-Table Fluctuation Method to Estimate Episodic Recharge. Groundwater 2015, 53, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Henry, C.M.; Allen, D.M.; Huang, J. Groundwater Storage Variability and Annual Recharge Using Well-Hydrograph and GRACE Satellite Data. Hydrogeol. J. 2011, 19, 741–755. [Google Scholar] [CrossRef]
- Gonçalvès, J.; Petersen, J.; Deschamps, P.; Hamelin, B.; Baba-Sy, O. Quantifying the Modern Recharge of the “Fossil” Sahara Aquifers. Geophys. Res. Lett. 2013, 40, 2673–2678. [Google Scholar] [CrossRef]
- Ahmed, M.; Abdelmohsen, K. Quantifying Modern Recharge and Depletion Rates of the Nubian Aquifer in Egypt. Surv. Geophys. 2018, 39, 729–751. [Google Scholar] [CrossRef]
- Taylor, C.J.; Alley, W.M. Ground-Water-Level Monitoring and the Importance of Long-Term Water-Level Data; U.S. Geological Survey: Denver, CO, USA, 2001; Volume 1217.
- Leduc, C.; Bromley, J.; Schroeter, P. Water Table Fluctuation and Recharge in Semi-Arid Climate: Some Results of the HAPEX-Sahel Hydrodynamic Survey (Niger). J. Hydrol. 1997, 188–189, 123–138. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Rateb, A.; Anyamba, A.; Kebede, S.; MacDonald, A.M.; Shamsudduha, M.; Small, J.; Sun, A.; Taylor, R.G.; Xie, H. Linkages between GRACE Water Storage, Hydrologic Extremes, and Climate Teleconnections in Major African Aquifers. Environ. Res. Lett. 2022, 17, 014046. [Google Scholar] [CrossRef]
- Favreau, G.; Cappelaere, B.; Massuel, S.; Leblanc, M.; Boucher, M.; Boulain, N.; Leduc, C. Land Clearing, Climate Variability, and Water Resources Increase in Semiarid Southwest Niger: A Review. Water Resour. Res. 2009, 45, W00A16. [Google Scholar] [CrossRef]
- Bonsor, H.C.; Shamsudduha, M.; Marchant, B.P.; MacDonald, A.M.; Taylor, R.G. Seasonal and Decadal Groundwater Changes in African Sedimentary Aquifers Estimated Using GRACE Products and LSMs. Remote Sens. 2018, 10, 904. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; Taylor, R.G.; Favreau, G.; Todd, M.C.; Shamsudduha, M.; Villholth, K.G.; MacDonald, A.M.; Scanlon, B.R.; Kotchoni, D.O.V.; Vouillamoz, J.-M.; et al. Observed Controls on Resilience of Groundwater to Climate Variability in Sub-Saharan Africa. Nature 2019, 572, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Treidel, H.; Martin-Bordes, J.L.; Gurdak, J.J. Climate Change Effects on Groundwater Resources: A Global Synthesis of Findings and Recommendations; CRC Press: Boca Raton, FL, USA, 2011; ISBN 978-0-415-68936-6. [Google Scholar]
- Edwerd, M. Integrated and Sustainable Management of the Shared Aquifer Systems in the Sahel Region. Available online: https://www.osti.gov/etdeweb/biblio/22648547 (accessed on 25 January 2022).
- Wright, J.B. The Precambrian of West Africa—Synthesis and Review. In Geology and Mineral Resources of West Africa; Wright, J.B., Wright, J.B., Eds.; Springer: Dordrecht, The Netherlands, 1985; pp. 70–72. ISBN 978-94-015-3932-6. [Google Scholar]
- Lopez, T.; Antoine, R.; Kerr, Y.; Darrozes, J.; Rabinowicz, M.; Ramillien, G.; Cazenave, A.; Genthon, P. Subsurface Hydrology of the Lake Chad Basin from Convection Modelling and Observations. Surv. Geophys. 2016, 37, 471–502. [Google Scholar] [CrossRef]
- Genik, G.J. Regional Framework, Structural and Petroleum Aspects of Rift Basins in Niger, Chad and the Central African Republic (C.A.R.). Tectonophysics 1992, 213, 169–185. [Google Scholar] [CrossRef]
- FAO. Study of the Water Resources of the Lake Chad Basin with a View to a Development Program. Lake Chad Basin Commission Cameroon, Niger, Nigeria, Chad. Groundwater Resources in the Lake Chad Basins; United Nations Development Programme (UNDP) and Food and Agriculture Organization of the United Nations (FAO): Roma, Italy, 1993; Volume I. [Google Scholar]
- Lajaunie, M.-L.; Serrat Capdevila, A.; Mumssen, Y.; Candela Lledó, L.; Salehi Siavashani, N. A Groundwater Model for the Lake Chad Basin: Integrating Data and Understanding of Water Resources at the Basin Scale. Available online: http://hdl.handle.net/2117/347795 (accessed on 25 January 2022).
