A Complete YOLO-Based Ship Detection Method for Thermal Infrared Remote Sensing Images under Complex Backgrounds
Abstract
:1. Introduction
- The security level of TIRSIs is high, and TI ship datasets are lacking.
- The brightness of the ship varies with the changes in its motion and the state of its environment.
- Ship detection with TIRSIs is interfered with by complex scenes, which may include the returns of waves, islands, radio frequency, atmospheric noise, and clouds.
- The variability of ship shape is great, and the textural information of small ships is insufficient.
- In response to the lack of TI ship datasets, 8–10.5 μm TI ship datasets were established. To reduce intra-class variation, complete vessels with aspect ratios of 7.53–4.23 in the middle of a river, a bay, and the sea were specifically selected.
- In view of the variability of ship size, SE layer and dilated convolution modules with an enlarged receptive field were designed for the top of the network to retain more semantic features. The lightweight improved YOLOv5s algorithm should be used for ship detection of large-scale TIRSIs.
- Ships of different scales in complex scenes, covered by clouds and fog, are detected efficiently by CYSDM. The proposed method provides an effective reference for large-scale, all-day ship detection.
2. Previous Related Research
3. Materials and Methods
3.1. Thermal Infrared Ship Datasets
3.2. The Improved YOLOv5s Algorithm
4. Experimental Analysis
4.1. Evaluation Criteria
4.2. Comparative Experiments
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dellinger, F.; Delon, J.; Gousseau, Y.; Michel, J.; Tupin, F. SAR-SIFT: A SIFT-like algorithm for SAR images. IEEE Trans. Geosci. Remote Sens. 2014, 53, 453–466. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Zhou, S.; Zou, H.; Gao, G. A CFAR detection algorithm for generalized gamma distributed background in high-resolution SAR images. IEEE Geosci. Remote Sens. Lett. 2012, 10, 806–810. [Google Scholar]
- Li, Z.; Itti, L. Saliency and gist features for target detection in satellite images. IEEE Trans. Image Process. 2011, 20, 2017–2029. [Google Scholar] [PubMed] [Green Version]
- Qi, S.; Ma, J.; Lin, J.; Li, Y.; Tian, J. Unsupervised ship detection based on saliency and S-HOG descriptor from optical satellite images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1451–1455. [Google Scholar]
- Chen, C.; Wang, B.; Lu, C.; Trigoni, N.; Markham, A. A Survey on Deep Learning for Localization and Mapping: Towards the Age of Spatial Machine Intelligence. arXiv 2020, arXiv:2006.12567. [Google Scholar]
- Zhou, K.; Zhang, M.; Wang, H.; Tan, J. Ship Detection in SAR Images Based on Multi-Scale Feature Extraction and Adaptive Feature Fusion. Remote Sens. 2022, 14, 755. [Google Scholar] [CrossRef]
- Xue, B.; Tong, N. Real-World ISAR Object Recognition Using Deep Multimodal Relation Learning. IEEE Trans. Cybern. 2020, 50, 4256–4267. [Google Scholar] [CrossRef]
- Theagarajan, R.; Bhanu, B.; Erpek, T.; Hue, Y.K.; Schwieterman, R.; Davaslioglu, K.; Shi, Y.; Sagduyu, Y.E. Integrating deep learning-based data driven and model-based approaches for inverse synthetic aperture radar target recognition. Opt. Eng. 2020, 59, 051407. [Google Scholar] [CrossRef]
- Han, W.; Kuerban, A.; Yang, Y.; Huang, Z.; Liu, B.; Gao, J. Multi-Vision Network for Accurate and Real-Time Small Object Detection in Optical Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- He, H.; Lin, Y.; Chen, F.; Tai, H.-M.; Yin, Z. Inshore Ship Detection in Remote Sensing Images via Weighted Pose Voting. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3091–3107. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Xu, B.; Dang, C.; Deng, J. Low-Contrast Infrared Target Detection Based on Multiscale Dual Morphological Reconstruction. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Xue, B.; Tong, N. DIOD: Fast and Efficient Weakly Semi-Supervised Deep Complex ISAR Object Detection. IEEE Trans. Cybern. 2019, 49, 3991–4003. [Google Scholar] [CrossRef] [PubMed]