- Carter, R. The Groundwater Hydrology of the Manga Grasslands, Northeast Nigeria: Importance to Agricultural Development Strategy of the Area. Q. J. Eng. Geol. 1994, 27, S73–S83. [Google Scholar] [CrossRef]
- Managing Shared Aquifer Resources in Africa—UNESCO Digital Library. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000138581 (accessed on 25 January 2022).
- Vaquero, G.; Siavashani, N.S.; García-Martínez, D.; Elorza, F.J.; Bila, M.; Candela, L.; Serrat-Capdevila, A. The Lake Chad Transboundary Aquifer. Estimation of Groundwater Fluxes through International Borders from Regional Numerical Modeling. J. Hydrol. Reg. Stud. 2021, 38, 100935. [Google Scholar] [CrossRef]
- Forootan, E.; Kusche, J.; Loth, I.; Schuh, W.-D.; Eicker, A.; Awange, J.; Longuevergne, L.; Diekkrüger, B.; Schmidt, M.; Shum, C.K. Multivariate Prediction of Total Water Storage Changes Over West Africa from Multi-Satellite Data. Surv. Geophys. 2014, 35, 913–940. [Google Scholar] [CrossRef]
- Grippa, M.; Kergoat, L.; Frappart, F.; Araud, Q.; Boone, A.; de Rosnay, P.; Lemoine, J.-M.; Gascoin, S.; Balsamo, G.; Ottlé, C.; et al. Land Water Storage Variability over West Africa Estimated by Gravity Recovery and Climate Experiment (GRACE) and Land Surface Models. Water Resour. Res. 2011, 47, W05549. [Google Scholar] [CrossRef]
- Hinderer, J.; Pfeffer, J.; Boucher, M. Land Water Storage Changes from Ground and Space Geodesy: First Results from the GHYRAF (Gravity and Hydrology in Africa) Experiment. Pure Appl. Geophys. 2012, 169, 1391–1410. [Google Scholar] [CrossRef]
- Nahmani, S.; Bock, O.; Bouin, M.-N.; Santamaría-Gómez, A.; Boy, J.-P.; Collilieux, X.; Métivier, L.; Panet, I.; Genthon, P.; de Linage, C.; et al. Hydrological Deformation Induced by the West African Monsoon: Comparison of GPS, GRACE and Loading Models. J. Geophys. Res. Solid Earth 2012, 117, B05409. [Google Scholar] [CrossRef]
- Werth, S.; White, D.; Bliss, D.W. GRACE Detected Rise of Groundwater in the Sahelian Niger River Basin. J. Geophys. Res. Solid Earth 2017, 122, 459–477. [Google Scholar] [CrossRef]
- Boffa, J.M. Agroforestry Parklands in Sub-Saharan Africa; Food & Agriculture Organization: Roma, Italy, 1999. [Google Scholar]
- Garrity, D.P.; Akinnifesi, F.K.; Ajayi, O.C.; Weldesemayat, S.G.; Mowo, J.G.; Kalinganire, A.; Larwanou, M.; Bayala, J. Evergreen Agriculture: A Robust Approach to Sustainable Food Security in Africa. Food Sec. 2010, 2, 197–214. [Google Scholar] [CrossRef]
- Qian, J.; Zhou, X.; Zhan, H.; Dong, H.; Ma, L. Numerical Simulation and Evaluation of Groundwater Resources in a Fractured Chalk Aquifer: A Case Study in Zinder Well Field, Niger. Environ. Earth Sci. 2014, 72, 3053–3065. [Google Scholar] [CrossRef]
- Thomas, E.; Jordan, E.; Linden, K.; Mogesse, B.; Hailu, T.; Jirma, H.; Thomson, P.; Koehler, J.; Collins, G. Reducing Drought Emergencies in the Horn of Africa. Sci. Total Environ. 2020, 727, 138772. [Google Scholar] [CrossRef] [PubMed]
- Swenson, S.C. GRACE Monthly Land Water Mass Grids NETCDF RELEASE 5.0. In Physical Oceanography Distributed Active Archive Center (PO. DAAC); Jet Propulsion Laboratory, NASA: Pasadena, CA, USA, 2012. [Google Scholar]
- Landerer, F.W.; Swenson, S.C. Accuracy of Scaled GRACE Terrestrial Water Storage Estimates. Water Resour. Res. 2012, 48, W04531. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J. Post-processing Removal of Correlated Errors in GRACE Data. Geophys. Res. Lett. 2006, 33, L08402. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; Reedy, R.C.; Alley, W.M.; McGuire, V.L.; McMahon, P.B. Groundwater Depletion and Sustainability of Irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 2012, 109, 9320–9325. [Google Scholar] [CrossRef]
- Flechtner, F.; Morton, P.; Watkins, M.; Webb, F. Status of the GRACE Follow-On Mission. In Proceedings of the Gravity, Geoid and Height Systems; Marti, U., Ed.; Springer International Publishing: Cham, Switzerland, 2014; pp. 117–121. [Google Scholar]
- Yi, S.; Sneeuw, N. Filling the Data Gaps Within GRACE Missions Using Singular Spectrum Analysis. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021227. [Google Scholar] [CrossRef]
- Seabold, S.; Perktold, J. Statsmodels: Econometric and Statistical Modeling with Python. In Proceedings of the 9th Python in Science Conferences, Austin, TX, USA, 28 June–3 July 2010; Volume 57, pp. 92–96. [Google Scholar]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E. Irma Terpenning STL: A Seasonal-Trend Decomposition. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Swenson, S.; Wahr, J. Multi-Sensor Analysis of Water Storage Variations of the Caspian Sea: Estimated Caspian Sea Water Storage. Geophys. Res. Lett. 2007, 34, L16401. [Google Scholar] [CrossRef]
- Accuracy of GRACE Mass Estimates—Wahr—2006—Geophysical Research Letters—Wiley Online Library. Available online: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2005GL025305 (accessed on 12 March 2022).