- Ciocarlan, A.; Stoian, A. Ship Detection in Sentinel 2 Multi-Spectral Images with Self-Supervised Learning. Remote Sens. 2021, 13, 4255. [Google Scholar] [CrossRef]
- Xu, J.; Sun, X.; Zhang, D.; Fu, K. Automatic Detection of Inshore Ships in High-Resolution Remote Sensing Images Using Robust Invariant Generalized Hough Transform. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2070–2074. [Google Scholar]
- Cheng, X.; Lu, J.; Feng, J.; Yuan, B.; Zhou, J. Scene recognition with objectness. Pattern Recognit. 2018, 74, 474–487. [Google Scholar] [CrossRef]
- Han, Y.; Yang, X.; Pu, T.; Peng, Z. Fine-Grained Recognition for Oriented Ship Against Complex Scenes in Optical Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–18. [Google Scholar] [CrossRef]
- Xia, G.S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A Large-Scale Dataset for Object Detection in Aerial Images. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3974–3983. [Google Scholar]
- Ding, J.; Xue, N.; Xia, G.S.; Bai, X.; Yang, W.; Yang, M.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; et al. Object Detection in Aerial Images: A Large-Scale Benchmark and Challenges. IEEE Trans. Pattern Anal. Mach. Intell. 2021. [Google Scholar] [CrossRef]
- Cheng, G.; Zhou, P.; Han, J. Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7405–7415. [Google Scholar] [CrossRef]
- Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [Google Scholar] [CrossRef]
- Wei, S.; Zeng, X.; Qu, Q.; Wang, M.; Su, H.; Shi, J. HRSID: A High-Resolution SAR Images Dataset for Ship Detection and Instance Segmentation. IEEE Access 2020, 8, 120234–120254. [Google Scholar] [CrossRef]
- Yang, X.; Sun, H.; Fu, K.; Yang, J.; Sun, X.; Yan, M.; Guo, Z. Automatic Ship Detection in Remote Sensing Images from Google Earth of Complex Scenes Based on Multiscale Rotation Dense Feature Pyramid Networks. Remote Sens. 2018, 10, 132. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, C.; Zhang, H.; Dong, Y.; Wei, S. A SAR Dataset of Ship Detection for Deep Learning under Complex Backgrounds. Remote Sens. 2019, 11, 765. [Google Scholar] [CrossRef] [Green Version]
- Ghaderpour, E.; Pagiatakis, S.D.; Hassan, Q.K. A Survey on Change Detection and Time Series Analysis with Applications. Appl. Sci. 2021, 11, 6141. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Liu, X.; Huang, W.; Hu, Z.; Chen, F. Attention Mechanism Cloud Detection with Modified FCN for Infrared Remote Sensing Images. IEEE Access. 2021, 9, 150975–150983. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Honolulu, HI, USA, 21–26 July 2017; pp. 2999–3007. [Google Scholar] [CrossRef] [Green Version]
- Bochkovskiy, A.; Wang, C.; Liao, H. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R.; Fast, R.C.N.N. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. arXiv 2016, arXiv:1511.07122. [Google Scholar]
- Andrew, H.; Mark, S.; Grace, C.; Liang-Chieh, C.; Bo, C.; Mingxing, T.; Weijun, W.; Yukun, Z.; Ruoming, P.; Vijay, V. Searching for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27–28 October 2019; pp. 1314–1324. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2011–2023. [Google Scholar] [CrossRef] [Green Version]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. GhostNet: More Features from Cheap Operations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1577–1586. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In European Conference on Computer Vision; Computer Vision (ECCV) Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2016; Volume 9905. [Google Scholar] [CrossRef] [Green Version]
Category | The Length/m | The Width/m | Mean Aspect Ratio |
---|---|---|---|
Aircraft Carrier | 160.0–343.0 | 33.0–76.9 | 2.08–4.46 |
Amphibious Ship | 70.0–250.0 | 8.5–40.0 | 1.75–6.25 |
Cruiser | 142.0–247.5 | 15.8–27.5 | 5.16–8.95 |
Destroyer | 112.0–171.0 | 10.2–16.4 | 6.83–10.42 |
Frigate | 81.0–138.0 | 9.1–14.3 | 5.66–9.65 |
Mean | 113.0–229.9 | 15.3–35.0 | 4.29–7.96 |
Datasets | Satellite | Bands | Resolution | Annotations |
---|---|---|---|---|
The Annotated Datasets | SDGSAT-1-TIS | 8–10.5 μm | 30 m | Ship (length: 120–320 m, aspect ratio: 7.53–4.23) |
DOTA-v1.5 [17] | Google Earth, JL-1, GF-2 | 0.45–0.89 μm | 0.04–1 m | 17 classes (including Ship) |
DOTA-v2.0 [18] | Aerial | 0.45–0.89 μm | 0.04–1 m | 17 classes (including Ship) |
NWPU VHR-10 [19] | optical images | 0.38–0.76 μm | 0.04–1 m | 10 classes (including Ship) |
DIOR [20] | SAR | 0.38–0.76 μm | 0.04–1 m | 20 classes (including Ship) |
HRSID [21] | Google Earth, JL-1, GF-2 | 1300–1.76 mm | 0.5–3 m | Ship (SAR images of different resolutions, polarities, sea areas, and ports) |
SSDD [22] | Aerial | 1300–1.76 mm | 0.5–3 m | |
SAR-Ship-Dataset [23] | GF-3, Sentinel-1 | 1300–1.76 mm | 3–25 m |
From | n | Parameters | Module | Arguments |
---|---|---|---|---|
−1 | 1 | 3520 | Focus | [3, 32, 3] |
−1 | 1 | 704 | DWConv | [32, 64, 3, 2] |
−1 | 1 | 3440 | GhostBottleneck | [64, 64, 3, 1] |
−1 | 1 | 18,784 | GhostBottleneck | [64, 128, 3, 2] |
−1 | 3 | 32,928 | GhostBottleneck | [128, 128, 3, 1] |
−1 | 1 | 2048 | SELayer | [128, 16] |
−1 | 1 | 66,240 | GhostBottleneck | [128, 256, 3, 2] |
−1 | 3 | 115,008 | GhostBottleneck | [256, 256, 3, 1] |
−1 | 1 | 8192 | SELayer | [256, 16] |
−1 | 1 | 5632 | DWConv | [256, 512, 3, 2] |
−1 | 1 | 656,896 | SPP | [512, 512, [5, 9, 13]] |
−1 | 1 | 32,768 | SELayer | [512, 16] |
−1 | 1 | 131,584 | Conv | [512, 256, 1, 1] |
−1 | 1 | 0 | Upsample | [None, 2, ‘nearest’] |
[−1, 6] | 1 | 0 | Concat | [1] |
−1 | 1 | 361,984 | C3 | [512, 256, 1, False] |
−1 | 1 | 33,024 | Conv | [256, 128, 1, 1] |
−1 | 1 | 0 | Upsample | [None, 2, ‘nearest’] |
[−1, 4] | 1 | 0 | Concat | [1] |
−1 | 1 | 90,880 | C3 | [256, 128, 1, False] |
−1 | 1 | 147,712 | Conv | [128, 128, 3, 2] |
[−1, 14] | 1 | 0 | Concat | [1] |
−1 | 1 | 394,752 | C3 | [640, 256, 1, False] |
−1 | 1 | 590,336 | Conv | [256, 256, 3, 2] |
[−1, 10] | 1 | 0 | Concat | [1] |
−1 | 1 | 1,313,792 | C3 | [768, 512, 1, False] |
[17, 20,23] | 1 | 131,325 | Detect | [80, [[116, 90, 156, 198, 373, 326], [30, 61, 62, 45, 59, 119], [10, 13, 16, 30, 33, 23]], [128, 128, 256]] |
Ground Truth | Predicted Class | |
---|---|---|
Ship | Non Ship | |
Ship | TP | FN |
Non Ship | FP | TN |
Model | Image Size | Batch Size | Precision (%) | Recall (%) | GFLOPs | Layers | Parameters |
---|---|---|---|---|---|---|---|
CYSDM | 640 | 8 | 98.68 | 98.67 | 9.3 | 390 | 4.14 M |
IC-CYSDM | 640 | 8 | 96.19 | 96.07 | 9.3 | 390 | 4.14 M |
YOLOv5s | 640 | 8 | 89.61 | 91.99 | 17.1 | 283 | 7.28 M |
YOLOv3 [37] | 320 | 8 | 85.91 | 82.33 | 38.8 | 252 | 20.40 M |
Faster R-CNN [31] | 320 | 8 | 83.26 | 84.89 | 46.7 | - | 31.25 M |
SSD512 [38] | 320 | 4 | 87.34 | 86.75 | 19.6 | - | 138.0 M |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Jiang, L.; Zhang, J.; Wang, S.; Chen, F. A Complete YOLO-Based Ship Detection Method for Thermal Infrared Remote Sensing Images under Complex Backgrounds. Remote Sens. 2022, 14, 1534. https://doi.org/10.3390/rs14071534
Li L, Jiang L, Zhang J, Wang S, Chen F. A Complete YOLO-Based Ship Detection Method for Thermal Infrared Remote Sensing Images under Complex Backgrounds. Remote Sensing. 2022; 14(7):1534. https://doi.org/10.3390/rs14071534
Chicago/Turabian StyleLi, Liyuan, Linyi Jiang, Jingwen Zhang, Siqi Wang, and Fansheng Chen. 2022. "A Complete YOLO-Based Ship Detection Method for Thermal Infrared Remote Sensing Images under Complex Backgrounds" Remote Sensing 14, no. 7: 1534. https://doi.org/10.3390/rs14071534
APA StyleLi, L., Jiang, L., Zhang, J., Wang, S., & Chen, F. (2022). A Complete YOLO-Based Ship Detection Method for Thermal Infrared Remote Sensing Images under Complex Backgrounds. Remote Sensing, 14(7), 1534. https://doi.org/10.3390/rs14071534