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Vouillamoz, J.M.; Favreau, G.; Massuel, S.; Boucher, M.; Nazoumou, Y.; Legchenko, A. Contribution of Magnetic Resonance Sounding to Aquifer Characterization and Recharge Estimate in Semiarid Niger. J. Appl. Geophys. 2008, 64, 99–108. [Google Scholar] [CrossRef]
- Leduc, C.; Favreau, G.; Schroeter, P. Long-Term Rise in a Sahelian Water-Table: The Continental Terminal in South-West Niger. J. Hydrol. 2001, 243, 43–54. [Google Scholar] [CrossRef]
- Favreau, G.; Leduc, C.; Marlin, C.; Dray, M.; Taupin, J.-D.; Massault, M.; Salle, C.L.G.L.; Babic, M. Estimate of Recharge of a Rising Water Table in Semiarid Niger from 3H and 14C Modeling. Groundwater 2002, 40, 144–151. [Google Scholar] [CrossRef]
- Bromley, J.; Edmunds, W.M.; Fellman, E.; Brouwer, J.; Gaze, S.R.; Sudlow, J.; Taupin, J.-D. Estimation of Rainfall Inputs and Direct Recharge to the Deep Unsaturated Zone of Southern Niger Using the Chloride Profile Method. J. Hydrol. 1997, 188–189, 139–154. [Google Scholar] [CrossRef]
Reference | Country/Region | Method | Time | Recharge (cm/year) |
---|---|---|---|---|
Estimated values in this project | Iullemeden Basin | WTF | 2002–2011 | 4.0–7.3 |
Iullemeden Basin | WTF | 2012–2021 | 4.5–9.2 | |
Estimated values in this project | Chad Basin | WTF | 2002–2011 | 2.9–5.4 |
Chad Basin | WTF | 2012–2021 | 4.1–7.6 | |
Bromley et al. [105] | Southwest Niger | CMB (Chloride mass balance) | 1992 | 1.3 |
Leduc et al. [67] | Southern Niger | WTF | 1991 | 5 to 6 |
Leduc et al. [104] and Favreau et al. [104] | Southwest Niger | Radioisotopes (14C and 3H) | 1950s–2000s | 0.1 to 0.5 |
Leduc et al. [103] | Southwest Niger | WTF | 1990s–2000s | 2 to 5 |
Vouillamoz et al. [102] | Southwest Niger | WTF | 1990s–2000s | 2 to 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, S.A.; Pulla, S.T.; Williams, G.P.; Jones, N.L.; Mamane, B.; Sanchez, J.L. Evaluating Groundwater Storage Change and Recharge Using GRACE Data: A Case Study of Aquifers in Niger, West Africa. Remote Sens. 2022, 14, 1532. https://doi.org/10.3390/rs14071532
Barbosa SA, Pulla ST, Williams GP, Jones NL, Mamane B, Sanchez JL. Evaluating Groundwater Storage Change and Recharge Using GRACE Data: A Case Study of Aquifers in Niger, West Africa. Remote Sensing. 2022; 14(7):1532. https://doi.org/10.3390/rs14071532
Chicago/Turabian StyleBarbosa, Sergio A., Sarva T. Pulla, Gustavious P. Williams, Norman L. Jones, Bako Mamane, and Jorge L. Sanchez. 2022. "Evaluating Groundwater Storage Change and Recharge Using GRACE Data: A Case Study of Aquifers in Niger, West Africa" Remote Sensing 14, no. 7: 1532. https://doi.org/10.3390/rs14071532
APA StyleBarbosa, S. A., Pulla, S. T., Williams, G. P., Jones, N. L., Mamane, B., & Sanchez, J. L. (2022). Evaluating Groundwater Storage Change and Recharge Using GRACE Data: A Case Study of Aquifers in Niger, West Africa. Remote Sensing, 14(7), 1532. https://doi.org/10.3390/rs14071532